lnd/htlcswitch/link.go
2024-11-06 18:12:43 +01:00

4189 lines
137 KiB
Go

package htlcswitch
import (
"bytes"
crand "crypto/rand"
"crypto/sha256"
"errors"
"fmt"
prand "math/rand"
"sync"
"sync/atomic"
"time"
"github.com/btcsuite/btcd/btcutil"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btclog/v2"
"github.com/lightningnetwork/lnd/build"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/channeldb/models"
"github.com/lightningnetwork/lnd/contractcourt"
"github.com/lightningnetwork/lnd/fn"
"github.com/lightningnetwork/lnd/htlcswitch/hodl"
"github.com/lightningnetwork/lnd/htlcswitch/hop"
"github.com/lightningnetwork/lnd/input"
"github.com/lightningnetwork/lnd/invoices"
"github.com/lightningnetwork/lnd/lnpeer"
"github.com/lightningnetwork/lnd/lntypes"
"github.com/lightningnetwork/lnd/lnutils"
"github.com/lightningnetwork/lnd/lnwallet"
"github.com/lightningnetwork/lnd/lnwallet/chainfee"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/queue"
"github.com/lightningnetwork/lnd/ticker"
"github.com/lightningnetwork/lnd/tlv"
)
func init() {
prand.Seed(time.Now().UnixNano())
}
const (
// DefaultMaxOutgoingCltvExpiry is the maximum outgoing time lock that
// the node accepts for forwarded payments. The value is relative to the
// current block height. The reason to have a maximum is to prevent
// funds getting locked up unreasonably long. Otherwise, an attacker
// willing to lock its own funds too, could force the funds of this node
// to be locked up for an indefinite (max int32) number of blocks.
//
// The value 2016 corresponds to on average two weeks worth of blocks
// and is based on the maximum number of hops (20), the default CLTV
// delta (40), and some extra margin to account for the other lightning
// implementations and past lnd versions which used to have a default
// CLTV delta of 144.
DefaultMaxOutgoingCltvExpiry = 2016
// DefaultMinLinkFeeUpdateTimeout represents the minimum interval in
// which a link should propose to update its commitment fee rate.
DefaultMinLinkFeeUpdateTimeout = 10 * time.Minute
// DefaultMaxLinkFeeUpdateTimeout represents the maximum interval in
// which a link should propose to update its commitment fee rate.
DefaultMaxLinkFeeUpdateTimeout = 60 * time.Minute
// DefaultMaxLinkFeeAllocation is the highest allocation we'll allow
// a channel's commitment fee to be of its balance. This only applies to
// the initiator of the channel.
DefaultMaxLinkFeeAllocation float64 = 0.5
)
// ExpectedFee computes the expected fee for a given htlc amount. The value
// returned from this function is to be used as a sanity check when forwarding
// HTLC's to ensure that an incoming HTLC properly adheres to our propagated
// forwarding policy.
//
// TODO(roasbeef): also add in current available channel bandwidth, inverse
// func
func ExpectedFee(f models.ForwardingPolicy,
htlcAmt lnwire.MilliSatoshi) lnwire.MilliSatoshi {
return f.BaseFee + (htlcAmt*f.FeeRate)/1000000
}
// ChannelLinkConfig defines the configuration for the channel link. ALL
// elements within the configuration MUST be non-nil for channel link to carry
// out its duties.
type ChannelLinkConfig struct {
// FwrdingPolicy is the initial forwarding policy to be used when
// deciding whether to forwarding incoming HTLC's or not. This value
// can be updated with subsequent calls to UpdateForwardingPolicy
// targeted at a given ChannelLink concrete interface implementation.
FwrdingPolicy models.ForwardingPolicy
// Circuits provides restricted access to the switch's circuit map,
// allowing the link to open and close circuits.
Circuits CircuitModifier
// BestHeight returns the best known height.
BestHeight func() uint32
// ForwardPackets attempts to forward the batch of htlcs through the
// switch. The function returns and error in case it fails to send one or
// more packets. The link's quit signal should be provided to allow
// cancellation of forwarding during link shutdown.
ForwardPackets func(<-chan struct{}, bool, ...*htlcPacket) error
// DecodeHopIterators facilitates batched decoding of HTLC Sphinx onion
// blobs, which are then used to inform how to forward an HTLC.
//
// NOTE: This function assumes the same set of readers and preimages
// are always presented for the same identifier.
DecodeHopIterators func([]byte, []hop.DecodeHopIteratorRequest) (
[]hop.DecodeHopIteratorResponse, error)
// ExtractErrorEncrypter function is responsible for decoding HTLC
// Sphinx onion blob, and creating onion failure obfuscator.
ExtractErrorEncrypter hop.ErrorEncrypterExtracter
// FetchLastChannelUpdate retrieves the latest routing policy for a
// target channel. This channel will typically be the outgoing channel
// specified when we receive an incoming HTLC. This will be used to
// provide payment senders our latest policy when sending encrypted
// error messages.
FetchLastChannelUpdate func(lnwire.ShortChannelID) (
*lnwire.ChannelUpdate1, error)
// Peer is a lightning network node with which we have the channel link
// opened.
Peer lnpeer.Peer
// Registry is a sub-system which responsible for managing the invoices
// in thread-safe manner.
Registry InvoiceDatabase
// PreimageCache is a global witness beacon that houses any new
// preimages discovered by other links. We'll use this to add new
// witnesses that we discover which will notify any sub-systems
// subscribed to new events.
PreimageCache contractcourt.WitnessBeacon
// OnChannelFailure is a function closure that we'll call if the
// channel failed for some reason. Depending on the severity of the
// error, the closure potentially must force close this channel and
// disconnect the peer.
//
// NOTE: The method must return in order for the ChannelLink to be able
// to shut down properly.
OnChannelFailure func(lnwire.ChannelID, lnwire.ShortChannelID,
LinkFailureError)
// UpdateContractSignals is a function closure that we'll use to update
// outside sub-systems with this channel's latest ShortChannelID.
UpdateContractSignals func(*contractcourt.ContractSignals) error
// NotifyContractUpdate is a function closure that we'll use to update
// the contractcourt and more specifically the ChannelArbitrator of the
// latest channel state.
NotifyContractUpdate func(*contractcourt.ContractUpdate) error
// ChainEvents is an active subscription to the chain watcher for this
// channel to be notified of any on-chain activity related to this
// channel.
ChainEvents *contractcourt.ChainEventSubscription
// FeeEstimator is an instance of a live fee estimator which will be
// used to dynamically regulate the current fee of the commitment
// transaction to ensure timely confirmation.
FeeEstimator chainfee.Estimator
// hodl.Mask is a bitvector composed of hodl.Flags, specifying breakpoints
// for HTLC forwarding internal to the switch.
//
// NOTE: This should only be used for testing.
HodlMask hodl.Mask
// SyncStates is used to indicate that we need send the channel
// reestablishment message to the remote peer. It should be done if our
// clients have been restarted, or remote peer have been reconnected.
SyncStates bool
// BatchTicker is the ticker that determines the interval that we'll
// use to check the batch to see if there're any updates we should
// flush out. By batching updates into a single commit, we attempt to
// increase throughput by maximizing the number of updates coalesced
// into a single commit.
BatchTicker ticker.Ticker
// FwdPkgGCTicker is the ticker determining the frequency at which
// garbage collection of forwarding packages occurs. We use a
// time-based approach, as opposed to block epochs, as to not hinder
// syncing.
FwdPkgGCTicker ticker.Ticker
// PendingCommitTicker is a ticker that allows the link to determine if
// a locally initiated commitment dance gets stuck waiting for the
// remote party to revoke.
PendingCommitTicker ticker.Ticker
// BatchSize is the max size of a batch of updates done to the link
// before we do a state update.
BatchSize uint32
// UnsafeReplay will cause a link to replay the adds in its latest
// commitment txn after the link is restarted. This should only be used
// in testing, it is here to ensure the sphinx replay detection on the
// receiving node is persistent.
UnsafeReplay bool
// MinUpdateTimeout represents the minimum interval in which a link
// will propose to update its commitment fee rate. A random timeout will
// be selected between this and MaxUpdateTimeout.
MinUpdateTimeout time.Duration
// MaxUpdateTimeout represents the maximum interval in which a link
// will propose to update its commitment fee rate. A random timeout will
// be selected between this and MinUpdateTimeout.
MaxUpdateTimeout time.Duration
// OutgoingCltvRejectDelta defines the number of blocks before expiry of
// an htlc where we don't offer an htlc anymore. This should be at least
// the outgoing broadcast delta, because in any case we don't want to
// risk offering an htlc that triggers channel closure.
OutgoingCltvRejectDelta uint32
// TowerClient is an optional engine that manages the signing,
// encrypting, and uploading of justice transactions to the daemon's
// configured set of watchtowers for legacy channels.
TowerClient TowerClient
// MaxOutgoingCltvExpiry is the maximum outgoing timelock that the link
// should accept for a forwarded HTLC. The value is relative to the
// current block height.
MaxOutgoingCltvExpiry uint32
// MaxFeeAllocation is the highest allocation we'll allow a channel's
// commitment fee to be of its balance. This only applies to the
// initiator of the channel.
MaxFeeAllocation float64
// MaxAnchorsCommitFeeRate is the max commitment fee rate we'll use as
// the initiator for channels of the anchor type.
MaxAnchorsCommitFeeRate chainfee.SatPerKWeight
// NotifyActiveLink allows the link to tell the ChannelNotifier when a
// link is first started.
NotifyActiveLink func(wire.OutPoint)
// NotifyActiveChannel allows the link to tell the ChannelNotifier when
// channels becomes active.
NotifyActiveChannel func(wire.OutPoint)
// NotifyInactiveChannel allows the switch to tell the ChannelNotifier
// when channels become inactive.
NotifyInactiveChannel func(wire.OutPoint)
// NotifyInactiveLinkEvent allows the switch to tell the
// ChannelNotifier when a channel link become inactive.
NotifyInactiveLinkEvent func(wire.OutPoint)
// HtlcNotifier is an instance of a htlcNotifier which we will pipe htlc
// events through.
HtlcNotifier htlcNotifier
// FailAliasUpdate is a function used to fail an HTLC for an
// option_scid_alias channel.
FailAliasUpdate func(sid lnwire.ShortChannelID,
incoming bool) *lnwire.ChannelUpdate1
// GetAliases is used by the link and switch to fetch the set of
// aliases for a given link.
GetAliases func(base lnwire.ShortChannelID) []lnwire.ShortChannelID
// PreviouslySentShutdown is an optional value that is set if, at the
// time of the link being started, persisted shutdown info was found for
// the channel. This value being set means that we previously sent a
// Shutdown message to our peer, and so we should do so again on
// re-establish and should not allow anymore HTLC adds on the outgoing
// direction of the link.
PreviouslySentShutdown fn.Option[lnwire.Shutdown]
// Adds the option to disable forwarding payments in blinded routes
// by failing back any blinding-related payloads as if they were
// invalid.
DisallowRouteBlinding bool
// MaxFeeExposure is the threshold in milli-satoshis after which we'll
// restrict the flow of HTLCs and fee updates.
MaxFeeExposure lnwire.MilliSatoshi
}
// channelLink is the service which drives a channel's commitment update
// state-machine. In the event that an HTLC needs to be propagated to another
// link, the forward handler from config is used which sends HTLC to the
// switch. Additionally, the link encapsulate logic of commitment protocol
// message ordering and updates.
type channelLink struct {
// The following fields are only meant to be used *atomically*
started int32
reestablished int32
shutdown int32
// failed should be set to true in case a link error happens, making
// sure we don't process any more updates.
failed bool
// keystoneBatch represents a volatile list of keystones that must be
// written before attempting to sign the next commitment txn. These
// represent all the HTLC's forwarded to the link from the switch. Once
// we lock them into our outgoing commitment, then the circuit has a
// keystone, and is fully opened.
keystoneBatch []Keystone
// openedCircuits is the set of all payment circuits that will be open
// once we make our next commitment. After making the commitment we'll
// ACK all these from our mailbox to ensure that they don't get
// re-delivered if we reconnect.
openedCircuits []CircuitKey
// closedCircuits is the set of all payment circuits that will be
// closed once we make our next commitment. After taking the commitment
// we'll ACK all these to ensure that they don't get re-delivered if we
// reconnect.
closedCircuits []CircuitKey
// channel is a lightning network channel to which we apply htlc
// updates.
channel *lnwallet.LightningChannel
// cfg is a structure which carries all dependable fields/handlers
// which may affect behaviour of the service.
cfg ChannelLinkConfig
// mailBox is the main interface between the outside world and the
// link. All incoming messages will be sent over this mailBox. Messages
// include new updates from our connected peer, and new packets to be
// forwarded sent by the switch.
mailBox MailBox
// upstream is a channel that new messages sent from the remote peer to
// the local peer will be sent across.
upstream chan lnwire.Message
// downstream is a channel in which new multi-hop HTLC's to be
// forwarded will be sent across. Messages from this channel are sent
// by the HTLC switch.
downstream chan *htlcPacket
// updateFeeTimer is the timer responsible for updating the link's
// commitment fee every time it fires.
updateFeeTimer *time.Timer
// uncommittedPreimages stores a list of all preimages that have been
// learned since receiving the last CommitSig from the remote peer. The
// batch will be flushed just before accepting the subsequent CommitSig
// or on shutdown to avoid doing a write for each preimage received.
uncommittedPreimages []lntypes.Preimage
sync.RWMutex
// hodlQueue is used to receive exit hop htlc resolutions from invoice
// registry.
hodlQueue *queue.ConcurrentQueue
// hodlMap stores related htlc data for a circuit key. It allows
// resolving those htlcs when we receive a message on hodlQueue.
hodlMap map[models.CircuitKey]hodlHtlc
// log is a link-specific logging instance.
log btclog.Logger
// isOutgoingAddBlocked tracks whether the channelLink can send an
// UpdateAddHTLC.
isOutgoingAddBlocked atomic.Bool
// isIncomingAddBlocked tracks whether the channelLink can receive an
// UpdateAddHTLC.
isIncomingAddBlocked atomic.Bool
// flushHooks is a hookMap that is triggered when we reach a channel
// state with no live HTLCs.
flushHooks hookMap
// outgoingCommitHooks is a hookMap that is triggered after we send our
// next CommitSig.
outgoingCommitHooks hookMap
// incomingCommitHooks is a hookMap that is triggered after we receive
// our next CommitSig.
incomingCommitHooks hookMap
// ContextGuard is a helper that encapsulates a wait group and quit
// channel and allows contexts that either block or cancel on those
// depending on the use case.
*fn.ContextGuard
}
// hookMap is a data structure that is used to track the hooks that need to be
// called in various parts of the channelLink's lifecycle.
//
// WARNING: NOT thread-safe.
type hookMap struct {
// allocIdx keeps track of the next id we haven't yet allocated.
allocIdx atomic.Uint64
// transient is a map of hooks that are only called the next time invoke
// is called. These hooks are deleted during invoke.
transient map[uint64]func()
// newTransients is a channel that we use to accept new hooks into the
// hookMap.
newTransients chan func()
}
// newHookMap initializes a new empty hookMap.
func newHookMap() hookMap {
return hookMap{
allocIdx: atomic.Uint64{},
transient: make(map[uint64]func()),
newTransients: make(chan func()),
}
}
// alloc allocates space in the hook map for the supplied hook, the second
// argument determines whether it goes into the transient or persistent part
// of the hookMap.
func (m *hookMap) alloc(hook func()) uint64 {
// We assume we never overflow a uint64. Seems OK.
hookID := m.allocIdx.Add(1)
if hookID == 0 {
panic("hookMap allocIdx overflow")
}
m.transient[hookID] = hook
return hookID
}
// invoke is used on a hook map to call all the registered hooks and then clear
// out the transient hooks so they are not called again.
func (m *hookMap) invoke() {
for _, hook := range m.transient {
hook()
}
m.transient = make(map[uint64]func())
}
// hodlHtlc contains htlc data that is required for resolution.
type hodlHtlc struct {
add lnwire.UpdateAddHTLC
sourceRef channeldb.AddRef
obfuscator hop.ErrorEncrypter
}
// NewChannelLink creates a new instance of a ChannelLink given a configuration
// and active channel that will be used to verify/apply updates to.
func NewChannelLink(cfg ChannelLinkConfig,
channel *lnwallet.LightningChannel) ChannelLink {
logPrefix := fmt.Sprintf("ChannelLink(%v):", channel.ChannelPoint())
// If the max fee exposure isn't set, use the default.
if cfg.MaxFeeExposure == 0 {
cfg.MaxFeeExposure = DefaultMaxFeeExposure
}
return &channelLink{
cfg: cfg,
channel: channel,
hodlMap: make(map[models.CircuitKey]hodlHtlc),
hodlQueue: queue.NewConcurrentQueue(10),
log: build.NewPrefixLog(logPrefix, log),
flushHooks: newHookMap(),
outgoingCommitHooks: newHookMap(),
incomingCommitHooks: newHookMap(),
ContextGuard: fn.NewContextGuard(),
}
}
// A compile time check to ensure channelLink implements the ChannelLink
// interface.
var _ ChannelLink = (*channelLink)(nil)
// Start starts all helper goroutines required for the operation of the channel
// link.
//
// NOTE: Part of the ChannelLink interface.
func (l *channelLink) Start() error {
if !atomic.CompareAndSwapInt32(&l.started, 0, 1) {
err := fmt.Errorf("channel link(%v): already started", l)
l.log.Warn("already started")
return err
}
l.log.Info("starting")
// If the config supplied watchtower client, ensure the channel is
// registered before trying to use it during operation.
if l.cfg.TowerClient != nil {
err := l.cfg.TowerClient.RegisterChannel(
l.ChanID(), l.channel.State().ChanType,
)
if err != nil {
return err
}
}
l.mailBox.ResetMessages()
l.hodlQueue.Start()
// Before launching the htlcManager messages, revert any circuits that
// were marked open in the switch's circuit map, but did not make it
// into a commitment txn. We use the next local htlc index as the cut
// off point, since all indexes below that are committed. This action
// is only performed if the link's final short channel ID has been
// assigned, otherwise we would try to trim the htlcs belonging to the
// all-zero, hop.Source ID.
if l.ShortChanID() != hop.Source {
localHtlcIndex, err := l.channel.NextLocalHtlcIndex()
if err != nil {
return fmt.Errorf("unable to retrieve next local "+
"htlc index: %v", err)
}
// NOTE: This is automatically done by the switch when it
// starts up, but is necessary to prevent inconsistencies in
// the case that the link flaps. This is a result of a link's
// life-cycle being shorter than that of the switch.
chanID := l.ShortChanID()
err = l.cfg.Circuits.TrimOpenCircuits(chanID, localHtlcIndex)
if err != nil {
return fmt.Errorf("unable to trim circuits above "+
"local htlc index %d: %v", localHtlcIndex, err)
}
// Since the link is live, before we start the link we'll update
// the ChainArbitrator with the set of new channel signals for
// this channel.
//
// TODO(roasbeef): split goroutines within channel arb to avoid
go func() {
signals := &contractcourt.ContractSignals{
ShortChanID: l.channel.ShortChanID(),
}
err := l.cfg.UpdateContractSignals(signals)
if err != nil {
l.log.Errorf("unable to update signals")
}
}()
}
l.updateFeeTimer = time.NewTimer(l.randomFeeUpdateTimeout())
l.Wg.Add(1)
go l.htlcManager()
return nil
}
// Stop gracefully stops all active helper goroutines, then waits until they've
// exited.
//
// NOTE: Part of the ChannelLink interface.
func (l *channelLink) Stop() {
if !atomic.CompareAndSwapInt32(&l.shutdown, 0, 1) {
l.log.Warn("already stopped")
return
}
l.log.Info("stopping")
// As the link is stopping, we are no longer interested in htlc
// resolutions coming from the invoice registry.
l.cfg.Registry.HodlUnsubscribeAll(l.hodlQueue.ChanIn())
if l.cfg.ChainEvents.Cancel != nil {
l.cfg.ChainEvents.Cancel()
}
// Ensure the channel for the timer is drained.
if l.updateFeeTimer != nil {
if !l.updateFeeTimer.Stop() {
select {
case <-l.updateFeeTimer.C:
default:
}
}
}
if l.hodlQueue != nil {
l.hodlQueue.Stop()
}
close(l.Quit)
l.Wg.Wait()
// Now that the htlcManager has completely exited, reset the packet
// courier. This allows the mailbox to revaluate any lingering Adds that
// were delivered but didn't make it on a commitment to be failed back
// if the link is offline for an extended period of time. The error is
// ignored since it can only fail when the daemon is exiting.
_ = l.mailBox.ResetPackets()
// As a final precaution, we will attempt to flush any uncommitted
// preimages to the preimage cache. The preimages should be re-delivered
// after channel reestablishment, however this adds an extra layer of
// protection in case the peer never returns. Without this, we will be
// unable to settle any contracts depending on the preimages even though
// we had learned them at some point.
err := l.cfg.PreimageCache.AddPreimages(l.uncommittedPreimages...)
if err != nil {
l.log.Errorf("unable to add preimages=%v to cache: %v",
l.uncommittedPreimages, err)
}
}
// WaitForShutdown blocks until the link finishes shutting down, which includes
// termination of all dependent goroutines.
func (l *channelLink) WaitForShutdown() {
l.Wg.Wait()
}
// EligibleToForward returns a bool indicating if the channel is able to
// actively accept requests to forward HTLC's. We're able to forward HTLC's if
// we are eligible to update AND the channel isn't currently flushing the
// outgoing half of the channel.
func (l *channelLink) EligibleToForward() bool {
return l.EligibleToUpdate() &&
!l.IsFlushing(Outgoing)
}
// EligibleToUpdate returns a bool indicating if the channel is able to update
// channel state. We're able to update channel state if we know the remote
// party's next revocation point. Otherwise, we can't initiate new channel
// state. We also require that the short channel ID not be the all-zero source
// ID, meaning that the channel has had its ID finalized.
func (l *channelLink) EligibleToUpdate() bool {
return l.channel.RemoteNextRevocation() != nil &&
l.ShortChanID() != hop.Source &&
l.isReestablished()
}
// EnableAdds sets the ChannelUpdateHandler state to allow UpdateAddHtlc's in
// the specified direction. It returns true if the state was changed and false
// if the desired state was already set before the method was called.
func (l *channelLink) EnableAdds(linkDirection LinkDirection) bool {
if linkDirection == Outgoing {
return l.isOutgoingAddBlocked.Swap(false)
}
return l.isIncomingAddBlocked.Swap(false)
}
// DisableAdds sets the ChannelUpdateHandler state to allow UpdateAddHtlc's in
// the specified direction. It returns true if the state was changed and false
// if the desired state was already set before the method was called.
func (l *channelLink) DisableAdds(linkDirection LinkDirection) bool {
if linkDirection == Outgoing {
return !l.isOutgoingAddBlocked.Swap(true)
}
return !l.isIncomingAddBlocked.Swap(true)
}
// IsFlushing returns true when UpdateAddHtlc's are disabled in the direction of
// the argument.
func (l *channelLink) IsFlushing(linkDirection LinkDirection) bool {
if linkDirection == Outgoing {
return l.isOutgoingAddBlocked.Load()
}
return l.isIncomingAddBlocked.Load()
}
// OnFlushedOnce adds a hook that will be called the next time the channel
// state reaches zero htlcs. This hook will only ever be called once. If the
// channel state already has zero htlcs, then this will be called immediately.
func (l *channelLink) OnFlushedOnce(hook func()) {
select {
case l.flushHooks.newTransients <- hook:
case <-l.Quit:
}
}
// OnCommitOnce adds a hook that will be called the next time a CommitSig
// message is sent in the argument's LinkDirection. This hook will only ever be
// called once. If no CommitSig is owed in the argument's LinkDirection, then
// we will call this hook be run immediately.
func (l *channelLink) OnCommitOnce(direction LinkDirection, hook func()) {
var queue chan func()
if direction == Outgoing {
queue = l.outgoingCommitHooks.newTransients
} else {
queue = l.incomingCommitHooks.newTransients
}
select {
case queue <- hook:
case <-l.Quit:
}
}
// isReestablished returns true if the link has successfully completed the
// channel reestablishment dance.
func (l *channelLink) isReestablished() bool {
return atomic.LoadInt32(&l.reestablished) == 1
}
// markReestablished signals that the remote peer has successfully exchanged
// channel reestablish messages and that the channel is ready to process
// subsequent messages.
func (l *channelLink) markReestablished() {
atomic.StoreInt32(&l.reestablished, 1)
}
// IsUnadvertised returns true if the underlying channel is unadvertised.
func (l *channelLink) IsUnadvertised() bool {
state := l.channel.State()
return state.ChannelFlags&lnwire.FFAnnounceChannel == 0
}
// sampleNetworkFee samples the current fee rate on the network to get into the
// chain in a timely manner. The returned value is expressed in fee-per-kw, as
// this is the native rate used when computing the fee for commitment
// transactions, and the second-level HTLC transactions.
func (l *channelLink) sampleNetworkFee() (chainfee.SatPerKWeight, error) {
// We'll first query for the sat/kw recommended to be confirmed within 3
// blocks.
feePerKw, err := l.cfg.FeeEstimator.EstimateFeePerKW(3)
if err != nil {
return 0, err
}
l.log.Debugf("sampled fee rate for 3 block conf: %v sat/kw",
int64(feePerKw))
return feePerKw, nil
}
// shouldAdjustCommitFee returns true if we should update our commitment fee to
// match that of the network fee. We'll only update our commitment fee if the
// network fee is +/- 10% to our commitment fee or if our current commitment
// fee is below the minimum relay fee.
func shouldAdjustCommitFee(netFee, chanFee,
minRelayFee chainfee.SatPerKWeight) bool {
switch {
// If the network fee is greater than our current commitment fee and
// our current commitment fee is below the minimum relay fee then
// we should switch to it no matter if it is less than a 10% increase.
case netFee > chanFee && chanFee < minRelayFee:
return true
// If the network fee is greater than the commitment fee, then we'll
// switch to it if it's at least 10% greater than the commit fee.
case netFee > chanFee && netFee >= (chanFee+(chanFee*10)/100):
return true
// If the network fee is less than our commitment fee, then we'll
// switch to it if it's at least 10% less than the commitment fee.
case netFee < chanFee && netFee <= (chanFee-(chanFee*10)/100):
return true
// Otherwise, we won't modify our fee.
default:
return false
}
}
// failCb is used to cut down on the argument verbosity.
type failCb func(update *lnwire.ChannelUpdate1) lnwire.FailureMessage
// createFailureWithUpdate creates a ChannelUpdate when failing an incoming or
// outgoing HTLC. It may return a FailureMessage that references a channel's
// alias. If the channel does not have an alias, then the regular channel
// update from disk will be returned.
func (l *channelLink) createFailureWithUpdate(incoming bool,
outgoingScid lnwire.ShortChannelID, cb failCb) lnwire.FailureMessage {
// Determine which SCID to use in case we need to use aliases in the
// ChannelUpdate.
scid := outgoingScid
if incoming {
scid = l.ShortChanID()
}
// Try using the FailAliasUpdate function. If it returns nil, fallback
// to the non-alias behavior.
update := l.cfg.FailAliasUpdate(scid, incoming)
if update == nil {
// Fallback to the non-alias behavior.
var err error
update, err = l.cfg.FetchLastChannelUpdate(l.ShortChanID())
if err != nil {
return &lnwire.FailTemporaryNodeFailure{}
}
}
return cb(update)
}
// syncChanState attempts to synchronize channel states with the remote party.
// This method is to be called upon reconnection after the initial funding
// flow. We'll compare out commitment chains with the remote party, and re-send
// either a danging commit signature, a revocation, or both.
func (l *channelLink) syncChanStates() error {
chanState := l.channel.State()
l.log.Infof("Attempting to re-synchronize channel: %v", chanState)
// First, we'll generate our ChanSync message to send to the other
// side. Based on this message, the remote party will decide if they
// need to retransmit any data or not.
localChanSyncMsg, err := chanState.ChanSyncMsg()
if err != nil {
return fmt.Errorf("unable to generate chan sync message for "+
"ChannelPoint(%v)", l.channel.ChannelPoint())
}
if err := l.cfg.Peer.SendMessage(true, localChanSyncMsg); err != nil {
return fmt.Errorf("unable to send chan sync message for "+
"ChannelPoint(%v): %v", l.channel.ChannelPoint(), err)
}
var msgsToReSend []lnwire.Message
// Next, we'll wait indefinitely to receive the ChanSync message. The
// first message sent MUST be the ChanSync message.
select {
case msg := <-l.upstream:
l.log.Tracef("Received msg=%v from peer(%x)", msg.MsgType(),
l.cfg.Peer.PubKey())
remoteChanSyncMsg, ok := msg.(*lnwire.ChannelReestablish)
if !ok {
return fmt.Errorf("first message sent to sync "+
"should be ChannelReestablish, instead "+
"received: %T", msg)
}
// If the remote party indicates that they think we haven't
// done any state updates yet, then we'll retransmit the
// channel_ready message first. We do this, as at this point
// we can't be sure if they've really received the
// ChannelReady message.
if remoteChanSyncMsg.NextLocalCommitHeight == 1 &&
localChanSyncMsg.NextLocalCommitHeight == 1 &&
!l.channel.IsPending() {
l.log.Infof("resending ChannelReady message to peer")
nextRevocation, err := l.channel.NextRevocationKey()
if err != nil {
return fmt.Errorf("unable to create next "+
"revocation: %v", err)
}
channelReadyMsg := lnwire.NewChannelReady(
l.ChanID(), nextRevocation,
)
// If this is a taproot channel, then we'll send the
// very same nonce that we sent above, as they should
// take the latest verification nonce we send.
if chanState.ChanType.IsTaproot() {
//nolint:lll
channelReadyMsg.NextLocalNonce = localChanSyncMsg.LocalNonce
}
// For channels that negotiated the option-scid-alias
// feature bit, ensure that we send over the alias in
// the channel_ready message. We'll send the first
// alias we find for the channel since it does not
// matter which alias we send. We'll error out if no
// aliases are found.
if l.negotiatedAliasFeature() {
aliases := l.getAliases()
if len(aliases) == 0 {
// This shouldn't happen since we
// always add at least one alias before
// the channel reaches the link.
return fmt.Errorf("no aliases found")
}
// getAliases returns a copy of the alias slice
// so it is ok to use a pointer to the first
// entry.
channelReadyMsg.AliasScid = &aliases[0]
}
err = l.cfg.Peer.SendMessage(false, channelReadyMsg)
if err != nil {
return fmt.Errorf("unable to re-send "+
"ChannelReady: %v", err)
}
}
// In any case, we'll then process their ChanSync message.
l.log.Info("received re-establishment message from remote side")
var (
openedCircuits []CircuitKey
closedCircuits []CircuitKey
)
// We've just received a ChanSync message from the remote
// party, so we'll process the message in order to determine
// if we need to re-transmit any messages to the remote party.
ctx, cancel := l.WithCtxQuitNoTimeout()
defer cancel()
msgsToReSend, openedCircuits, closedCircuits, err =
l.channel.ProcessChanSyncMsg(ctx, remoteChanSyncMsg)
if err != nil {
return err
}
// Repopulate any identifiers for circuits that may have been
// opened or unclosed. This may happen if we needed to
// retransmit a commitment signature message.
l.openedCircuits = openedCircuits
l.closedCircuits = closedCircuits
// Ensure that all packets have been have been removed from the
// link's mailbox.
if err := l.ackDownStreamPackets(); err != nil {
return err
}
if len(msgsToReSend) > 0 {
l.log.Infof("sending %v updates to synchronize the "+
"state", len(msgsToReSend))
}
// If we have any messages to retransmit, we'll do so
// immediately so we return to a synchronized state as soon as
// possible.
for _, msg := range msgsToReSend {
l.cfg.Peer.SendMessage(false, msg)
}
case <-l.Quit:
return ErrLinkShuttingDown
}
return nil
}
// resolveFwdPkgs loads any forwarding packages for this link from disk, and
// reprocesses them in order. The primary goal is to make sure that any HTLCs
// we previously received are reinstated in memory, and forwarded to the switch
// if necessary. After a restart, this will also delete any previously
// completed packages.
func (l *channelLink) resolveFwdPkgs() error {
fwdPkgs, err := l.channel.LoadFwdPkgs()
if err != nil {
return err
}
l.log.Debugf("loaded %d fwd pks", len(fwdPkgs))
for _, fwdPkg := range fwdPkgs {
if err := l.resolveFwdPkg(fwdPkg); err != nil {
return err
}
}
// If any of our reprocessing steps require an update to the commitment
// txn, we initiate a state transition to capture all relevant changes.
if l.channel.NumPendingUpdates(lntypes.Local, lntypes.Remote) > 0 {
return l.updateCommitTx()
}
return nil
}
// resolveFwdPkg interprets the FwdState of the provided package, either
// reprocesses any outstanding htlcs in the package, or performs garbage
// collection on the package.
func (l *channelLink) resolveFwdPkg(fwdPkg *channeldb.FwdPkg) error {
// Remove any completed packages to clear up space.
if fwdPkg.State == channeldb.FwdStateCompleted {
l.log.Debugf("removing completed fwd pkg for height=%d",
fwdPkg.Height)
err := l.channel.RemoveFwdPkgs(fwdPkg.Height)
if err != nil {
l.log.Errorf("unable to remove fwd pkg for height=%d: "+
"%v", fwdPkg.Height, err)
return err
}
}
// Otherwise this is either a new package or one has gone through
// processing, but contains htlcs that need to be restored in memory.
// We replay this forwarding package to make sure our local mem state
// is resurrected, we mimic any original responses back to the remote
// party, and re-forward the relevant HTLCs to the switch.
// If the package is fully acked but not completed, it must still have
// settles and fails to propagate.
if !fwdPkg.SettleFailFilter.IsFull() {
l.processRemoteSettleFails(fwdPkg)
}
// Finally, replay *ALL ADDS* in this forwarding package. The
// downstream logic is able to filter out any duplicates, but we must
// shove the entire, original set of adds down the pipeline so that the
// batch of adds presented to the sphinx router does not ever change.
if !fwdPkg.AckFilter.IsFull() {
l.processRemoteAdds(fwdPkg)
// If the link failed during processing the adds, we must
// return to ensure we won't attempted to update the state
// further.
if l.failed {
return fmt.Errorf("link failed while " +
"processing remote adds")
}
}
return nil
}
// fwdPkgGarbager periodically reads all forwarding packages from disk and
// removes those that can be discarded. It is safe to do this entirely in the
// background, since all state is coordinated on disk. This also ensures the
// link can continue to process messages and interleave database accesses.
//
// NOTE: This MUST be run as a goroutine.
func (l *channelLink) fwdPkgGarbager() {
defer l.Wg.Done()
l.cfg.FwdPkgGCTicker.Resume()
defer l.cfg.FwdPkgGCTicker.Stop()
if err := l.loadAndRemove(); err != nil {
l.log.Warnf("unable to run initial fwd pkgs gc: %v", err)
}
for {
select {
case <-l.cfg.FwdPkgGCTicker.Ticks():
if err := l.loadAndRemove(); err != nil {
l.log.Warnf("unable to remove fwd pkgs: %v",
err)
continue
}
case <-l.Quit:
return
}
}
}
// loadAndRemove loads all the channels forwarding packages and determines if
// they can be removed. It is called once before the FwdPkgGCTicker ticks so that
// a longer tick interval can be used.
func (l *channelLink) loadAndRemove() error {
fwdPkgs, err := l.channel.LoadFwdPkgs()
if err != nil {
return err
}
var removeHeights []uint64
for _, fwdPkg := range fwdPkgs {
if fwdPkg.State != channeldb.FwdStateCompleted {
continue
}
removeHeights = append(removeHeights, fwdPkg.Height)
}
// If removeHeights is empty, return early so we don't use a db
// transaction.
if len(removeHeights) == 0 {
return nil
}
return l.channel.RemoveFwdPkgs(removeHeights...)
}
// handleChanSyncErr performs the error handling logic in the case where we
// could not successfully syncChanStates with our channel peer.
func (l *channelLink) handleChanSyncErr(err error) {
l.log.Warnf("error when syncing channel states: %v", err)
var errDataLoss *lnwallet.ErrCommitSyncLocalDataLoss
switch {
case errors.Is(err, ErrLinkShuttingDown):
l.log.Debugf("unable to sync channel states, link is " +
"shutting down")
return
// We failed syncing the commit chains, probably because the remote has
// lost state. We should force close the channel.
case errors.Is(err, lnwallet.ErrCommitSyncRemoteDataLoss):
fallthrough
// The remote sent us an invalid last commit secret, we should force
// close the channel.
// TODO(halseth): and permanently ban the peer?
case errors.Is(err, lnwallet.ErrInvalidLastCommitSecret):
fallthrough
// The remote sent us a commit point different from what they sent us
// before.
// TODO(halseth): ban peer?
case errors.Is(err, lnwallet.ErrInvalidLocalUnrevokedCommitPoint):
// We'll fail the link and tell the peer to force close the
// channel. Note that the database state is not updated here,
// but will be updated when the close transaction is ready to
// avoid that we go down before storing the transaction in the
// db.
l.failf(
LinkFailureError{
code: ErrSyncError,
FailureAction: LinkFailureForceClose,
},
"unable to synchronize channel states: %v", err,
)
// We have lost state and cannot safely force close the channel. Fail
// the channel and wait for the remote to hopefully force close it. The
// remote has sent us its latest unrevoked commitment point, and we'll
// store it in the database, such that we can attempt to recover the
// funds if the remote force closes the channel.
case errors.As(err, &errDataLoss):
err := l.channel.MarkDataLoss(
errDataLoss.CommitPoint,
)
if err != nil {
l.log.Errorf("unable to mark channel data loss: %v",
err)
}
// We determined the commit chains were not possible to sync. We
// cautiously fail the channel, but don't force close.
// TODO(halseth): can we safely force close in any cases where this
// error is returned?
case errors.Is(err, lnwallet.ErrCannotSyncCommitChains):
if err := l.channel.MarkBorked(); err != nil {
l.log.Errorf("unable to mark channel borked: %v", err)
}
// Other, unspecified error.
default:
}
l.failf(
LinkFailureError{
code: ErrRecoveryError,
FailureAction: LinkFailureForceNone,
},
"unable to synchronize channel states: %v", err,
)
}
// htlcManager is the primary goroutine which drives a channel's commitment
// update state-machine in response to messages received via several channels.
// This goroutine reads messages from the upstream (remote) peer, and also from
// downstream channel managed by the channel link. In the event that an htlc
// needs to be forwarded, then send-only forward handler is used which sends
// htlc packets to the switch. Additionally, this goroutine handles acting upon
// all timeouts for any active HTLCs, manages the channel's revocation window,
// and also the htlc trickle queue+timer for this active channels.
//
// NOTE: This MUST be run as a goroutine.
func (l *channelLink) htlcManager() {
defer func() {
l.cfg.BatchTicker.Stop()
l.Wg.Done()
l.log.Infof("exited")
}()
l.log.Infof("HTLC manager started, bandwidth=%v", l.Bandwidth())
// Notify any clients that the link is now in the switch via an
// ActiveLinkEvent. We'll also defer an inactive link notification for
// when the link exits to ensure that every active notification is
// matched by an inactive one.
l.cfg.NotifyActiveLink(l.ChannelPoint())
defer l.cfg.NotifyInactiveLinkEvent(l.ChannelPoint())
// TODO(roasbeef): need to call wipe chan whenever D/C?
// If this isn't the first time that this channel link has been
// created, then we'll need to check to see if we need to
// re-synchronize state with the remote peer. settledHtlcs is a map of
// HTLC's that we re-settled as part of the channel state sync.
if l.cfg.SyncStates {
err := l.syncChanStates()
if err != nil {
l.handleChanSyncErr(err)
return
}
}
// If a shutdown message has previously been sent on this link, then we
// need to make sure that we have disabled any HTLC adds on the outgoing
// direction of the link and that we re-resend the same shutdown message
// that we previously sent.
l.cfg.PreviouslySentShutdown.WhenSome(func(shutdown lnwire.Shutdown) {
// Immediately disallow any new outgoing HTLCs.
if !l.DisableAdds(Outgoing) {
l.log.Warnf("Outgoing link adds already disabled")
}
// Re-send the shutdown message the peer. Since syncChanStates
// would have sent any outstanding CommitSig, it is fine for us
// to immediately queue the shutdown message now.
err := l.cfg.Peer.SendMessage(false, &shutdown)
if err != nil {
l.log.Warnf("Error sending shutdown message: %v", err)
}
})
// We've successfully reestablished the channel, mark it as such to
// allow the switch to forward HTLCs in the outbound direction.
l.markReestablished()
// Now that we've received both channel_ready and channel reestablish,
// we can go ahead and send the active channel notification. We'll also
// defer the inactive notification for when the link exits to ensure
// that every active notification is matched by an inactive one.
l.cfg.NotifyActiveChannel(l.ChannelPoint())
defer l.cfg.NotifyInactiveChannel(l.ChannelPoint())
// With the channel states synced, we now reset the mailbox to ensure
// we start processing all unacked packets in order. This is done here
// to ensure that all acknowledgments that occur during channel
// resynchronization have taken affect, causing us only to pull unacked
// packets after starting to read from the downstream mailbox.
l.mailBox.ResetPackets()
// After cleaning up any memory pertaining to incoming packets, we now
// replay our forwarding packages to handle any htlcs that can be
// processed locally, or need to be forwarded out to the switch. We will
// only attempt to resolve packages if our short chan id indicates that
// the channel is not pending, otherwise we should have no htlcs to
// reforward.
if l.ShortChanID() != hop.Source {
err := l.resolveFwdPkgs()
switch err {
// No error was encountered, success.
case nil:
// If the duplicate keystone error was encountered, we'll fail
// without sending an Error message to the peer.
case ErrDuplicateKeystone:
l.failf(LinkFailureError{code: ErrCircuitError},
"temporary circuit error: %v", err)
return
// A non-nil error was encountered, send an Error message to
// the peer.
default:
l.failf(LinkFailureError{code: ErrInternalError},
"unable to resolve fwd pkgs: %v", err)
return
}
// With our link's in-memory state fully reconstructed, spawn a
// goroutine to manage the reclamation of disk space occupied by
// completed forwarding packages.
l.Wg.Add(1)
go l.fwdPkgGarbager()
}
for {
// We must always check if we failed at some point processing
// the last update before processing the next.
if l.failed {
l.log.Errorf("link failed, exiting htlcManager")
return
}
// If the previous event resulted in a non-empty batch, resume
// the batch ticker so that it can be cleared. Otherwise pause
// the ticker to prevent waking up the htlcManager while the
// batch is empty.
numUpdates := l.channel.NumPendingUpdates(
lntypes.Local, lntypes.Remote,
)
if numUpdates > 0 {
l.cfg.BatchTicker.Resume()
l.log.Tracef("BatchTicker resumed, "+
"NumPendingUpdates(Local, Remote)=%d",
numUpdates,
)
} else {
l.cfg.BatchTicker.Pause()
l.log.Trace("BatchTicker paused due to zero " +
"NumPendingUpdates(Local, Remote)")
}
select {
// We have a new hook that needs to be run when we reach a clean
// channel state.
case hook := <-l.flushHooks.newTransients:
if l.channel.IsChannelClean() {
hook()
} else {
l.flushHooks.alloc(hook)
}
// We have a new hook that needs to be run when we have
// committed all of our updates.
case hook := <-l.outgoingCommitHooks.newTransients:
if !l.channel.OweCommitment() {
hook()
} else {
l.outgoingCommitHooks.alloc(hook)
}
// We have a new hook that needs to be run when our peer has
// committed all of their updates.
case hook := <-l.incomingCommitHooks.newTransients:
if !l.channel.NeedCommitment() {
hook()
} else {
l.incomingCommitHooks.alloc(hook)
}
// Our update fee timer has fired, so we'll check the network
// fee to see if we should adjust our commitment fee.
case <-l.updateFeeTimer.C:
l.updateFeeTimer.Reset(l.randomFeeUpdateTimeout())
// If we're not the initiator of the channel, don't we
// don't control the fees, so we can ignore this.
if !l.channel.IsInitiator() {
continue
}
// If we are the initiator, then we'll sample the
// current fee rate to get into the chain within 3
// blocks.
netFee, err := l.sampleNetworkFee()
if err != nil {
l.log.Errorf("unable to sample network fee: %v",
err)
continue
}
minRelayFee := l.cfg.FeeEstimator.RelayFeePerKW()
newCommitFee := l.channel.IdealCommitFeeRate(
netFee, minRelayFee,
l.cfg.MaxAnchorsCommitFeeRate,
l.cfg.MaxFeeAllocation,
)
// We determine if we should adjust the commitment fee
// based on the current commitment fee, the suggested
// new commitment fee and the current minimum relay fee
// rate.
commitFee := l.channel.CommitFeeRate()
if !shouldAdjustCommitFee(
newCommitFee, commitFee, minRelayFee,
) {
continue
}
// If we do, then we'll send a new UpdateFee message to
// the remote party, to be locked in with a new update.
if err := l.updateChannelFee(newCommitFee); err != nil {
l.log.Errorf("unable to update fee rate: %v",
err)
continue
}
// The underlying channel has notified us of a unilateral close
// carried out by the remote peer. In the case of such an
// event, we'll wipe the channel state from the peer, and mark
// the contract as fully settled. Afterwards we can exit.
//
// TODO(roasbeef): add force closure? also breach?
case <-l.cfg.ChainEvents.RemoteUnilateralClosure:
l.log.Warnf("remote peer has closed on-chain")
// TODO(roasbeef): remove all together
go func() {
chanPoint := l.channel.ChannelPoint()
l.cfg.Peer.WipeChannel(&chanPoint)
}()
return
case <-l.cfg.BatchTicker.Ticks():
// Attempt to extend the remote commitment chain
// including all the currently pending entries. If the
// send was unsuccessful, then abandon the update,
// waiting for the revocation window to open up.
if !l.updateCommitTxOrFail() {
return
}
case <-l.cfg.PendingCommitTicker.Ticks():
l.failf(
LinkFailureError{
code: ErrRemoteUnresponsive,
FailureAction: LinkFailureDisconnect,
},
"unable to complete dance",
)
return
// A message from the switch was just received. This indicates
// that the link is an intermediate hop in a multi-hop HTLC
// circuit.
case pkt := <-l.downstream:
l.handleDownstreamPkt(pkt)
// A message from the connected peer was just received. This
// indicates that we have a new incoming HTLC, either directly
// for us, or part of a multi-hop HTLC circuit.
case msg := <-l.upstream:
l.handleUpstreamMsg(msg)
// A htlc resolution is received. This means that we now have a
// resolution for a previously accepted htlc.
case hodlItem := <-l.hodlQueue.ChanOut():
htlcResolution := hodlItem.(invoices.HtlcResolution)
err := l.processHodlQueue(htlcResolution)
switch err {
// No error, success.
case nil:
// If the duplicate keystone error was encountered,
// fail back gracefully.
case ErrDuplicateKeystone:
l.failf(LinkFailureError{
code: ErrCircuitError,
}, "process hodl queue: "+
"temporary circuit error: %v",
err,
)
// Send an Error message to the peer.
default:
l.failf(LinkFailureError{
code: ErrInternalError,
}, "process hodl queue: unable to update "+
"commitment: %v", err,
)
}
case <-l.Quit:
return
}
}
}
// processHodlQueue processes a received htlc resolution and continues reading
// from the hodl queue until no more resolutions remain. When this function
// returns without an error, the commit tx should be updated.
func (l *channelLink) processHodlQueue(
firstResolution invoices.HtlcResolution) error {
// Try to read all waiting resolution messages, so that they can all be
// processed in a single commitment tx update.
htlcResolution := firstResolution
loop:
for {
// Lookup all hodl htlcs that can be failed or settled with this event.
// The hodl htlc must be present in the map.
circuitKey := htlcResolution.CircuitKey()
hodlHtlc, ok := l.hodlMap[circuitKey]
if !ok {
return fmt.Errorf("hodl htlc not found: %v", circuitKey)
}
if err := l.processHtlcResolution(htlcResolution, hodlHtlc); err != nil {
return err
}
// Clean up hodl map.
delete(l.hodlMap, circuitKey)
select {
case item := <-l.hodlQueue.ChanOut():
htlcResolution = item.(invoices.HtlcResolution)
default:
break loop
}
}
// Update the commitment tx.
if err := l.updateCommitTx(); err != nil {
return err
}
return nil
}
// processHtlcResolution applies a received htlc resolution to the provided
// htlc. When this function returns without an error, the commit tx should be
// updated.
func (l *channelLink) processHtlcResolution(resolution invoices.HtlcResolution,
htlc hodlHtlc) error {
circuitKey := resolution.CircuitKey()
// Determine required action for the resolution based on the type of
// resolution we have received.
switch res := resolution.(type) {
// Settle htlcs that returned a settle resolution using the preimage
// in the resolution.
case *invoices.HtlcSettleResolution:
l.log.Debugf("received settle resolution for %v "+
"with outcome: %v", circuitKey, res.Outcome)
return l.settleHTLC(
res.Preimage, htlc.add.ID, htlc.sourceRef,
)
// For htlc failures, we get the relevant failure message based
// on the failure resolution and then fail the htlc.
case *invoices.HtlcFailResolution:
l.log.Debugf("received cancel resolution for "+
"%v with outcome: %v", circuitKey, res.Outcome)
// Get the lnwire failure message based on the resolution
// result.
failure := getResolutionFailure(res, htlc.add.Amount)
l.sendHTLCError(
htlc.add, htlc.sourceRef, failure, htlc.obfuscator,
true,
)
return nil
// Fail if we do not get a settle of fail resolution, since we
// are only expecting to handle settles and fails.
default:
return fmt.Errorf("unknown htlc resolution type: %T",
resolution)
}
}
// getResolutionFailure returns the wire message that a htlc resolution should
// be failed with.
func getResolutionFailure(resolution *invoices.HtlcFailResolution,
amount lnwire.MilliSatoshi) *LinkError {
// If the resolution has been resolved as part of a MPP timeout,
// we need to fail the htlc with lnwire.FailMppTimeout.
if resolution.Outcome == invoices.ResultMppTimeout {
return NewDetailedLinkError(
&lnwire.FailMPPTimeout{}, resolution.Outcome,
)
}
// If the htlc is not a MPP timeout, we fail it with
// FailIncorrectDetails. This error is sent for invoice payment
// failures such as underpayment/ expiry too soon and hodl invoices
// (which return FailIncorrectDetails to avoid leaking information).
incorrectDetails := lnwire.NewFailIncorrectDetails(
amount, uint32(resolution.AcceptHeight),
)
return NewDetailedLinkError(incorrectDetails, resolution.Outcome)
}
// randomFeeUpdateTimeout returns a random timeout between the bounds defined
// within the link's configuration that will be used to determine when the link
// should propose an update to its commitment fee rate.
func (l *channelLink) randomFeeUpdateTimeout() time.Duration {
lower := int64(l.cfg.MinUpdateTimeout)
upper := int64(l.cfg.MaxUpdateTimeout)
return time.Duration(prand.Int63n(upper-lower) + lower)
}
// handleDownstreamUpdateAdd processes an UpdateAddHTLC packet sent from the
// downstream HTLC Switch.
func (l *channelLink) handleDownstreamUpdateAdd(pkt *htlcPacket) error {
htlc, ok := pkt.htlc.(*lnwire.UpdateAddHTLC)
if !ok {
return errors.New("not an UpdateAddHTLC packet")
}
// If we are flushing the link in the outgoing direction we can't add
// new htlcs to the link and we need to bounce it
if l.IsFlushing(Outgoing) {
l.mailBox.FailAdd(pkt)
return NewDetailedLinkError(
&lnwire.FailPermanentChannelFailure{},
OutgoingFailureLinkNotEligible,
)
}
// If hodl.AddOutgoing mode is active, we exit early to simulate
// arbitrary delays between the switch adding an ADD to the
// mailbox, and the HTLC being added to the commitment state.
if l.cfg.HodlMask.Active(hodl.AddOutgoing) {
l.log.Warnf(hodl.AddOutgoing.Warning())
l.mailBox.AckPacket(pkt.inKey())
return nil
}
// Check if we can add the HTLC here without exceededing the max fee
// exposure threshold.
if l.isOverexposedWithHtlc(htlc, false) {
l.log.Debugf("Unable to handle downstream HTLC - max fee " +
"exposure exceeded")
l.mailBox.FailAdd(pkt)
return NewDetailedLinkError(
lnwire.NewTemporaryChannelFailure(nil),
OutgoingFailureDownstreamHtlcAdd,
)
}
// A new payment has been initiated via the downstream channel,
// so we add the new HTLC to our local log, then update the
// commitment chains.
htlc.ChanID = l.ChanID()
openCircuitRef := pkt.inKey()
// We enforce the fee buffer for the commitment transaction because
// we are in control of adding this htlc. Nothing has locked-in yet so
// we can securely enforce the fee buffer which is only relevant if we
// are the initiator of the channel.
index, err := l.channel.AddHTLC(htlc, &openCircuitRef)
if err != nil {
// The HTLC was unable to be added to the state machine,
// as a result, we'll signal the switch to cancel the
// pending payment.
l.log.Warnf("Unable to handle downstream add HTLC: %v",
err)
// Remove this packet from the link's mailbox, this
// prevents it from being reprocessed if the link
// restarts and resets it mailbox. If this response
// doesn't make it back to the originating link, it will
// be rejected upon attempting to reforward the Add to
// the switch, since the circuit was never fully opened,
// and the forwarding package shows it as
// unacknowledged.
l.mailBox.FailAdd(pkt)
return NewDetailedLinkError(
lnwire.NewTemporaryChannelFailure(nil),
OutgoingFailureDownstreamHtlcAdd,
)
}
l.log.Tracef("received downstream htlc: payment_hash=%x, "+
"local_log_index=%v, pend_updates=%v",
htlc.PaymentHash[:], index,
l.channel.NumPendingUpdates(lntypes.Local, lntypes.Remote))
pkt.outgoingChanID = l.ShortChanID()
pkt.outgoingHTLCID = index
htlc.ID = index
l.log.Debugf("queueing keystone of ADD open circuit: %s->%s",
pkt.inKey(), pkt.outKey())
l.openedCircuits = append(l.openedCircuits, pkt.inKey())
l.keystoneBatch = append(l.keystoneBatch, pkt.keystone())
_ = l.cfg.Peer.SendMessage(false, htlc)
// Send a forward event notification to htlcNotifier.
l.cfg.HtlcNotifier.NotifyForwardingEvent(
newHtlcKey(pkt),
HtlcInfo{
IncomingTimeLock: pkt.incomingTimeout,
IncomingAmt: pkt.incomingAmount,
OutgoingTimeLock: htlc.Expiry,
OutgoingAmt: htlc.Amount,
},
getEventType(pkt),
)
l.tryBatchUpdateCommitTx()
return nil
}
// handleDownstreamPkt processes an HTLC packet sent from the downstream HTLC
// Switch. Possible messages sent by the switch include requests to forward new
// HTLCs, timeout previously cleared HTLCs, and finally to settle currently
// cleared HTLCs with the upstream peer.
//
// TODO(roasbeef): add sync ntfn to ensure switch always has consistent view?
func (l *channelLink) handleDownstreamPkt(pkt *htlcPacket) {
switch htlc := pkt.htlc.(type) {
case *lnwire.UpdateAddHTLC:
// Handle add message. The returned error can be ignored,
// because it is also sent through the mailbox.
_ = l.handleDownstreamUpdateAdd(pkt)
case *lnwire.UpdateFulfillHTLC:
// If hodl.SettleOutgoing mode is active, we exit early to
// simulate arbitrary delays between the switch adding the
// SETTLE to the mailbox, and the HTLC being added to the
// commitment state.
if l.cfg.HodlMask.Active(hodl.SettleOutgoing) {
l.log.Warnf(hodl.SettleOutgoing.Warning())
l.mailBox.AckPacket(pkt.inKey())
return
}
// An HTLC we forward to the switch has just settled somewhere
// upstream. Therefore we settle the HTLC within the our local
// state machine.
inKey := pkt.inKey()
err := l.channel.SettleHTLC(
htlc.PaymentPreimage,
pkt.incomingHTLCID,
pkt.sourceRef,
pkt.destRef,
&inKey,
)
if err != nil {
l.log.Errorf("unable to settle incoming HTLC for "+
"circuit-key=%v: %v", inKey, err)
// If the HTLC index for Settle response was not known
// to our commitment state, it has already been
// cleaned up by a prior response. We'll thus try to
// clean up any lingering state to ensure we don't
// continue reforwarding.
if _, ok := err.(lnwallet.ErrUnknownHtlcIndex); ok {
l.cleanupSpuriousResponse(pkt)
}
// Remove the packet from the link's mailbox to ensure
// it doesn't get replayed after a reconnection.
l.mailBox.AckPacket(inKey)
return
}
l.log.Debugf("queueing removal of SETTLE closed circuit: "+
"%s->%s", pkt.inKey(), pkt.outKey())
l.closedCircuits = append(l.closedCircuits, pkt.inKey())
// With the HTLC settled, we'll need to populate the wire
// message to target the specific channel and HTLC to be
// canceled.
htlc.ChanID = l.ChanID()
htlc.ID = pkt.incomingHTLCID
// Then we send the HTLC settle message to the connected peer
// so we can continue the propagation of the settle message.
l.cfg.Peer.SendMessage(false, htlc)
// Send a settle event notification to htlcNotifier.
l.cfg.HtlcNotifier.NotifySettleEvent(
newHtlcKey(pkt),
htlc.PaymentPreimage,
getEventType(pkt),
)
// Immediately update the commitment tx to minimize latency.
l.updateCommitTxOrFail()
case *lnwire.UpdateFailHTLC:
// If hodl.FailOutgoing mode is active, we exit early to
// simulate arbitrary delays between the switch adding a FAIL to
// the mailbox, and the HTLC being added to the commitment
// state.
if l.cfg.HodlMask.Active(hodl.FailOutgoing) {
l.log.Warnf(hodl.FailOutgoing.Warning())
l.mailBox.AckPacket(pkt.inKey())
return
}
// An HTLC cancellation has been triggered somewhere upstream,
// we'll remove then HTLC from our local state machine.
inKey := pkt.inKey()
err := l.channel.FailHTLC(
pkt.incomingHTLCID,
htlc.Reason,
pkt.sourceRef,
pkt.destRef,
&inKey,
)
if err != nil {
l.log.Errorf("unable to cancel incoming HTLC for "+
"circuit-key=%v: %v", inKey, err)
// If the HTLC index for Fail response was not known to
// our commitment state, it has already been cleaned up
// by a prior response. We'll thus try to clean up any
// lingering state to ensure we don't continue
// reforwarding.
if _, ok := err.(lnwallet.ErrUnknownHtlcIndex); ok {
l.cleanupSpuriousResponse(pkt)
}
// Remove the packet from the link's mailbox to ensure
// it doesn't get replayed after a reconnection.
l.mailBox.AckPacket(inKey)
return
}
l.log.Debugf("queueing removal of FAIL closed circuit: %s->%s",
pkt.inKey(), pkt.outKey())
l.closedCircuits = append(l.closedCircuits, pkt.inKey())
// With the HTLC removed, we'll need to populate the wire
// message to target the specific channel and HTLC to be
// canceled. The "Reason" field will have already been set
// within the switch.
htlc.ChanID = l.ChanID()
htlc.ID = pkt.incomingHTLCID
// We send the HTLC message to the peer which initially created
// the HTLC. If the incoming blinding point is non-nil, we
// know that we are a relaying node in a blinded path.
// Otherwise, we're either an introduction node or not part of
// a blinded path at all.
if err := l.sendIncomingHTLCFailureMsg(
htlc.ID,
pkt.obfuscator,
htlc.Reason,
); err != nil {
l.log.Errorf("unable to send HTLC failure: %v",
err)
return
}
// If the packet does not have a link failure set, it failed
// further down the route so we notify a forwarding failure.
// Otherwise, we notify a link failure because it failed at our
// node.
if pkt.linkFailure != nil {
l.cfg.HtlcNotifier.NotifyLinkFailEvent(
newHtlcKey(pkt),
newHtlcInfo(pkt),
getEventType(pkt),
pkt.linkFailure,
false,
)
} else {
l.cfg.HtlcNotifier.NotifyForwardingFailEvent(
newHtlcKey(pkt), getEventType(pkt),
)
}
// Immediately update the commitment tx to minimize latency.
l.updateCommitTxOrFail()
}
}
// tryBatchUpdateCommitTx updates the commitment transaction if the batch is
// full.
func (l *channelLink) tryBatchUpdateCommitTx() {
pending := l.channel.NumPendingUpdates(lntypes.Local, lntypes.Remote)
if pending < uint64(l.cfg.BatchSize) {
return
}
l.updateCommitTxOrFail()
}
// cleanupSpuriousResponse attempts to ack any AddRef or SettleFailRef
// associated with this packet. If successful in doing so, it will also purge
// the open circuit from the circuit map and remove the packet from the link's
// mailbox.
func (l *channelLink) cleanupSpuriousResponse(pkt *htlcPacket) {
inKey := pkt.inKey()
l.log.Debugf("cleaning up spurious response for incoming "+
"circuit-key=%v", inKey)
// If the htlc packet doesn't have a source reference, it is unsafe to
// proceed, as skipping this ack may cause the htlc to be reforwarded.
if pkt.sourceRef == nil {
l.log.Errorf("unable to cleanup response for incoming "+
"circuit-key=%v, does not contain source reference",
inKey)
return
}
// If the source reference is present, we will try to prevent this link
// from resending the packet to the switch. To do so, we ack the AddRef
// of the incoming HTLC belonging to this link.
err := l.channel.AckAddHtlcs(*pkt.sourceRef)
if err != nil {
l.log.Errorf("unable to ack AddRef for incoming "+
"circuit-key=%v: %v", inKey, err)
// If this operation failed, it is unsafe to attempt removal of
// the destination reference or circuit, so we exit early. The
// cleanup may proceed with a different packet in the future
// that succeeds on this step.
return
}
// Now that we know this link will stop retransmitting Adds to the
// switch, we can begin to teardown the response reference and circuit
// map.
//
// If the packet includes a destination reference, then a response for
// this HTLC was locked into the outgoing channel. Attempt to remove
// this reference, so we stop retransmitting the response internally.
// Even if this fails, we will proceed in trying to delete the circuit.
// When retransmitting responses, the destination references will be
// cleaned up if an open circuit is not found in the circuit map.
if pkt.destRef != nil {
err := l.channel.AckSettleFails(*pkt.destRef)
if err != nil {
l.log.Errorf("unable to ack SettleFailRef "+
"for incoming circuit-key=%v: %v",
inKey, err)
}
}
l.log.Debugf("deleting circuit for incoming circuit-key=%x", inKey)
// With all known references acked, we can now safely delete the circuit
// from the switch's circuit map, as the state is no longer needed.
err = l.cfg.Circuits.DeleteCircuits(inKey)
if err != nil {
l.log.Errorf("unable to delete circuit for "+
"circuit-key=%v: %v", inKey, err)
}
}
// handleUpstreamMsg processes wire messages related to commitment state
// updates from the upstream peer. The upstream peer is the peer whom we have a
// direct channel with, updating our respective commitment chains.
func (l *channelLink) handleUpstreamMsg(msg lnwire.Message) {
switch msg := msg.(type) {
case *lnwire.UpdateAddHTLC:
if l.IsFlushing(Incoming) {
// This is forbidden by the protocol specification.
// The best chance we have to deal with this is to drop
// the connection. This should roll back the channel
// state to the last CommitSig. If the remote has
// already sent a CommitSig we haven't received yet,
// channel state will be re-synchronized with a
// ChannelReestablish message upon reconnection and the
// protocol state that caused us to flush the link will
// be rolled back. In the event that there was some
// non-deterministic behavior in the remote that caused
// them to violate the protocol, we have a decent shot
// at correcting it this way, since reconnecting will
// put us in the cleanest possible state to try again.
//
// In addition to the above, it is possible for us to
// hit this case in situations where we improperly
// handle message ordering due to concurrency choices.
// An issue has been filed to address this here:
// https://github.com/lightningnetwork/lnd/issues/8393
l.failf(
LinkFailureError{
code: ErrInvalidUpdate,
FailureAction: LinkFailureDisconnect,
PermanentFailure: false,
Warning: true,
},
"received add while link is flushing",
)
return
}
// Disallow htlcs with blinding points set if we haven't
// enabled the feature. This saves us from having to process
// the onion at all, but will only catch blinded payments
// where we are a relaying node (as the blinding point will
// be in the payload when we're the introduction node).
if msg.BlindingPoint.IsSome() && l.cfg.DisallowRouteBlinding {
l.failf(LinkFailureError{code: ErrInvalidUpdate},
"blinding point included when route blinding "+
"is disabled")
return
}
// We have to check the limit here rather than later in the
// switch because the counterparty can keep sending HTLC's
// without sending a revoke. This would mean that the switch
// check would only occur later.
if l.isOverexposedWithHtlc(msg, true) {
l.failf(LinkFailureError{code: ErrInternalError},
"peer sent us an HTLC that exceeded our max "+
"fee exposure")
return
}
// We just received an add request from an upstream peer, so we
// add it to our state machine, then add the HTLC to our
// "settle" list in the event that we know the preimage.
index, err := l.channel.ReceiveHTLC(msg)
if err != nil {
l.failf(LinkFailureError{code: ErrInvalidUpdate},
"unable to handle upstream add HTLC: %v", err)
return
}
l.log.Tracef("receive upstream htlc with payment hash(%x), "+
"assigning index: %v", msg.PaymentHash[:], index)
case *lnwire.UpdateFulfillHTLC:
pre := msg.PaymentPreimage
idx := msg.ID
// Before we pipeline the settle, we'll check the set of active
// htlc's to see if the related UpdateAddHTLC has been fully
// locked-in.
var lockedin bool
htlcs := l.channel.ActiveHtlcs()
for _, add := range htlcs {
// The HTLC will be outgoing and match idx.
if !add.Incoming && add.HtlcIndex == idx {
lockedin = true
break
}
}
if !lockedin {
l.failf(
LinkFailureError{code: ErrInvalidUpdate},
"unable to handle upstream settle",
)
return
}
if err := l.channel.ReceiveHTLCSettle(pre, idx); err != nil {
l.failf(
LinkFailureError{
code: ErrInvalidUpdate,
FailureAction: LinkFailureForceClose,
},
"unable to handle upstream settle HTLC: %v", err,
)
return
}
settlePacket := &htlcPacket{
outgoingChanID: l.ShortChanID(),
outgoingHTLCID: idx,
htlc: &lnwire.UpdateFulfillHTLC{
PaymentPreimage: pre,
},
}
// Add the newly discovered preimage to our growing list of
// uncommitted preimage. These will be written to the witness
// cache just before accepting the next commitment signature
// from the remote peer.
l.uncommittedPreimages = append(l.uncommittedPreimages, pre)
// Pipeline this settle, send it to the switch.
go l.forwardBatch(false, settlePacket)
case *lnwire.UpdateFailMalformedHTLC:
// Convert the failure type encoded within the HTLC fail
// message to the proper generic lnwire error code.
var failure lnwire.FailureMessage
switch msg.FailureCode {
case lnwire.CodeInvalidOnionVersion:
failure = &lnwire.FailInvalidOnionVersion{
OnionSHA256: msg.ShaOnionBlob,
}
case lnwire.CodeInvalidOnionHmac:
failure = &lnwire.FailInvalidOnionHmac{
OnionSHA256: msg.ShaOnionBlob,
}
case lnwire.CodeInvalidOnionKey:
failure = &lnwire.FailInvalidOnionKey{
OnionSHA256: msg.ShaOnionBlob,
}
// Handle malformed errors that are part of a blinded route.
// This case is slightly different, because we expect every
// relaying node in the blinded portion of the route to send
// malformed errors. If we're also a relaying node, we're
// likely going to switch this error out anyway for our own
// malformed error, but we handle the case here for
// completeness.
case lnwire.CodeInvalidBlinding:
failure = &lnwire.FailInvalidBlinding{
OnionSHA256: msg.ShaOnionBlob,
}
default:
l.log.Warnf("unexpected failure code received in "+
"UpdateFailMailformedHTLC: %v", msg.FailureCode)
// We don't just pass back the error we received from
// our successor. Otherwise we might report a failure
// that penalizes us more than needed. If the onion that
// we forwarded was correct, the node should have been
// able to send back its own failure. The node did not
// send back its own failure, so we assume there was a
// problem with the onion and report that back. We reuse
// the invalid onion key failure because there is no
// specific error for this case.
failure = &lnwire.FailInvalidOnionKey{
OnionSHA256: msg.ShaOnionBlob,
}
}
// With the error parsed, we'll convert the into it's opaque
// form.
var b bytes.Buffer
if err := lnwire.EncodeFailure(&b, failure, 0); err != nil {
l.log.Errorf("unable to encode malformed error: %v", err)
return
}
// If remote side have been unable to parse the onion blob we
// have sent to it, than we should transform the malformed HTLC
// message to the usual HTLC fail message.
err := l.channel.ReceiveFailHTLC(msg.ID, b.Bytes())
if err != nil {
l.failf(LinkFailureError{code: ErrInvalidUpdate},
"unable to handle upstream fail HTLC: %v", err)
return
}
case *lnwire.UpdateFailHTLC:
// Verify that the failure reason is at least 256 bytes plus
// overhead.
const minimumFailReasonLength = lnwire.FailureMessageLength +
2 + 2 + 32
if len(msg.Reason) < minimumFailReasonLength {
// We've received a reason with a non-compliant length.
// Older nodes happily relay back these failures that
// may originate from a node further downstream.
// Therefore we can't just fail the channel.
//
// We want to be compliant ourselves, so we also can't
// pass back the reason unmodified. And we must make
// sure that we don't hit the magic length check of 260
// bytes in processRemoteSettleFails either.
//
// Because the reason is unreadable for the payer
// anyway, we just replace it by a compliant-length
// series of random bytes.
msg.Reason = make([]byte, minimumFailReasonLength)
_, err := crand.Read(msg.Reason[:])
if err != nil {
l.log.Errorf("Random generation error: %v", err)
return
}
}
// Add fail to the update log.
idx := msg.ID
err := l.channel.ReceiveFailHTLC(idx, msg.Reason[:])
if err != nil {
l.failf(LinkFailureError{code: ErrInvalidUpdate},
"unable to handle upstream fail HTLC: %v", err)
return
}
case *lnwire.CommitSig:
// Since we may have learned new preimages for the first time,
// we'll add them to our preimage cache. By doing this, we
// ensure any contested contracts watched by any on-chain
// arbitrators can now sweep this HTLC on-chain. We delay
// committing the preimages until just before accepting the new
// remote commitment, as afterwards the peer won't resend the
// Settle messages on the next channel reestablishment. Doing so
// allows us to more effectively batch this operation, instead
// of doing a single write per preimage.
err := l.cfg.PreimageCache.AddPreimages(
l.uncommittedPreimages...,
)
if err != nil {
l.failf(
LinkFailureError{code: ErrInternalError},
"unable to add preimages=%v to cache: %v",
l.uncommittedPreimages, err,
)
return
}
// Instead of truncating the slice to conserve memory
// allocations, we simply set the uncommitted preimage slice to
// nil so that a new one will be initialized if any more
// witnesses are discovered. We do this because the maximum size
// that the slice can occupy is 15KB, and we want to ensure we
// release that memory back to the runtime.
l.uncommittedPreimages = nil
// We just received a new updates to our local commitment
// chain, validate this new commitment, closing the link if
// invalid.
auxSigBlob, err := msg.CustomRecords.Serialize()
if err != nil {
l.failf(
LinkFailureError{code: ErrInvalidCommitment},
"unable to serialize custom records: %v", err,
)
return
}
err = l.channel.ReceiveNewCommitment(&lnwallet.CommitSigs{
CommitSig: msg.CommitSig,
HtlcSigs: msg.HtlcSigs,
PartialSig: msg.PartialSig,
AuxSigBlob: auxSigBlob,
})
if err != nil {
// If we were unable to reconstruct their proposed
// commitment, then we'll examine the type of error. If
// it's an InvalidCommitSigError, then we'll send a
// direct error.
var sendData []byte
switch err.(type) {
case *lnwallet.InvalidCommitSigError:
sendData = []byte(err.Error())
case *lnwallet.InvalidHtlcSigError:
sendData = []byte(err.Error())
}
l.failf(
LinkFailureError{
code: ErrInvalidCommitment,
FailureAction: LinkFailureForceClose,
SendData: sendData,
},
"ChannelPoint(%v): unable to accept new "+
"commitment: %v",
l.channel.ChannelPoint(), err,
)
return
}
// As we've just accepted a new state, we'll now
// immediately send the remote peer a revocation for our prior
// state.
nextRevocation, currentHtlcs, finalHTLCs, err :=
l.channel.RevokeCurrentCommitment()
if err != nil {
l.log.Errorf("unable to revoke commitment: %v", err)
// We need to fail the channel in case revoking our
// local commitment does not succeed. We might have
// already advanced our channel state which would lead
// us to proceed with an unclean state.
//
// NOTE: We do not trigger a force close because this
// could resolve itself in case our db was just busy
// not accepting new transactions.
l.failf(
LinkFailureError{
code: ErrInternalError,
Warning: true,
FailureAction: LinkFailureDisconnect,
},
"ChannelPoint(%v): unable to accept new "+
"commitment: %v",
l.channel.ChannelPoint(), err,
)
return
}
// As soon as we are ready to send our next revocation, we can
// invoke the incoming commit hooks.
l.RWMutex.Lock()
l.incomingCommitHooks.invoke()
l.RWMutex.Unlock()
l.cfg.Peer.SendMessage(false, nextRevocation)
// Notify the incoming htlcs of which the resolutions were
// locked in.
for id, settled := range finalHTLCs {
l.cfg.HtlcNotifier.NotifyFinalHtlcEvent(
models.CircuitKey{
ChanID: l.ShortChanID(),
HtlcID: id,
},
channeldb.FinalHtlcInfo{
Settled: settled,
Offchain: true,
},
)
}
// Since we just revoked our commitment, we may have a new set
// of HTLC's on our commitment, so we'll send them using our
// function closure NotifyContractUpdate.
newUpdate := &contractcourt.ContractUpdate{
HtlcKey: contractcourt.LocalHtlcSet,
Htlcs: currentHtlcs,
}
err = l.cfg.NotifyContractUpdate(newUpdate)
if err != nil {
l.log.Errorf("unable to notify contract update: %v",
err)
return
}
select {
case <-l.Quit:
return
default:
}
// If the remote party initiated the state transition,
// we'll reply with a signature to provide them with their
// version of the latest commitment. Otherwise, both commitment
// chains are fully synced from our PoV, then we don't need to
// reply with a signature as both sides already have a
// commitment with the latest accepted.
if l.channel.OweCommitment() {
if !l.updateCommitTxOrFail() {
return
}
}
// Now that we have finished processing the incoming CommitSig
// and sent out our RevokeAndAck, we invoke the flushHooks if
// the channel state is clean.
l.RWMutex.Lock()
if l.channel.IsChannelClean() {
l.flushHooks.invoke()
}
l.RWMutex.Unlock()
case *lnwire.RevokeAndAck:
// We've received a revocation from the remote chain, if valid,
// this moves the remote chain forward, and expands our
// revocation window.
// We now process the message and advance our remote commit
// chain.
fwdPkg, remoteHTLCs, err := l.channel.ReceiveRevocation(msg)
if err != nil {
// TODO(halseth): force close?
l.failf(
LinkFailureError{
code: ErrInvalidRevocation,
FailureAction: LinkFailureDisconnect,
},
"unable to accept revocation: %v", err,
)
return
}
// The remote party now has a new primary commitment, so we'll
// update the contract court to be aware of this new set (the
// prior old remote pending).
newUpdate := &contractcourt.ContractUpdate{
HtlcKey: contractcourt.RemoteHtlcSet,
Htlcs: remoteHTLCs,
}
err = l.cfg.NotifyContractUpdate(newUpdate)
if err != nil {
l.log.Errorf("unable to notify contract update: %v",
err)
return
}
select {
case <-l.Quit:
return
default:
}
// If we have a tower client for this channel type, we'll
// create a backup for the current state.
if l.cfg.TowerClient != nil {
state := l.channel.State()
chanID := l.ChanID()
err = l.cfg.TowerClient.BackupState(
&chanID, state.RemoteCommitment.CommitHeight-1,
)
if err != nil {
l.failf(LinkFailureError{
code: ErrInternalError,
}, "unable to queue breach backup: %v", err)
return
}
}
l.processRemoteSettleFails(fwdPkg)
l.processRemoteAdds(fwdPkg)
// If the link failed during processing the adds, we must
// return to ensure we won't attempted to update the state
// further.
if l.failed {
return
}
// The revocation window opened up. If there are pending local
// updates, try to update the commit tx. Pending updates could
// already have been present because of a previously failed
// update to the commit tx or freshly added in by
// processRemoteAdds. Also in case there are no local updates,
// but there are still remote updates that are not in the remote
// commit tx yet, send out an update.
if l.channel.OweCommitment() {
if !l.updateCommitTxOrFail() {
return
}
}
// Now that we have finished processing the RevokeAndAck, we
// can invoke the flushHooks if the channel state is clean.
l.RWMutex.Lock()
if l.channel.IsChannelClean() {
l.flushHooks.invoke()
}
l.RWMutex.Unlock()
case *lnwire.UpdateFee:
// Check and see if their proposed fee-rate would make us
// exceed the fee threshold.
fee := chainfee.SatPerKWeight(msg.FeePerKw)
isDust, err := l.exceedsFeeExposureLimit(fee)
if err != nil {
// This shouldn't typically happen. If it does, it
// indicates something is wrong with our channel state.
l.log.Errorf("Unable to determine if fee threshold " +
"exceeded")
l.failf(LinkFailureError{code: ErrInternalError},
"error calculating fee exposure: %v", err)
return
}
if isDust {
// The proposed fee-rate makes us exceed the fee
// threshold.
l.failf(LinkFailureError{code: ErrInternalError},
"fee threshold exceeded: %v", err)
return
}
// We received fee update from peer. If we are the initiator we
// will fail the channel, if not we will apply the update.
if err := l.channel.ReceiveUpdateFee(fee); err != nil {
l.failf(LinkFailureError{code: ErrInvalidUpdate},
"error receiving fee update: %v", err)
return
}
// Update the mailbox's feerate as well.
l.mailBox.SetFeeRate(fee)
// In the case where we receive a warning message from our peer, just
// log it and move on. We choose not to disconnect from our peer,
// although we "MAY" do so according to the specification.
case *lnwire.Warning:
l.log.Warnf("received warning message from peer: %v",
msg.Warning())
case *lnwire.Error:
// Error received from remote, MUST fail channel, but should
// only print the contents of the error message if all
// characters are printable ASCII.
l.failf(
LinkFailureError{
code: ErrRemoteError,
// TODO(halseth): we currently don't fail the
// channel permanently, as there are some sync
// issues with other implementations that will
// lead to them sending an error message, but
// we can recover from on next connection. See
// https://github.com/ElementsProject/lightning/issues/4212
PermanentFailure: false,
},
"ChannelPoint(%v): received error from peer: %v",
l.channel.ChannelPoint(), msg.Error(),
)
default:
l.log.Warnf("received unknown message of type %T", msg)
}
}
// ackDownStreamPackets is responsible for removing htlcs from a link's mailbox
// for packets delivered from server, and cleaning up any circuits closed by
// signing a previous commitment txn. This method ensures that the circuits are
// removed from the circuit map before removing them from the link's mailbox,
// otherwise it could be possible for some circuit to be missed if this link
// flaps.
func (l *channelLink) ackDownStreamPackets() error {
// First, remove the downstream Add packets that were included in the
// previous commitment signature. This will prevent the Adds from being
// replayed if this link disconnects.
for _, inKey := range l.openedCircuits {
// In order to test the sphinx replay logic of the remote
// party, unsafe replay does not acknowledge the packets from
// the mailbox. We can then force a replay of any Add packets
// held in memory by disconnecting and reconnecting the link.
if l.cfg.UnsafeReplay {
continue
}
l.log.Debugf("removing Add packet %s from mailbox", inKey)
l.mailBox.AckPacket(inKey)
}
// Now, we will delete all circuits closed by the previous commitment
// signature, which is the result of downstream Settle/Fail packets. We
// batch them here to ensure circuits are closed atomically and for
// performance.
err := l.cfg.Circuits.DeleteCircuits(l.closedCircuits...)
switch err {
case nil:
// Successful deletion.
default:
l.log.Errorf("unable to delete %d circuits: %v",
len(l.closedCircuits), err)
return err
}
// With the circuits removed from memory and disk, we now ack any
// Settle/Fails in the mailbox to ensure they do not get redelivered
// after startup. If forgive is enabled and we've reached this point,
// the circuits must have been removed at some point, so it is now safe
// to un-queue the corresponding Settle/Fails.
for _, inKey := range l.closedCircuits {
l.log.Debugf("removing Fail/Settle packet %s from mailbox",
inKey)
l.mailBox.AckPacket(inKey)
}
// Lastly, reset our buffers to be empty while keeping any acquired
// growth in the backing array.
l.openedCircuits = l.openedCircuits[:0]
l.closedCircuits = l.closedCircuits[:0]
return nil
}
// updateCommitTxOrFail updates the commitment tx and if that fails, it fails
// the link.
func (l *channelLink) updateCommitTxOrFail() bool {
err := l.updateCommitTx()
switch err {
// No error encountered, success.
case nil:
// A duplicate keystone error should be resolved and is not fatal, so
// we won't send an Error message to the peer.
case ErrDuplicateKeystone:
l.failf(LinkFailureError{code: ErrCircuitError},
"temporary circuit error: %v", err)
return false
// Any other error is treated results in an Error message being sent to
// the peer.
default:
l.failf(LinkFailureError{code: ErrInternalError},
"unable to update commitment: %v", err)
return false
}
return true
}
// updateCommitTx signs, then sends an update to the remote peer adding a new
// commitment to their commitment chain which includes all the latest updates
// we've received+processed up to this point.
func (l *channelLink) updateCommitTx() error {
// Preemptively write all pending keystones to disk, just in case the
// HTLCs we have in memory are included in the subsequent attempt to
// sign a commitment state.
err := l.cfg.Circuits.OpenCircuits(l.keystoneBatch...)
if err != nil {
// If ErrDuplicateKeystone is returned, the caller will catch
// it.
return err
}
// Reset the batch, but keep the backing buffer to avoid reallocating.
l.keystoneBatch = l.keystoneBatch[:0]
// If hodl.Commit mode is active, we will refrain from attempting to
// commit any in-memory modifications to the channel state. Exiting here
// permits testing of either the switch or link's ability to trim
// circuits that have been opened, but unsuccessfully committed.
if l.cfg.HodlMask.Active(hodl.Commit) {
l.log.Warnf(hodl.Commit.Warning())
return nil
}
ctx, done := l.WithCtxQuitNoTimeout()
defer done()
newCommit, err := l.channel.SignNextCommitment(ctx)
if err == lnwallet.ErrNoWindow {
l.cfg.PendingCommitTicker.Resume()
l.log.Trace("PendingCommitTicker resumed")
n := l.channel.NumPendingUpdates(lntypes.Local, lntypes.Remote)
l.log.Tracef("revocation window exhausted, unable to send: "+
"%v, pend_updates=%v, dangling_closes%v", n,
lnutils.SpewLogClosure(l.openedCircuits),
lnutils.SpewLogClosure(l.closedCircuits))
return nil
} else if err != nil {
return err
}
if err := l.ackDownStreamPackets(); err != nil {
return err
}
l.cfg.PendingCommitTicker.Pause()
l.log.Trace("PendingCommitTicker paused after ackDownStreamPackets")
// The remote party now has a new pending commitment, so we'll update
// the contract court to be aware of this new set (the prior old remote
// pending).
newUpdate := &contractcourt.ContractUpdate{
HtlcKey: contractcourt.RemotePendingHtlcSet,
Htlcs: newCommit.PendingHTLCs,
}
err = l.cfg.NotifyContractUpdate(newUpdate)
if err != nil {
l.log.Errorf("unable to notify contract update: %v", err)
return err
}
select {
case <-l.Quit:
return ErrLinkShuttingDown
default:
}
auxBlobRecords, err := lnwire.ParseCustomRecords(newCommit.AuxSigBlob)
if err != nil {
return fmt.Errorf("error parsing aux sigs: %w", err)
}
commitSig := &lnwire.CommitSig{
ChanID: l.ChanID(),
CommitSig: newCommit.CommitSig,
HtlcSigs: newCommit.HtlcSigs,
PartialSig: newCommit.PartialSig,
CustomRecords: auxBlobRecords,
}
l.cfg.Peer.SendMessage(false, commitSig)
// Now that we have sent out a new CommitSig, we invoke the outgoing set
// of commit hooks.
l.RWMutex.Lock()
l.outgoingCommitHooks.invoke()
l.RWMutex.Unlock()
return nil
}
// Peer returns the representation of remote peer with which we have the
// channel link opened.
//
// NOTE: Part of the ChannelLink interface.
func (l *channelLink) PeerPubKey() [33]byte {
return l.cfg.Peer.PubKey()
}
// ChannelPoint returns the channel outpoint for the channel link.
// NOTE: Part of the ChannelLink interface.
func (l *channelLink) ChannelPoint() wire.OutPoint {
return l.channel.ChannelPoint()
}
// ShortChanID returns the short channel ID for the channel link. The short
// channel ID encodes the exact location in the main chain that the original
// funding output can be found.
//
// NOTE: Part of the ChannelLink interface.
func (l *channelLink) ShortChanID() lnwire.ShortChannelID {
l.RLock()
defer l.RUnlock()
return l.channel.ShortChanID()
}
// UpdateShortChanID updates the short channel ID for a link. This may be
// required in the event that a link is created before the short chan ID for it
// is known, or a re-org occurs, and the funding transaction changes location
// within the chain.
//
// NOTE: Part of the ChannelLink interface.
func (l *channelLink) UpdateShortChanID() (lnwire.ShortChannelID, error) {
chanID := l.ChanID()
// Refresh the channel state's short channel ID by loading it from disk.
// This ensures that the channel state accurately reflects the updated
// short channel ID.
err := l.channel.State().Refresh()
if err != nil {
l.log.Errorf("unable to refresh short_chan_id for chan_id=%v: "+
"%v", chanID, err)
return hop.Source, err
}
return hop.Source, nil
}
// ChanID returns the channel ID for the channel link. The channel ID is a more
// compact representation of a channel's full outpoint.
//
// NOTE: Part of the ChannelLink interface.
func (l *channelLink) ChanID() lnwire.ChannelID {
return lnwire.NewChanIDFromOutPoint(l.channel.ChannelPoint())
}
// Bandwidth returns the total amount that can flow through the channel link at
// this given instance. The value returned is expressed in millisatoshi and can
// be used by callers when making forwarding decisions to determine if a link
// can accept an HTLC.
//
// NOTE: Part of the ChannelLink interface.
func (l *channelLink) Bandwidth() lnwire.MilliSatoshi {
// Get the balance available on the channel for new HTLCs. This takes
// the channel reserve into account so HTLCs up to this value won't
// violate it.
return l.channel.AvailableBalance()
}
// MayAddOutgoingHtlc indicates whether we can add an outgoing htlc with the
// amount provided to the link. This check does not reserve a space, since
// forwards or other payments may use the available slot, so it should be
// considered best-effort.
func (l *channelLink) MayAddOutgoingHtlc(amt lnwire.MilliSatoshi) error {
return l.channel.MayAddOutgoingHtlc(amt)
}
// getDustSum is a wrapper method that calls the underlying channel's dust sum
// method.
//
// NOTE: Part of the dustHandler interface.
func (l *channelLink) getDustSum(whoseCommit lntypes.ChannelParty,
dryRunFee fn.Option[chainfee.SatPerKWeight]) lnwire.MilliSatoshi {
return l.channel.GetDustSum(whoseCommit, dryRunFee)
}
// getFeeRate is a wrapper method that retrieves the underlying channel's
// feerate.
//
// NOTE: Part of the dustHandler interface.
func (l *channelLink) getFeeRate() chainfee.SatPerKWeight {
return l.channel.CommitFeeRate()
}
// getDustClosure returns a closure that can be used by the switch or mailbox
// to evaluate whether a given HTLC is dust.
//
// NOTE: Part of the dustHandler interface.
func (l *channelLink) getDustClosure() dustClosure {
localDustLimit := l.channel.State().LocalChanCfg.DustLimit
remoteDustLimit := l.channel.State().RemoteChanCfg.DustLimit
chanType := l.channel.State().ChanType
return dustHelper(chanType, localDustLimit, remoteDustLimit)
}
// getCommitFee returns either the local or remote CommitFee in satoshis. This
// is used so that the Switch can have access to the commitment fee without
// needing to have a *LightningChannel. This doesn't include dust.
//
// NOTE: Part of the dustHandler interface.
func (l *channelLink) getCommitFee(remote bool) btcutil.Amount {
if remote {
return l.channel.State().RemoteCommitment.CommitFee
}
return l.channel.State().LocalCommitment.CommitFee
}
// exceedsFeeExposureLimit returns whether or not the new proposed fee-rate
// increases the total dust and fees within the channel past the configured
// fee threshold. It first calculates the dust sum over every update in the
// update log with the proposed fee-rate and taking into account both the local
// and remote dust limits. It uses every update in the update log instead of
// what is actually on the local and remote commitments because it is assumed
// that in a worst-case scenario, every update in the update log could
// theoretically be on either commitment transaction and this needs to be
// accounted for with this fee-rate. It then calculates the local and remote
// commitment fees given the proposed fee-rate. Finally, it tallies the results
// and determines if the fee threshold has been exceeded.
func (l *channelLink) exceedsFeeExposureLimit(
feePerKw chainfee.SatPerKWeight) (bool, error) {
dryRunFee := fn.Some[chainfee.SatPerKWeight](feePerKw)
// Get the sum of dust for both the local and remote commitments using
// this "dry-run" fee.
localDustSum := l.getDustSum(lntypes.Local, dryRunFee)
remoteDustSum := l.getDustSum(lntypes.Remote, dryRunFee)
// Calculate the local and remote commitment fees using this dry-run
// fee.
localFee, remoteFee, err := l.channel.CommitFeeTotalAt(feePerKw)
if err != nil {
return false, err
}
// Finally, check whether the max fee exposure was exceeded on either
// future commitment transaction with the fee-rate.
totalLocalDust := localDustSum + lnwire.NewMSatFromSatoshis(localFee)
if totalLocalDust > l.cfg.MaxFeeExposure {
l.log.Debugf("ChannelLink(%v): exceeds fee exposure limit: "+
"local dust: %v, local fee: %v", l.ShortChanID(),
totalLocalDust, localFee)
return true, nil
}
totalRemoteDust := remoteDustSum + lnwire.NewMSatFromSatoshis(
remoteFee,
)
if totalRemoteDust > l.cfg.MaxFeeExposure {
l.log.Debugf("ChannelLink(%v): exceeds fee exposure limit: "+
"remote dust: %v, remote fee: %v", l.ShortChanID(),
totalRemoteDust, remoteFee)
return true, nil
}
return false, nil
}
// isOverexposedWithHtlc calculates whether the proposed HTLC will make the
// channel exceed the fee threshold. It first fetches the largest fee-rate that
// may be on any unrevoked commitment transaction. Then, using this fee-rate,
// determines if the to-be-added HTLC is dust. If the HTLC is dust, it adds to
// the overall dust sum. If it is not dust, it contributes to weight, which
// also adds to the overall dust sum by an increase in fees. If the dust sum on
// either commitment exceeds the configured fee threshold, this function
// returns true.
func (l *channelLink) isOverexposedWithHtlc(htlc *lnwire.UpdateAddHTLC,
incoming bool) bool {
dustClosure := l.getDustClosure()
feeRate := l.channel.WorstCaseFeeRate()
amount := htlc.Amount.ToSatoshis()
// See if this HTLC is dust on both the local and remote commitments.
isLocalDust := dustClosure(feeRate, incoming, lntypes.Local, amount)
isRemoteDust := dustClosure(feeRate, incoming, lntypes.Remote, amount)
// Calculate the dust sum for the local and remote commitments.
localDustSum := l.getDustSum(
lntypes.Local, fn.None[chainfee.SatPerKWeight](),
)
remoteDustSum := l.getDustSum(
lntypes.Remote, fn.None[chainfee.SatPerKWeight](),
)
// Grab the larger of the local and remote commitment fees w/o dust.
commitFee := l.getCommitFee(false)
if l.getCommitFee(true) > commitFee {
commitFee = l.getCommitFee(true)
}
commitFeeMSat := lnwire.NewMSatFromSatoshis(commitFee)
localDustSum += commitFeeMSat
remoteDustSum += commitFeeMSat
// Calculate the additional fee increase if this is a non-dust HTLC.
weight := lntypes.WeightUnit(input.HTLCWeight)
additional := lnwire.NewMSatFromSatoshis(
feeRate.FeeForWeight(weight),
)
if isLocalDust {
// If this is dust, it doesn't contribute to weight but does
// contribute to the overall dust sum.
localDustSum += lnwire.NewMSatFromSatoshis(amount)
} else {
// Account for the fee increase that comes with an increase in
// weight.
localDustSum += additional
}
if localDustSum > l.cfg.MaxFeeExposure {
// The max fee exposure was exceeded.
l.log.Debugf("ChannelLink(%v): HTLC %v makes the channel "+
"overexposed, total local dust: %v (current commit "+
"fee: %v)", l.ShortChanID(), htlc, localDustSum)
return true
}
if isRemoteDust {
// If this is dust, it doesn't contribute to weight but does
// contribute to the overall dust sum.
remoteDustSum += lnwire.NewMSatFromSatoshis(amount)
} else {
// Account for the fee increase that comes with an increase in
// weight.
remoteDustSum += additional
}
if remoteDustSum > l.cfg.MaxFeeExposure {
// The max fee exposure was exceeded.
l.log.Debugf("ChannelLink(%v): HTLC %v makes the channel "+
"overexposed, total remote dust: %v (current commit "+
"fee: %v)", l.ShortChanID(), htlc, remoteDustSum)
return true
}
return false
}
// dustClosure is a function that evaluates whether an HTLC is dust. It returns
// true if the HTLC is dust. It takes in a feerate, a boolean denoting whether
// the HTLC is incoming (i.e. one that the remote sent), a boolean denoting
// whether to evaluate on the local or remote commit, and finally an HTLC
// amount to test.
type dustClosure func(feerate chainfee.SatPerKWeight, incoming bool,
whoseCommit lntypes.ChannelParty, amt btcutil.Amount) bool
// dustHelper is used to construct the dustClosure.
func dustHelper(chantype channeldb.ChannelType, localDustLimit,
remoteDustLimit btcutil.Amount) dustClosure {
isDust := func(feerate chainfee.SatPerKWeight, incoming bool,
whoseCommit lntypes.ChannelParty, amt btcutil.Amount) bool {
var dustLimit btcutil.Amount
if whoseCommit.IsLocal() {
dustLimit = localDustLimit
} else {
dustLimit = remoteDustLimit
}
return lnwallet.HtlcIsDust(
chantype, incoming, whoseCommit, feerate, amt,
dustLimit,
)
}
return isDust
}
// zeroConfConfirmed returns whether or not the zero-conf channel has
// confirmed on-chain.
//
// Part of the scidAliasHandler interface.
func (l *channelLink) zeroConfConfirmed() bool {
return l.channel.State().ZeroConfConfirmed()
}
// confirmedScid returns the confirmed SCID for a zero-conf channel. This
// should not be called for non-zero-conf channels.
//
// Part of the scidAliasHandler interface.
func (l *channelLink) confirmedScid() lnwire.ShortChannelID {
return l.channel.State().ZeroConfRealScid()
}
// isZeroConf returns whether or not the underlying channel is a zero-conf
// channel.
//
// Part of the scidAliasHandler interface.
func (l *channelLink) isZeroConf() bool {
return l.channel.State().IsZeroConf()
}
// negotiatedAliasFeature returns whether or not the underlying channel has
// negotiated the option-scid-alias feature bit. This will be true for both
// option-scid-alias and zero-conf channel-types. It will also be true for
// channels with the feature bit but without the above channel-types.
//
// Part of the scidAliasFeature interface.
func (l *channelLink) negotiatedAliasFeature() bool {
return l.channel.State().NegotiatedAliasFeature()
}
// getAliases returns the set of aliases for the underlying channel.
//
// Part of the scidAliasHandler interface.
func (l *channelLink) getAliases() []lnwire.ShortChannelID {
return l.cfg.GetAliases(l.ShortChanID())
}
// attachFailAliasUpdate sets the link's FailAliasUpdate function.
//
// Part of the scidAliasHandler interface.
func (l *channelLink) attachFailAliasUpdate(closure func(
sid lnwire.ShortChannelID, incoming bool) *lnwire.ChannelUpdate1) {
l.Lock()
l.cfg.FailAliasUpdate = closure
l.Unlock()
}
// AttachMailBox updates the current mailbox used by this link, and hooks up
// the mailbox's message and packet outboxes to the link's upstream and
// downstream chans, respectively.
func (l *channelLink) AttachMailBox(mailbox MailBox) {
l.Lock()
l.mailBox = mailbox
l.upstream = mailbox.MessageOutBox()
l.downstream = mailbox.PacketOutBox()
l.Unlock()
// Set the mailbox's fee rate. This may be refreshing a feerate that was
// never committed.
l.mailBox.SetFeeRate(l.getFeeRate())
// Also set the mailbox's dust closure so that it can query whether HTLC's
// are dust given the current feerate.
l.mailBox.SetDustClosure(l.getDustClosure())
}
// UpdateForwardingPolicy updates the forwarding policy for the target
// ChannelLink. Once updated, the link will use the new forwarding policy to
// govern if it an incoming HTLC should be forwarded or not. We assume that
// fields that are zero are intentionally set to zero, so we'll use newPolicy to
// update all of the link's FwrdingPolicy's values.
//
// NOTE: Part of the ChannelLink interface.
func (l *channelLink) UpdateForwardingPolicy(
newPolicy models.ForwardingPolicy) {
l.Lock()
defer l.Unlock()
l.cfg.FwrdingPolicy = newPolicy
}
// CheckHtlcForward should return a nil error if the passed HTLC details
// satisfy the current forwarding policy fo the target link. Otherwise,
// a LinkError with a valid protocol failure message should be returned
// in order to signal to the source of the HTLC, the policy consistency
// issue.
//
// NOTE: Part of the ChannelLink interface.
func (l *channelLink) CheckHtlcForward(payHash [32]byte,
incomingHtlcAmt, amtToForward lnwire.MilliSatoshi,
incomingTimeout, outgoingTimeout uint32,
inboundFee models.InboundFee,
heightNow uint32, originalScid lnwire.ShortChannelID) *LinkError {
l.RLock()
policy := l.cfg.FwrdingPolicy
l.RUnlock()
// Using the outgoing HTLC amount, we'll calculate the outgoing
// fee this incoming HTLC must carry in order to satisfy the constraints
// of the outgoing link.
outFee := ExpectedFee(policy, amtToForward)
// Then calculate the inbound fee that we charge based on the sum of
// outgoing HTLC amount and outgoing fee.
inFee := inboundFee.CalcFee(amtToForward + outFee)
// Add up both fee components. It is important to calculate both fees
// separately. An alternative way of calculating is to first determine
// an aggregate fee and apply that to the outgoing HTLC amount. However,
// rounding may cause the result to be slightly higher than in the case
// of separately rounded fee components. This potentially causes failed
// forwards for senders and is something to be avoided.
expectedFee := inFee + int64(outFee)
// If the actual fee is less than our expected fee, then we'll reject
// this HTLC as it didn't provide a sufficient amount of fees, or the
// values have been tampered with, or the send used incorrect/dated
// information to construct the forwarding information for this hop. In
// any case, we'll cancel this HTLC.
actualFee := int64(incomingHtlcAmt) - int64(amtToForward)
if incomingHtlcAmt < amtToForward || actualFee < expectedFee {
l.log.Warnf("outgoing htlc(%x) has insufficient fee: "+
"expected %v, got %v: incoming=%v, outgoing=%v, "+
"inboundFee=%v",
payHash[:], expectedFee, actualFee,
incomingHtlcAmt, amtToForward, inboundFee,
)
// As part of the returned error, we'll send our latest routing
// policy so the sending node obtains the most up to date data.
cb := func(upd *lnwire.ChannelUpdate1) lnwire.FailureMessage {
return lnwire.NewFeeInsufficient(amtToForward, *upd)
}
failure := l.createFailureWithUpdate(false, originalScid, cb)
return NewLinkError(failure)
}
// Check whether the outgoing htlc satisfies the channel policy.
err := l.canSendHtlc(
policy, payHash, amtToForward, outgoingTimeout, heightNow,
originalScid,
)
if err != nil {
return err
}
// Finally, we'll ensure that the time-lock on the outgoing HTLC meets
// the following constraint: the incoming time-lock minus our time-lock
// delta should equal the outgoing time lock. Otherwise, whether the
// sender messed up, or an intermediate node tampered with the HTLC.
timeDelta := policy.TimeLockDelta
if incomingTimeout < outgoingTimeout+timeDelta {
l.log.Warnf("incoming htlc(%x) has incorrect time-lock value: "+
"expected at least %v block delta, got %v block delta",
payHash[:], timeDelta, incomingTimeout-outgoingTimeout)
// Grab the latest routing policy so the sending node is up to
// date with our current policy.
cb := func(upd *lnwire.ChannelUpdate1) lnwire.FailureMessage {
return lnwire.NewIncorrectCltvExpiry(
incomingTimeout, *upd,
)
}
failure := l.createFailureWithUpdate(false, originalScid, cb)
return NewLinkError(failure)
}
return nil
}
// CheckHtlcTransit should return a nil error if the passed HTLC details
// satisfy the current channel policy. Otherwise, a LinkError with a
// valid protocol failure message should be returned in order to signal
// the violation. This call is intended to be used for locally initiated
// payments for which there is no corresponding incoming htlc.
func (l *channelLink) CheckHtlcTransit(payHash [32]byte,
amt lnwire.MilliSatoshi, timeout uint32,
heightNow uint32) *LinkError {
l.RLock()
policy := l.cfg.FwrdingPolicy
l.RUnlock()
// We pass in hop.Source here as this is only used in the Switch when
// trying to send over a local link. This causes the fallback mechanism
// to occur.
return l.canSendHtlc(
policy, payHash, amt, timeout, heightNow, hop.Source,
)
}
// canSendHtlc checks whether the given htlc parameters satisfy
// the channel's amount and time lock constraints.
func (l *channelLink) canSendHtlc(policy models.ForwardingPolicy,
payHash [32]byte, amt lnwire.MilliSatoshi, timeout uint32,
heightNow uint32, originalScid lnwire.ShortChannelID) *LinkError {
// As our first sanity check, we'll ensure that the passed HTLC isn't
// too small for the next hop. If so, then we'll cancel the HTLC
// directly.
if amt < policy.MinHTLCOut {
l.log.Warnf("outgoing htlc(%x) is too small: min_htlc=%v, "+
"htlc_value=%v", payHash[:], policy.MinHTLCOut,
amt)
// As part of the returned error, we'll send our latest routing
// policy so the sending node obtains the most up to date data.
cb := func(upd *lnwire.ChannelUpdate1) lnwire.FailureMessage {
return lnwire.NewAmountBelowMinimum(amt, *upd)
}
failure := l.createFailureWithUpdate(false, originalScid, cb)
return NewLinkError(failure)
}
// Next, ensure that the passed HTLC isn't too large. If so, we'll
// cancel the HTLC directly.
if policy.MaxHTLC != 0 && amt > policy.MaxHTLC {
l.log.Warnf("outgoing htlc(%x) is too large: max_htlc=%v, "+
"htlc_value=%v", payHash[:], policy.MaxHTLC, amt)
// As part of the returned error, we'll send our latest routing
// policy so the sending node obtains the most up-to-date data.
cb := func(upd *lnwire.ChannelUpdate1) lnwire.FailureMessage {
return lnwire.NewTemporaryChannelFailure(upd)
}
failure := l.createFailureWithUpdate(false, originalScid, cb)
return NewDetailedLinkError(failure, OutgoingFailureHTLCExceedsMax)
}
// We want to avoid offering an HTLC which will expire in the near
// future, so we'll reject an HTLC if the outgoing expiration time is
// too close to the current height.
if timeout <= heightNow+l.cfg.OutgoingCltvRejectDelta {
l.log.Warnf("htlc(%x) has an expiry that's too soon: "+
"outgoing_expiry=%v, best_height=%v", payHash[:],
timeout, heightNow)
cb := func(upd *lnwire.ChannelUpdate1) lnwire.FailureMessage {
return lnwire.NewExpiryTooSoon(*upd)
}
failure := l.createFailureWithUpdate(false, originalScid, cb)
return NewLinkError(failure)
}
// Check absolute max delta.
if timeout > l.cfg.MaxOutgoingCltvExpiry+heightNow {
l.log.Warnf("outgoing htlc(%x) has a time lock too far in "+
"the future: got %v, but maximum is %v", payHash[:],
timeout-heightNow, l.cfg.MaxOutgoingCltvExpiry)
return NewLinkError(&lnwire.FailExpiryTooFar{})
}
// Check to see if there is enough balance in this channel.
if amt > l.Bandwidth() {
l.log.Warnf("insufficient bandwidth to route htlc: %v is "+
"larger than %v", amt, l.Bandwidth())
cb := func(upd *lnwire.ChannelUpdate1) lnwire.FailureMessage {
return lnwire.NewTemporaryChannelFailure(upd)
}
failure := l.createFailureWithUpdate(false, originalScid, cb)
return NewDetailedLinkError(
failure, OutgoingFailureInsufficientBalance,
)
}
return nil
}
// Stats returns the statistics of channel link.
//
// NOTE: Part of the ChannelLink interface.
func (l *channelLink) Stats() (uint64, lnwire.MilliSatoshi, lnwire.MilliSatoshi) {
snapshot := l.channel.StateSnapshot()
return snapshot.ChannelCommitment.CommitHeight,
snapshot.TotalMSatSent,
snapshot.TotalMSatReceived
}
// String returns the string representation of channel link.
//
// NOTE: Part of the ChannelLink interface.
func (l *channelLink) String() string {
return l.channel.ChannelPoint().String()
}
// handleSwitchPacket handles the switch packets. This packets which might be
// forwarded to us from another channel link in case the htlc update came from
// another peer or if the update was created by user
//
// NOTE: Part of the packetHandler interface.
func (l *channelLink) handleSwitchPacket(pkt *htlcPacket) error {
l.log.Tracef("received switch packet inkey=%v, outkey=%v",
pkt.inKey(), pkt.outKey())
return l.mailBox.AddPacket(pkt)
}
// HandleChannelUpdate handles the htlc requests as settle/add/fail which sent
// to us from remote peer we have a channel with.
//
// NOTE: Part of the ChannelLink interface.
func (l *channelLink) HandleChannelUpdate(message lnwire.Message) {
select {
case <-l.Quit:
// Return early if the link is already in the process of
// quitting. It doesn't make sense to hand the message to the
// mailbox here.
return
default:
}
err := l.mailBox.AddMessage(message)
if err != nil {
l.log.Errorf("failed to add Message to mailbox: %v", err)
}
}
// updateChannelFee updates the commitment fee-per-kw on this channel by
// committing to an update_fee message.
func (l *channelLink) updateChannelFee(feePerKw chainfee.SatPerKWeight) error {
l.log.Infof("updating commit fee to %v", feePerKw)
// We skip sending the UpdateFee message if the channel is not
// currently eligible to forward messages.
if !l.EligibleToUpdate() {
l.log.Debugf("skipping fee update for inactive channel")
return nil
}
// Check and see if our proposed fee-rate would make us exceed the fee
// threshold.
thresholdExceeded, err := l.exceedsFeeExposureLimit(feePerKw)
if err != nil {
// This shouldn't typically happen. If it does, it indicates
// something is wrong with our channel state.
return err
}
if thresholdExceeded {
return fmt.Errorf("link fee threshold exceeded")
}
// First, we'll update the local fee on our commitment.
if err := l.channel.UpdateFee(feePerKw); err != nil {
return err
}
// The fee passed the channel's validation checks, so we update the
// mailbox feerate.
l.mailBox.SetFeeRate(feePerKw)
// We'll then attempt to send a new UpdateFee message, and also lock it
// in immediately by triggering a commitment update.
msg := lnwire.NewUpdateFee(l.ChanID(), uint32(feePerKw))
if err := l.cfg.Peer.SendMessage(false, msg); err != nil {
return err
}
return l.updateCommitTx()
}
// processRemoteSettleFails accepts a batch of settle/fail payment descriptors
// after receiving a revocation from the remote party, and reprocesses them in
// the context of the provided forwarding package. Any settles or fails that
// have already been acknowledged in the forwarding package will not be sent to
// the switch.
func (l *channelLink) processRemoteSettleFails(fwdPkg *channeldb.FwdPkg) {
if len(fwdPkg.SettleFails) == 0 {
return
}
l.log.Debugf("settle-fail-filter: %v", fwdPkg.SettleFailFilter)
var switchPackets []*htlcPacket
for i, update := range fwdPkg.SettleFails {
destRef := fwdPkg.DestRef(uint16(i))
// Skip any settles or fails that have already been
// acknowledged by the incoming link that originated the
// forwarded Add.
if fwdPkg.SettleFailFilter.Contains(uint16(i)) {
continue
}
// TODO(roasbeef): rework log entries to a shared
// interface.
switch msg := update.UpdateMsg.(type) {
// A settle for an HTLC we previously forwarded HTLC has been
// received. So we'll forward the HTLC to the switch which will
// handle propagating the settle to the prior hop.
case *lnwire.UpdateFulfillHTLC:
// If hodl.SettleIncoming is requested, we will not
// forward the SETTLE to the switch and will not signal
// a free slot on the commitment transaction.
if l.cfg.HodlMask.Active(hodl.SettleIncoming) {
l.log.Warnf(hodl.SettleIncoming.Warning())
continue
}
settlePacket := &htlcPacket{
outgoingChanID: l.ShortChanID(),
outgoingHTLCID: msg.ID,
destRef: &destRef,
htlc: msg,
}
// Add the packet to the batch to be forwarded, and
// notify the overflow queue that a spare spot has been
// freed up within the commitment state.
switchPackets = append(switchPackets, settlePacket)
// A failureCode message for a previously forwarded HTLC has
// been received. As a result a new slot will be freed up in
// our commitment state, so we'll forward this to the switch so
// the backwards undo can continue.
case *lnwire.UpdateFailHTLC:
// If hodl.SettleIncoming is requested, we will not
// forward the FAIL to the switch and will not signal a
// free slot on the commitment transaction.
if l.cfg.HodlMask.Active(hodl.FailIncoming) {
l.log.Warnf(hodl.FailIncoming.Warning())
continue
}
// Fetch the reason the HTLC was canceled so we can
// continue to propagate it. This failure originated
// from another node, so the linkFailure field is not
// set on the packet.
failPacket := &htlcPacket{
outgoingChanID: l.ShortChanID(),
outgoingHTLCID: msg.ID,
destRef: &destRef,
htlc: msg,
}
l.log.Debugf("Failed to send HTLC with ID=%d", msg.ID)
// If the failure message lacks an HMAC (but includes
// the 4 bytes for encoding the message and padding
// lengths, then this means that we received it as an
// UpdateFailMalformedHTLC. As a result, we'll signal
// that we need to convert this error within the switch
// to an actual error, by encrypting it as if we were
// the originating hop.
convertedErrorSize := lnwire.FailureMessageLength + 4
if len(msg.Reason) == convertedErrorSize {
failPacket.convertedError = true
}
// Add the packet to the batch to be forwarded, and
// notify the overflow queue that a spare spot has been
// freed up within the commitment state.
switchPackets = append(switchPackets, failPacket)
}
}
// Only spawn the task forward packets we have a non-zero number.
if len(switchPackets) > 0 {
go l.forwardBatch(false, switchPackets...)
}
}
// processRemoteAdds serially processes each of the Add payment descriptors
// which have been "locked-in" by receiving a revocation from the remote party.
// The forwarding package provided instructs how to process this batch,
// indicating whether this is the first time these Adds are being processed, or
// whether we are reprocessing as a result of a failure or restart. Adds that
// have already been acknowledged in the forwarding package will be ignored.
//
//nolint:funlen
func (l *channelLink) processRemoteAdds(fwdPkg *channeldb.FwdPkg) {
l.log.Tracef("processing %d remote adds for height %d",
len(fwdPkg.Adds), fwdPkg.Height)
decodeReqs := make(
[]hop.DecodeHopIteratorRequest, 0, len(fwdPkg.Adds),
)
for _, update := range fwdPkg.Adds {
if msg, ok := update.UpdateMsg.(*lnwire.UpdateAddHTLC); ok {
// Before adding the new htlc to the state machine,
// parse the onion object in order to obtain the
// routing information with DecodeHopIterator function
// which process the Sphinx packet.
onionReader := bytes.NewReader(msg.OnionBlob[:])
req := hop.DecodeHopIteratorRequest{
OnionReader: onionReader,
RHash: msg.PaymentHash[:],
IncomingCltv: msg.Expiry,
IncomingAmount: msg.Amount,
BlindingPoint: msg.BlindingPoint,
}
decodeReqs = append(decodeReqs, req)
}
}
// Atomically decode the incoming htlcs, simultaneously checking for
// replay attempts. A particular index in the returned, spare list of
// channel iterators should only be used if the failure code at the
// same index is lnwire.FailCodeNone.
decodeResps, sphinxErr := l.cfg.DecodeHopIterators(
fwdPkg.ID(), decodeReqs,
)
if sphinxErr != nil {
l.failf(LinkFailureError{code: ErrInternalError},
"unable to decode hop iterators: %v", sphinxErr)
return
}
var switchPackets []*htlcPacket
for i, update := range fwdPkg.Adds {
idx := uint16(i)
//nolint:forcetypeassert
add := *update.UpdateMsg.(*lnwire.UpdateAddHTLC)
sourceRef := fwdPkg.SourceRef(idx)
if fwdPkg.State == channeldb.FwdStateProcessed &&
fwdPkg.AckFilter.Contains(idx) {
// If this index is already found in the ack filter,
// the response to this forwarding decision has already
// been committed by one of our commitment txns. ADDs
// in this state are waiting for the rest of the fwding
// package to get acked before being garbage collected.
continue
}
// An incoming HTLC add has been full-locked in. As a result we
// can now examine the forwarding details of the HTLC, and the
// HTLC itself to decide if: we should forward it, cancel it,
// or are able to settle it (and it adheres to our fee related
// constraints).
// Before adding the new htlc to the state machine, parse the
// onion object in order to obtain the routing information with
// DecodeHopIterator function which process the Sphinx packet.
chanIterator, failureCode := decodeResps[i].Result()
if failureCode != lnwire.CodeNone {
// If we're unable to process the onion blob then we
// should send the malformed htlc error to payment
// sender.
l.sendMalformedHTLCError(
add.ID, failureCode, add.OnionBlob, &sourceRef,
)
l.log.Errorf("unable to decode onion hop "+
"iterator: %v", failureCode)
continue
}
heightNow := l.cfg.BestHeight()
pld, routeRole, pldErr := chanIterator.HopPayload()
if pldErr != nil {
// If we're unable to process the onion payload, or we
// received invalid onion payload failure, then we
// should send an error back to the caller so the HTLC
// can be canceled.
var failedType uint64
// We need to get the underlying error value, so we
// can't use errors.As as suggested by the linter.
//nolint:errorlint
if e, ok := pldErr.(hop.ErrInvalidPayload); ok {
failedType = uint64(e.Type)
}
// If we couldn't parse the payload, make our best
// effort at creating an error encrypter that knows
// what blinding type we were, but if we couldn't
// parse the payload we have no way of knowing whether
// we were the introduction node or not.
//
//nolint:lll
obfuscator, failCode := chanIterator.ExtractErrorEncrypter(
l.cfg.ExtractErrorEncrypter,
// We need our route role here because we
// couldn't parse or validate the payload.
routeRole == hop.RouteRoleIntroduction,
)
if failCode != lnwire.CodeNone {
l.log.Errorf("could not extract error "+
"encrypter: %v", pldErr)
// We can't process this htlc, send back
// malformed.
l.sendMalformedHTLCError(
add.ID, failureCode, add.OnionBlob,
&sourceRef,
)
continue
}
// TODO: currently none of the test unit infrastructure
// is setup to handle TLV payloads, so testing this
// would require implementing a separate mock iterator
// for TLV payloads that also supports injecting invalid
// payloads. Deferring this non-trival effort till a
// later date
failure := lnwire.NewInvalidOnionPayload(failedType, 0)
l.sendHTLCError(
add, sourceRef, NewLinkError(failure),
obfuscator, false,
)
l.log.Errorf("unable to decode forwarding "+
"instructions: %v", pldErr)
continue
}
// Retrieve onion obfuscator from onion blob in order to
// produce initial obfuscation of the onion failureCode.
obfuscator, failureCode := chanIterator.ExtractErrorEncrypter(
l.cfg.ExtractErrorEncrypter,
routeRole == hop.RouteRoleIntroduction,
)
if failureCode != lnwire.CodeNone {
// If we're unable to process the onion blob than we
// should send the malformed htlc error to payment
// sender.
l.sendMalformedHTLCError(
add.ID, failureCode, add.OnionBlob,
&sourceRef,
)
l.log.Errorf("unable to decode onion "+
"obfuscator: %v", failureCode)
continue
}
fwdInfo := pld.ForwardingInfo()
// Check whether the payload we've just processed uses our
// node as the introduction point (gave us a blinding key in
// the payload itself) and fail it back if we don't support
// route blinding.
if fwdInfo.NextBlinding.IsSome() &&
l.cfg.DisallowRouteBlinding {
failure := lnwire.NewInvalidBlinding(
fn.Some(add.OnionBlob),
)
l.sendHTLCError(
add, sourceRef, NewLinkError(failure),
obfuscator, false,
)
l.log.Error("rejected htlc that uses use as an " +
"introduction point when we do not support " +
"route blinding")
continue
}
switch fwdInfo.NextHop {
case hop.Exit:
err := l.processExitHop(
add, sourceRef, obfuscator, fwdInfo,
heightNow, pld,
)
if err != nil {
l.failf(LinkFailureError{
code: ErrInternalError,
}, err.Error()) //nolint
return
}
// There are additional channels left within this route. So
// we'll simply do some forwarding package book-keeping.
default:
// If hodl.AddIncoming is requested, we will not
// validate the forwarded ADD, nor will we send the
// packet to the htlc switch.
if l.cfg.HodlMask.Active(hodl.AddIncoming) {
l.log.Warnf(hodl.AddIncoming.Warning())
continue
}
switch fwdPkg.State {
case channeldb.FwdStateProcessed:
// This add was not forwarded on the previous
// processing phase, run it through our
// validation pipeline to reproduce an error.
// This may trigger a different error due to
// expiring timelocks, but we expect that an
// error will be reproduced.
if !fwdPkg.FwdFilter.Contains(idx) {
break
}
// Otherwise, it was already processed, we can
// can collect it and continue.
outgoingAdd := &lnwire.UpdateAddHTLC{
Expiry: fwdInfo.OutgoingCTLV,
Amount: fwdInfo.AmountToForward,
PaymentHash: add.PaymentHash,
BlindingPoint: fwdInfo.NextBlinding,
}
// Finally, we'll encode the onion packet for
// the _next_ hop using the hop iterator
// decoded for the current hop.
buf := bytes.NewBuffer(
outgoingAdd.OnionBlob[0:0],
)
// We know this cannot fail, as this ADD
// was marked forwarded in a previous
// round of processing.
chanIterator.EncodeNextHop(buf)
inboundFee := l.cfg.FwrdingPolicy.InboundFee
//nolint:lll
updatePacket := &htlcPacket{
incomingChanID: l.ShortChanID(),
incomingHTLCID: add.ID,
outgoingChanID: fwdInfo.NextHop,
sourceRef: &sourceRef,
incomingAmount: add.Amount,
amount: outgoingAdd.Amount,
htlc: outgoingAdd,
obfuscator: obfuscator,
incomingTimeout: add.Expiry,
outgoingTimeout: fwdInfo.OutgoingCTLV,
inOnionCustomRecords: pld.CustomRecords(),
inboundFee: inboundFee,
inWireCustomRecords: add.CustomRecords.Copy(),
}
switchPackets = append(
switchPackets, updatePacket,
)
continue
}
// TODO(roasbeef): ensure don't accept outrageous
// timeout for htlc
// With all our forwarding constraints met, we'll
// create the outgoing HTLC using the parameters as
// specified in the forwarding info.
addMsg := &lnwire.UpdateAddHTLC{
Expiry: fwdInfo.OutgoingCTLV,
Amount: fwdInfo.AmountToForward,
PaymentHash: add.PaymentHash,
BlindingPoint: fwdInfo.NextBlinding,
}
// Finally, we'll encode the onion packet for the
// _next_ hop using the hop iterator decoded for the
// current hop.
buf := bytes.NewBuffer(addMsg.OnionBlob[0:0])
err := chanIterator.EncodeNextHop(buf)
if err != nil {
l.log.Errorf("unable to encode the "+
"remaining route %v", err)
cb := func(upd *lnwire.ChannelUpdate1) lnwire.FailureMessage { //nolint:lll
return lnwire.NewTemporaryChannelFailure(upd)
}
failure := l.createFailureWithUpdate(
true, hop.Source, cb,
)
l.sendHTLCError(
add, sourceRef, NewLinkError(failure),
obfuscator, false,
)
continue
}
// Now that this add has been reprocessed, only append
// it to our list of packets to forward to the switch
// this is the first time processing the add. If the
// fwd pkg has already been processed, then we entered
// the above section to recreate a previous error. If
// the packet had previously been forwarded, it would
// have been added to switchPackets at the top of this
// section.
if fwdPkg.State == channeldb.FwdStateLockedIn {
inboundFee := l.cfg.FwrdingPolicy.InboundFee
//nolint:lll
updatePacket := &htlcPacket{
incomingChanID: l.ShortChanID(),
incomingHTLCID: add.ID,
outgoingChanID: fwdInfo.NextHop,
sourceRef: &sourceRef,
incomingAmount: add.Amount,
amount: addMsg.Amount,
htlc: addMsg,
obfuscator: obfuscator,
incomingTimeout: add.Expiry,
outgoingTimeout: fwdInfo.OutgoingCTLV,
inOnionCustomRecords: pld.CustomRecords(),
inboundFee: inboundFee,
inWireCustomRecords: add.CustomRecords.Copy(),
}
fwdPkg.FwdFilter.Set(idx)
switchPackets = append(switchPackets,
updatePacket)
}
}
}
// Commit the htlcs we are intending to forward if this package has not
// been fully processed.
if fwdPkg.State == channeldb.FwdStateLockedIn {
err := l.channel.SetFwdFilter(fwdPkg.Height, fwdPkg.FwdFilter)
if err != nil {
l.failf(LinkFailureError{code: ErrInternalError},
"unable to set fwd filter: %v", err)
return
}
}
if len(switchPackets) == 0 {
return
}
replay := fwdPkg.State != channeldb.FwdStateLockedIn
l.log.Debugf("forwarding %d packets to switch: replay=%v",
len(switchPackets), replay)
// NOTE: This call is made synchronous so that we ensure all circuits
// are committed in the exact order that they are processed in the link.
// Failing to do this could cause reorderings/gaps in the range of
// opened circuits, which violates assumptions made by the circuit
// trimming.
l.forwardBatch(replay, switchPackets...)
}
// processExitHop handles an htlc for which this link is the exit hop. It
// returns a boolean indicating whether the commitment tx needs an update.
func (l *channelLink) processExitHop(add lnwire.UpdateAddHTLC,
sourceRef channeldb.AddRef, obfuscator hop.ErrorEncrypter,
fwdInfo hop.ForwardingInfo, heightNow uint32,
payload invoices.Payload) error {
// If hodl.ExitSettle is requested, we will not validate the final hop's
// ADD, nor will we settle the corresponding invoice or respond with the
// preimage.
if l.cfg.HodlMask.Active(hodl.ExitSettle) {
l.log.Warnf("%s for htlc(rhash=%x,htlcIndex=%v)",
hodl.ExitSettle.Warning(), add.PaymentHash, add.ID)
return nil
}
// As we're the exit hop, we'll double check the hop-payload included in
// the HTLC to ensure that it was crafted correctly by the sender and
// is compatible with the HTLC we were extended.
//
// For a special case, if the fwdInfo doesn't have any blinded path
// information, and the incoming HTLC had special extra data, then
// we'll skip this amount check. The invoice acceptor will make sure we
// reject the HTLC if it's not containing the correct amount after
// examining the custom data.
hasBlindedPath := fwdInfo.NextBlinding.IsSome()
customHTLC := len(add.CustomRecords) > 0 && !hasBlindedPath
log.Tracef("Exit hop has_blinded_path=%v custom_htlc_bypass=%v",
hasBlindedPath, customHTLC)
if !customHTLC && add.Amount < fwdInfo.AmountToForward {
l.log.Errorf("onion payload of incoming htlc(%x) has "+
"incompatible value: expected <=%v, got %v",
add.PaymentHash, add.Amount, fwdInfo.AmountToForward)
failure := NewLinkError(
lnwire.NewFinalIncorrectHtlcAmount(add.Amount),
)
l.sendHTLCError(add, sourceRef, failure, obfuscator, true)
return nil
}
// We'll also ensure that our time-lock value has been computed
// correctly.
if add.Expiry < fwdInfo.OutgoingCTLV {
l.log.Errorf("onion payload of incoming htlc(%x) has "+
"incompatible time-lock: expected <=%v, got %v",
add.PaymentHash, add.Expiry, fwdInfo.OutgoingCTLV)
failure := NewLinkError(
lnwire.NewFinalIncorrectCltvExpiry(add.Expiry),
)
l.sendHTLCError(add, sourceRef, failure, obfuscator, true)
return nil
}
// Notify the invoiceRegistry of the exit hop htlc. If we crash right
// after this, this code will be re-executed after restart. We will
// receive back a resolution event.
invoiceHash := lntypes.Hash(add.PaymentHash)
circuitKey := models.CircuitKey{
ChanID: l.ShortChanID(),
HtlcID: add.ID,
}
event, err := l.cfg.Registry.NotifyExitHopHtlc(
invoiceHash, add.Amount, add.Expiry, int32(heightNow),
circuitKey, l.hodlQueue.ChanIn(), add.CustomRecords, payload,
)
if err != nil {
return err
}
// Create a hodlHtlc struct and decide either resolved now or later.
htlc := hodlHtlc{
add: add,
sourceRef: sourceRef,
obfuscator: obfuscator,
}
// If the event is nil, the invoice is being held, so we save payment
// descriptor for future reference.
if event == nil {
l.hodlMap[circuitKey] = htlc
return nil
}
// Process the received resolution.
return l.processHtlcResolution(event, htlc)
}
// settleHTLC settles the HTLC on the channel.
func (l *channelLink) settleHTLC(preimage lntypes.Preimage,
htlcIndex uint64, sourceRef channeldb.AddRef) error {
hash := preimage.Hash()
l.log.Infof("settling htlc %v as exit hop", hash)
err := l.channel.SettleHTLC(
preimage, htlcIndex, &sourceRef, nil, nil,
)
if err != nil {
return fmt.Errorf("unable to settle htlc: %w", err)
}
// If the link is in hodl.BogusSettle mode, replace the preimage with a
// fake one before sending it to the peer.
if l.cfg.HodlMask.Active(hodl.BogusSettle) {
l.log.Warnf(hodl.BogusSettle.Warning())
preimage = [32]byte{}
copy(preimage[:], bytes.Repeat([]byte{2}, 32))
}
// HTLC was successfully settled locally send notification about it
// remote peer.
l.cfg.Peer.SendMessage(false, &lnwire.UpdateFulfillHTLC{
ChanID: l.ChanID(),
ID: htlcIndex,
PaymentPreimage: preimage,
})
// Once we have successfully settled the htlc, notify a settle event.
l.cfg.HtlcNotifier.NotifySettleEvent(
HtlcKey{
IncomingCircuit: models.CircuitKey{
ChanID: l.ShortChanID(),
HtlcID: htlcIndex,
},
},
preimage,
HtlcEventTypeReceive,
)
return nil
}
// forwardBatch forwards the given htlcPackets to the switch, and waits on the
// err chan for the individual responses. This method is intended to be spawned
// as a goroutine so the responses can be handled in the background.
func (l *channelLink) forwardBatch(replay bool, packets ...*htlcPacket) {
// Don't forward packets for which we already have a response in our
// mailbox. This could happen if a packet fails and is buffered in the
// mailbox, and the incoming link flaps.
var filteredPkts = make([]*htlcPacket, 0, len(packets))
for _, pkt := range packets {
if l.mailBox.HasPacket(pkt.inKey()) {
continue
}
filteredPkts = append(filteredPkts, pkt)
}
err := l.cfg.ForwardPackets(l.Quit, replay, filteredPkts...)
if err != nil {
log.Errorf("Unhandled error while reforwarding htlc "+
"settle/fail over htlcswitch: %v", err)
}
}
// sendHTLCError functions cancels HTLC and send cancel message back to the
// peer from which HTLC was received.
func (l *channelLink) sendHTLCError(add lnwire.UpdateAddHTLC,
sourceRef channeldb.AddRef, failure *LinkError,
e hop.ErrorEncrypter, isReceive bool) {
reason, err := e.EncryptFirstHop(failure.WireMessage())
if err != nil {
l.log.Errorf("unable to obfuscate error: %v", err)
return
}
err = l.channel.FailHTLC(add.ID, reason, &sourceRef, nil, nil)
if err != nil {
l.log.Errorf("unable cancel htlc: %v", err)
return
}
// Send the appropriate failure message depending on whether we're
// in a blinded route or not.
if err := l.sendIncomingHTLCFailureMsg(
add.ID, e, reason,
); err != nil {
l.log.Errorf("unable to send HTLC failure: %v", err)
return
}
// Notify a link failure on our incoming link. Outgoing htlc information
// is not available at this point, because we have not decrypted the
// onion, so it is excluded.
var eventType HtlcEventType
if isReceive {
eventType = HtlcEventTypeReceive
} else {
eventType = HtlcEventTypeForward
}
l.cfg.HtlcNotifier.NotifyLinkFailEvent(
HtlcKey{
IncomingCircuit: models.CircuitKey{
ChanID: l.ShortChanID(),
HtlcID: add.ID,
},
},
HtlcInfo{
IncomingTimeLock: add.Expiry,
IncomingAmt: add.Amount,
},
eventType,
failure,
true,
)
}
// sendPeerHTLCFailure handles sending a HTLC failure message back to the
// peer from which the HTLC was received. This function is primarily used to
// handle the special requirements of route blinding, specifically:
// - Forwarding nodes must switch out any errors with MalformedFailHTLC
// - Introduction nodes should return regular HTLC failure messages.
//
// It accepts the original opaque failure, which will be used in the case
// that we're not part of a blinded route and an error encrypter that'll be
// used if we are the introduction node and need to present an error as if
// we're the failing party.
func (l *channelLink) sendIncomingHTLCFailureMsg(htlcIndex uint64,
e hop.ErrorEncrypter,
originalFailure lnwire.OpaqueReason) error {
var msg lnwire.Message
switch {
// Our circuit's error encrypter will be nil if this was a locally
// initiated payment. We can only hit a blinded error for a locally
// initiated payment if we allow ourselves to be picked as the
// introduction node for our own payments and in that case we
// shouldn't reach this code. To prevent the HTLC getting stuck,
// we fail it back and log an error.
// code.
case e == nil:
msg = &lnwire.UpdateFailHTLC{
ChanID: l.ChanID(),
ID: htlcIndex,
Reason: originalFailure,
}
l.log.Errorf("Unexpected blinded failure when "+
"we are the sending node, incoming htlc: %v(%v)",
l.ShortChanID(), htlcIndex)
// For cleartext hops (ie, non-blinded/normal) we don't need any
// transformation on the error message and can just send the original.
case !e.Type().IsBlinded():
msg = &lnwire.UpdateFailHTLC{
ChanID: l.ChanID(),
ID: htlcIndex,
Reason: originalFailure,
}
// When we're the introduction node, we need to convert the error to
// a UpdateFailHTLC.
case e.Type() == hop.EncrypterTypeIntroduction:
l.log.Debugf("Introduction blinded node switching out failure "+
"error: %v", htlcIndex)
// The specification does not require that we set the onion
// blob.
failureMsg := lnwire.NewInvalidBlinding(
fn.None[[lnwire.OnionPacketSize]byte](),
)
reason, err := e.EncryptFirstHop(failureMsg)
if err != nil {
return err
}
msg = &lnwire.UpdateFailHTLC{
ChanID: l.ChanID(),
ID: htlcIndex,
Reason: reason,
}
// If we are a relaying node, we need to switch out any error that
// we've received to a malformed HTLC error.
case e.Type() == hop.EncrypterTypeRelaying:
l.log.Debugf("Relaying blinded node switching out malformed "+
"error: %v", htlcIndex)
msg = &lnwire.UpdateFailMalformedHTLC{
ChanID: l.ChanID(),
ID: htlcIndex,
FailureCode: lnwire.CodeInvalidBlinding,
}
default:
return fmt.Errorf("unexpected encrypter: %d", e)
}
if err := l.cfg.Peer.SendMessage(false, msg); err != nil {
l.log.Warnf("Send update fail failed: %v", err)
}
return nil
}
// sendMalformedHTLCError helper function which sends the malformed HTLC update
// to the payment sender.
func (l *channelLink) sendMalformedHTLCError(htlcIndex uint64,
code lnwire.FailCode, onionBlob [lnwire.OnionPacketSize]byte,
sourceRef *channeldb.AddRef) {
shaOnionBlob := sha256.Sum256(onionBlob[:])
err := l.channel.MalformedFailHTLC(htlcIndex, code, shaOnionBlob, sourceRef)
if err != nil {
l.log.Errorf("unable cancel htlc: %v", err)
return
}
l.cfg.Peer.SendMessage(false, &lnwire.UpdateFailMalformedHTLC{
ChanID: l.ChanID(),
ID: htlcIndex,
ShaOnionBlob: shaOnionBlob,
FailureCode: code,
})
}
// failf is a function which is used to encapsulate the action necessary for
// properly failing the link. It takes a LinkFailureError, which will be passed
// to the OnChannelFailure closure, in order for it to determine if we should
// force close the channel, and if we should send an error message to the
// remote peer.
func (l *channelLink) failf(linkErr LinkFailureError, format string,
a ...interface{}) {
reason := fmt.Errorf(format, a...)
// Return if we have already notified about a failure.
if l.failed {
l.log.Warnf("ignoring link failure (%v), as link already "+
"failed", reason)
return
}
l.log.Errorf("failing link: %s with error: %v", reason, linkErr)
// Set failed, such that we won't process any more updates, and notify
// the peer about the failure.
l.failed = true
l.cfg.OnChannelFailure(l.ChanID(), l.ShortChanID(), linkErr)
}
// FundingCustomBlob returns the custom funding blob of the channel that this
// link is associated with. The funding blob represents static information about
// the channel that was created at channel funding time.
func (l *channelLink) FundingCustomBlob() fn.Option[tlv.Blob] {
if l.channel == nil {
return fn.None[tlv.Blob]()
}
if l.channel.State() == nil {
return fn.None[tlv.Blob]()
}
return l.channel.State().CustomBlob
}
// CommitmentCustomBlob returns the custom blob of the current local commitment
// of the channel that this link is associated with.
func (l *channelLink) CommitmentCustomBlob() fn.Option[tlv.Blob] {
if l.channel == nil {
return fn.None[tlv.Blob]()
}
return l.channel.LocalCommitmentBlob()
}