lnd/input/signdescriptor.go

317 lines
9.7 KiB
Go

package input
import (
"encoding/binary"
"errors"
"fmt"
"io"
"github.com/btcsuite/btcd/btcec/v2"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/lightningnetwork/lnd/keychain"
)
var (
// ErrTweakOverdose signals a SignDescriptor is invalid because both of its
// SingleTweak and DoubleTweak are non-nil.
ErrTweakOverdose = errors.New("sign descriptor should only have one tweak")
)
// SignDescriptor houses the necessary information required to successfully
// sign a given segwit output. This struct is used by the Signer interface in
// order to gain access to critical data needed to generate a valid signature.
type SignDescriptor struct {
// KeyDesc is a descriptor that precisely describes *which* key to use
// for signing. This may provide the raw public key directly, or
// require the Signer to re-derive the key according to the populated
// derivation path.
KeyDesc keychain.KeyDescriptor
// SingleTweak is a scalar value that will be added to the private key
// corresponding to the above public key to obtain the private key to
// be used to sign this input. This value is typically derived via the
// following computation:
//
// * derivedKey = privkey + sha256(perCommitmentPoint || pubKey) mod N
//
// NOTE: If this value is nil, then the input can be signed using only
// the above public key. Either a SingleTweak should be set or a
// DoubleTweak, not both.
SingleTweak []byte
// DoubleTweak is a private key that will be used in combination with
// its corresponding private key to derive the private key that is to
// be used to sign the target input. Within the Lightning protocol,
// this value is typically the commitment secret from a previously
// revoked commitment transaction. This value is in combination with
// two hash values, and the original private key to derive the private
// key to be used when signing.
//
// * k = (privKey*sha256(pubKey || tweakPub) +
// tweakPriv*sha256(tweakPub || pubKey)) mod N
//
// NOTE: If this value is nil, then the input can be signed using only
// the above public key. Either a SingleTweak should be set or a
// DoubleTweak, not both.
DoubleTweak *btcec.PrivateKey
// TapTweak is a 32-byte value that will be used to derive a taproot
// output public key (or the corresponding private key) from an
// internal key and this tweak. The transformation applied is:
// * outputKey = internalKey +
// tagged_hash("tapTweak", internalKey || tapTweak)
//
// When attempting to sign an output derived via BIP 86, then this
// field should be an empty byte array.
//
// When attempting to sign for the key spend path of an output key that
// commits to an actual script tree, the script root should be used.
TapTweak []byte
// WitnessScript is the full script required to properly redeem the
// output. This field should be set to the full script if a p2wsh
// output is being signed. For p2wkh it should be set to the hashed
// script (PkScript).
WitnessScript []byte
// SignMethod specifies how the input should be signed. Depending on the
// selected method, either the TapTweak, WitnessScript or both need to
// be specified.
SignMethod SignMethod
// Output is the target output which should be signed. The PkScript and
// Value fields within the output should be properly populated,
// otherwise an invalid signature may be generated.
Output *wire.TxOut
// HashType is the target sighash type that should be used when
// generating the final sighash, and signature.
HashType txscript.SigHashType
// SigHashes is the pre-computed sighash midstate to be used when
// generating the final sighash for signing.
SigHashes *txscript.TxSigHashes
// PrevOutputFetcher is an interface that can return the output
// information on all UTXOs that are being spent in this transaction.
// This MUST be set when spending Taproot outputs.
PrevOutputFetcher txscript.PrevOutputFetcher
// ControlBlock is a fully serialized control block that contains the
// merkle proof necessary to spend a taproot output. This may
// optionally be set if the SignMethod is
// input.TaprootScriptSpendSignMethod. In which case, this should be an
// inclusion proof for the WitnessScript.
ControlBlock []byte
// InputIndex is the target input within the transaction that should be
// signed.
InputIndex int
}
// SignMethod defines the different ways a signer can sign, given a specific
// input.
type SignMethod uint8
const (
// WitnessV0SignMethod denotes that a SegWit v0 (p2wkh, np2wkh, p2wsh)
// input script should be signed.
WitnessV0SignMethod SignMethod = 0
// TaprootKeySpendBIP0086SignMethod denotes that a SegWit v1 (p2tr)
// input should be signed by using the BIP0086 method (commit to
// internal key only).
TaprootKeySpendBIP0086SignMethod SignMethod = 1
// TaprootKeySpendSignMethod denotes that a SegWit v1 (p2tr)
// input should be signed by using a given taproot hash to commit to in
// addition to the internal key.
TaprootKeySpendSignMethod SignMethod = 2
// TaprootScriptSpendSignMethod denotes that a SegWit v1 (p2tr) input
// should be spent using the script path and that a specific leaf script
// should be signed for.
TaprootScriptSpendSignMethod SignMethod = 3
)
// String returns a human-readable representation of the signing method.
func (s SignMethod) String() string {
switch s {
case WitnessV0SignMethod:
return "witness_v0"
case TaprootKeySpendBIP0086SignMethod:
return "taproot_key_spend_bip86"
case TaprootKeySpendSignMethod:
return "taproot_key_spend"
case TaprootScriptSpendSignMethod:
return "taproot_script_spend"
default:
return fmt.Sprintf("unknown<%d>", s)
}
}
// PkScriptCompatible returns true if the given public key script is compatible
// with the sign method.
func (s SignMethod) PkScriptCompatible(pkScript []byte) bool {
switch s {
// SegWit v0 can be p2wkh, np2wkh, p2wsh.
case WitnessV0SignMethod:
return txscript.IsPayToWitnessPubKeyHash(pkScript) ||
txscript.IsPayToWitnessScriptHash(pkScript) ||
txscript.IsPayToScriptHash(pkScript)
case TaprootKeySpendBIP0086SignMethod, TaprootKeySpendSignMethod,
TaprootScriptSpendSignMethod:
return txscript.IsPayToTaproot(pkScript)
default:
return false
}
}
// WriteSignDescriptor serializes a SignDescriptor struct into the passed
// io.Writer stream.
//
// NOTE: We assume the SigHashes and InputIndex fields haven't been assigned
// yet, since that is usually done just before broadcast by the witness
// generator.
func WriteSignDescriptor(w io.Writer, sd *SignDescriptor) error {
err := binary.Write(w, binary.BigEndian, sd.KeyDesc.Family)
if err != nil {
return err
}
err = binary.Write(w, binary.BigEndian, sd.KeyDesc.Index)
if err != nil {
return err
}
err = binary.Write(w, binary.BigEndian, sd.KeyDesc.PubKey != nil)
if err != nil {
return err
}
if sd.KeyDesc.PubKey != nil {
serializedPubKey := sd.KeyDesc.PubKey.SerializeCompressed()
if err := wire.WriteVarBytes(w, 0, serializedPubKey); err != nil {
return err
}
}
if err := wire.WriteVarBytes(w, 0, sd.SingleTweak); err != nil {
return err
}
var doubleTweakBytes []byte
if sd.DoubleTweak != nil {
doubleTweakBytes = sd.DoubleTweak.Serialize()
}
if err := wire.WriteVarBytes(w, 0, doubleTweakBytes); err != nil {
return err
}
if err := wire.WriteVarBytes(w, 0, sd.WitnessScript); err != nil {
return err
}
if err := writeTxOut(w, sd.Output); err != nil {
return err
}
var scratch [4]byte
binary.BigEndian.PutUint32(scratch[:], uint32(sd.HashType))
if _, err := w.Write(scratch[:]); err != nil {
return err
}
return nil
}
// ReadSignDescriptor deserializes a SignDescriptor struct from the passed
// io.Reader stream.
func ReadSignDescriptor(r io.Reader, sd *SignDescriptor) error {
err := binary.Read(r, binary.BigEndian, &sd.KeyDesc.Family)
if err != nil {
return err
}
err = binary.Read(r, binary.BigEndian, &sd.KeyDesc.Index)
if err != nil {
return err
}
var hasKey bool
err = binary.Read(r, binary.BigEndian, &hasKey)
if err != nil {
return err
}
if hasKey {
pubKeyBytes, err := wire.ReadVarBytes(r, 0, 34, "pubkey")
if err != nil {
return err
}
sd.KeyDesc.PubKey, err = btcec.ParsePubKey(pubKeyBytes)
if err != nil {
return err
}
}
singleTweak, err := wire.ReadVarBytes(r, 0, 32, "singleTweak")
if err != nil {
return err
}
// Serializing a SignDescriptor with a nil-valued SingleTweak results
// in deserializing a zero-length slice. Since a nil-valued SingleTweak
// has special meaning and a zero-length slice for a SingleTweak is
// invalid, we can use the zero-length slice as the flag for a
// nil-valued SingleTweak.
if len(singleTweak) == 0 {
sd.SingleTweak = nil
} else {
sd.SingleTweak = singleTweak
}
doubleTweakBytes, err := wire.ReadVarBytes(r, 0, 32, "doubleTweak")
if err != nil {
return err
}
// Serializing a SignDescriptor with a nil-valued DoubleTweak results
// in deserializing a zero-length slice. Since a nil-valued DoubleTweak
// has special meaning and a zero-length slice for a DoubleTweak is
// invalid, we can use the zero-length slice as the flag for a
// nil-valued DoubleTweak.
if len(doubleTweakBytes) == 0 {
sd.DoubleTweak = nil
} else {
sd.DoubleTweak, _ = btcec.PrivKeyFromBytes(doubleTweakBytes)
}
// Only one tweak should ever be set, fail if both are present.
if sd.SingleTweak != nil && sd.DoubleTweak != nil {
return ErrTweakOverdose
}
witnessScript, err := wire.ReadVarBytes(r, 0, 500, "witnessScript")
if err != nil {
return err
}
sd.WitnessScript = witnessScript
txOut := &wire.TxOut{}
if err := readTxOut(r, txOut); err != nil {
return err
}
sd.Output = txOut
var hashType [4]byte
if _, err := io.ReadFull(r, hashType[:]); err != nil {
return err
}
sd.HashType = txscript.SigHashType(binary.BigEndian.Uint32(hashType[:]))
return nil
}