package lntest import ( "bytes" "context" "crypto/rand" "encoding/hex" "encoding/json" "flag" "fmt" "io" "io/ioutil" "net" "os" "os/exec" "path" "path/filepath" "strings" "sync" "sync/atomic" "time" "github.com/btcsuite/btcd/chaincfg" "github.com/btcsuite/btcd/chaincfg/chainhash" "github.com/btcsuite/btcd/integration/rpctest" "github.com/btcsuite/btcd/rpcclient" "github.com/btcsuite/btcd/wire" "github.com/btcsuite/btcutil" "github.com/go-errors/errors" "github.com/jackc/pgx/v4/pgxpool" "github.com/lightningnetwork/lnd/chanbackup" "github.com/lightningnetwork/lnd/lnrpc" "github.com/lightningnetwork/lnd/lnrpc/invoicesrpc" "github.com/lightningnetwork/lnd/lnrpc/routerrpc" "github.com/lightningnetwork/lnd/lnrpc/signrpc" "github.com/lightningnetwork/lnd/lnrpc/walletrpc" "github.com/lightningnetwork/lnd/lnrpc/watchtowerrpc" "github.com/lightningnetwork/lnd/lnrpc/wtclientrpc" "github.com/lightningnetwork/lnd/lntest/wait" "github.com/lightningnetwork/lnd/macaroons" "google.golang.org/grpc" "google.golang.org/grpc/credentials" "gopkg.in/macaroon.v2" ) const ( // defaultNodePort is the start of the range for listening ports of // harness nodes. Ports are monotonically increasing starting from this // number and are determined by the results of nextAvailablePort(). defaultNodePort = 5555 // logPubKeyBytes is the number of bytes of the node's PubKey that will // be appended to the log file name. The whole PubKey is too long and // not really necessary to quickly identify what node produced which // log file. logPubKeyBytes = 4 // trickleDelay is the amount of time in milliseconds between each // release of announcements by AuthenticatedGossiper to the network. trickleDelay = 50 // listenerFormat is the format string that is used to generate local // listener addresses. listenerFormat = "127.0.0.1:%d" // NeutrinoBackendName is the name of the neutrino backend. NeutrinoBackendName = "neutrino" postgresDsn = "postgres://postgres:postgres@localhost:6432/%s?sslmode=disable" ) var ( // numActiveNodes is the number of active nodes within the test network. numActiveNodes = 0 numActiveNodesMtx sync.Mutex // lastPort is the last port determined to be free for use by a new // node. It should be used atomically. lastPort uint32 = defaultNodePort // logOutput is a flag that can be set to append the output from the // seed nodes to log files. logOutput = flag.Bool("logoutput", false, "log output from node n to file output-n.log") // logSubDir is the default directory where the logs are written to if // logOutput is true. logSubDir = flag.String("logdir", ".", "default dir to write logs to") // goroutineDump is a flag that can be set to dump the active // goroutines of test nodes on failure. goroutineDump = flag.Bool("goroutinedump", false, "write goroutine dump from node n to file pprof-n.log") // btcdExecutable is the full path to the btcd binary. btcdExecutable = flag.String( "btcdexec", "", "full path to btcd binary", ) ) func postgresDatabaseDsn(dbName string) string { return fmt.Sprintf(postgresDsn, dbName) } // NextAvailablePort returns the first port that is available for listening by // a new node. It panics if no port is found and the maximum available TCP port // is reached. func NextAvailablePort() int { port := atomic.AddUint32(&lastPort, 1) for port < 65535 { // If there are no errors while attempting to listen on this // port, close the socket and return it as available. While it // could be the case that some other process picks up this port // between the time the socket is closed and it's reopened in // the harness node, in practice in CI servers this seems much // less likely than simply some other process already being // bound at the start of the tests. addr := fmt.Sprintf(listenerFormat, port) l, err := net.Listen("tcp4", addr) if err == nil { err := l.Close() if err == nil { return int(port) } } port = atomic.AddUint32(&lastPort, 1) } // No ports available? Must be a mistake. panic("no ports available for listening") } // ApplyPortOffset adds the given offset to the lastPort variable, making it // possible to run the tests in parallel without colliding on the same ports. func ApplyPortOffset(offset uint32) { _ = atomic.AddUint32(&lastPort, offset) } // GetLogDir returns the passed --logdir flag or the default value if it wasn't // set. func GetLogDir() string { if logSubDir != nil && *logSubDir != "" { return *logSubDir } return "." } // GetBtcdBinary returns the full path to the binary of the custom built btcd // executable or an empty string if none is set. func GetBtcdBinary() string { if btcdExecutable != nil { return *btcdExecutable } return "" } // GenerateBtcdListenerAddresses is a function that returns two listener // addresses with unique ports and should be used to overwrite rpctest's default // generator which is prone to use colliding ports. func GenerateBtcdListenerAddresses() (string, string) { return fmt.Sprintf(listenerFormat, NextAvailablePort()), fmt.Sprintf(listenerFormat, NextAvailablePort()) } // generateListeningPorts returns four ints representing ports to listen on // designated for the current lightning network test. This returns the next // available ports for the p2p, rpc, rest and profiling services. func generateListeningPorts(cfg *NodeConfig) { if cfg.P2PPort == 0 { cfg.P2PPort = NextAvailablePort() } if cfg.RPCPort == 0 { cfg.RPCPort = NextAvailablePort() } if cfg.RESTPort == 0 { cfg.RESTPort = NextAvailablePort() } if cfg.ProfilePort == 0 { cfg.ProfilePort = NextAvailablePort() } } // BackendConfig is an interface that abstracts away the specific chain backend // node implementation. type BackendConfig interface { // GenArgs returns the arguments needed to be passed to LND at startup // for using this node as a chain backend. GenArgs() []string // ConnectMiner is called to establish a connection to the test miner. ConnectMiner() error // DisconnectMiner is called to disconnect the miner. DisconnectMiner() error // Name returns the name of the backend type. Name() string } type NodeConfig struct { Name string // LogFilenamePrefix is is used to prefix node log files. Can be used // to store the current test case for simpler postmortem debugging. LogFilenamePrefix string BackendCfg BackendConfig NetParams *chaincfg.Params BaseDir string ExtraArgs []string DataDir string LogDir string TLSCertPath string TLSKeyPath string AdminMacPath string ReadMacPath string InvoiceMacPath string HasSeed bool Password []byte P2PPort int RPCPort int RESTPort int ProfilePort int AcceptKeySend bool AcceptAMP bool FeeURL string DbBackend DatabaseBackend PostgresDsn string } func (cfg NodeConfig) P2PAddr() string { return fmt.Sprintf(listenerFormat, cfg.P2PPort) } func (cfg NodeConfig) RPCAddr() string { return fmt.Sprintf(listenerFormat, cfg.RPCPort) } func (cfg NodeConfig) RESTAddr() string { return fmt.Sprintf(listenerFormat, cfg.RESTPort) } // DBDir returns the holding directory path of the graph database. func (cfg NodeConfig) DBDir() string { return filepath.Join(cfg.DataDir, "graph", cfg.NetParams.Name) } func (cfg NodeConfig) DBPath() string { return filepath.Join(cfg.DBDir(), "channel.db") } func (cfg NodeConfig) ChanBackupPath() string { return filepath.Join( cfg.DataDir, "chain", "bitcoin", fmt.Sprintf( "%v/%v", cfg.NetParams.Name, chanbackup.DefaultBackupFileName, ), ) } // genArgs generates a slice of command line arguments from the lightning node // config struct. func (cfg NodeConfig) genArgs() []string { var args []string switch cfg.NetParams { case &chaincfg.TestNet3Params: args = append(args, "--bitcoin.testnet") case &chaincfg.SimNetParams: args = append(args, "--bitcoin.simnet") case &chaincfg.RegressionNetParams: args = append(args, "--bitcoin.regtest") } backendArgs := cfg.BackendCfg.GenArgs() args = append(args, backendArgs...) args = append(args, "--bitcoin.active") args = append(args, "--nobootstrap") args = append(args, "--debuglevel=debug") args = append(args, "--bitcoin.defaultchanconfs=1") args = append(args, fmt.Sprintf("--db.batch-commit-interval=%v", 10*time.Millisecond)) args = append(args, fmt.Sprintf("--bitcoin.defaultremotedelay=%v", DefaultCSV)) args = append(args, fmt.Sprintf("--rpclisten=%v", cfg.RPCAddr())) args = append(args, fmt.Sprintf("--restlisten=%v", cfg.RESTAddr())) args = append(args, fmt.Sprintf("--restcors=https://%v", cfg.RESTAddr())) args = append(args, fmt.Sprintf("--listen=%v", cfg.P2PAddr())) args = append(args, fmt.Sprintf("--externalip=%v", cfg.P2PAddr())) args = append(args, fmt.Sprintf("--logdir=%v", cfg.LogDir)) args = append(args, fmt.Sprintf("--datadir=%v", cfg.DataDir)) args = append(args, fmt.Sprintf("--tlscertpath=%v", cfg.TLSCertPath)) args = append(args, fmt.Sprintf("--tlskeypath=%v", cfg.TLSKeyPath)) args = append(args, fmt.Sprintf("--configfile=%v", cfg.DataDir)) args = append(args, fmt.Sprintf("--adminmacaroonpath=%v", cfg.AdminMacPath)) args = append(args, fmt.Sprintf("--readonlymacaroonpath=%v", cfg.ReadMacPath)) args = append(args, fmt.Sprintf("--invoicemacaroonpath=%v", cfg.InvoiceMacPath)) args = append(args, fmt.Sprintf("--trickledelay=%v", trickleDelay)) args = append(args, fmt.Sprintf("--profile=%d", cfg.ProfilePort)) args = append(args, fmt.Sprintf("--caches.rpc-graph-cache-duration=0")) if !cfg.HasSeed { args = append(args, "--noseedbackup") } if cfg.ExtraArgs != nil { args = append(args, cfg.ExtraArgs...) } if cfg.AcceptKeySend { args = append(args, "--accept-keysend") } if cfg.AcceptAMP { args = append(args, "--accept-amp") } switch cfg.DbBackend { case BackendEtcd: args = append(args, "--db.backend=etcd") args = append(args, "--db.etcd.embedded") args = append( args, fmt.Sprintf( "--db.etcd.embedded_client_port=%v", NextAvailablePort(), ), ) args = append( args, fmt.Sprintf( "--db.etcd.embedded_peer_port=%v", NextAvailablePort(), ), ) args = append( args, fmt.Sprintf( "--db.etcd.embedded_log_file=%v", path.Join(cfg.LogDir, "etcd.log"), ), ) case BackendPostgres: args = append(args, "--db.backend=postgres") args = append(args, "--db.postgres.dsn="+cfg.PostgresDsn) } if cfg.FeeURL != "" { args = append(args, "--feeurl="+cfg.FeeURL) } return args } // policyUpdateMap defines a type to store channel policy updates. It has the // format, // { // "chanPoint1": { // "advertisingNode1": [ // policy1, policy2, ... // ], // "advertisingNode2": [ // policy1, policy2, ... // ] // }, // "chanPoint2": ... // } type policyUpdateMap map[string]map[string][]*lnrpc.RoutingPolicy // HarnessNode represents an instance of lnd running within our test network // harness. Each HarnessNode instance also fully embeds an RPC client in // order to pragmatically drive the node. type HarnessNode struct { Cfg *NodeConfig // NodeID is a unique identifier for the node within a NetworkHarness. NodeID int // PubKey is the serialized compressed identity public key of the node. // This field will only be populated once the node itself has been // started via the start() method. PubKey [33]byte PubKeyStr string cmd *exec.Cmd pidFile string logFile *os.File // processExit is a channel that's closed once it's detected that the // process this instance of HarnessNode is bound to has exited. processExit chan struct{} chanWatchRequests chan *chanWatchRequest // For each outpoint, we'll track an integer which denotes the number of // edges seen for that channel within the network. When this number // reaches 2, then it means that both edge advertisements has propagated // through the network. openChans map[wire.OutPoint]int openChanWatchers map[wire.OutPoint][]chan struct{} closedChans map[wire.OutPoint]struct{} closeChanWatchers map[wire.OutPoint][]chan struct{} // policyUpdates stores a slice of seen polices by each advertising // node and the outpoint. policyUpdates policyUpdateMap quit chan struct{} wg sync.WaitGroup lnrpc.LightningClient lnrpc.WalletUnlockerClient invoicesrpc.InvoicesClient // SignerClient cannot be embedded because the name collisions of the // methods SignMessage and VerifyMessage. SignerClient signrpc.SignerClient // conn is the underlying connection to the grpc endpoint of the node. conn *grpc.ClientConn // RouterClient, WalletKitClient, WatchtowerClient cannot be embedded, // because a name collision would occur with LightningClient. RouterClient routerrpc.RouterClient WalletKitClient walletrpc.WalletKitClient Watchtower watchtowerrpc.WatchtowerClient WatchtowerClient wtclientrpc.WatchtowerClientClient StateClient lnrpc.StateClient // backupDbDir is the path where a database backup is stored, if any. backupDbDir string // postgresDbName is the name of the postgres database where lnd data is // stored in. postgresDbName string } // Assert *HarnessNode implements the lnrpc.LightningClient interface. var _ lnrpc.LightningClient = (*HarnessNode)(nil) var _ lnrpc.WalletUnlockerClient = (*HarnessNode)(nil) var _ invoicesrpc.InvoicesClient = (*HarnessNode)(nil) // newNode creates a new test lightning node instance from the passed config. func newNode(cfg NodeConfig) (*HarnessNode, error) { if cfg.BaseDir == "" { var err error cfg.BaseDir, err = ioutil.TempDir("", "lndtest-node") if err != nil { return nil, err } } cfg.DataDir = filepath.Join(cfg.BaseDir, "data") cfg.LogDir = filepath.Join(cfg.BaseDir, "log") cfg.TLSCertPath = filepath.Join(cfg.DataDir, "tls.cert") cfg.TLSKeyPath = filepath.Join(cfg.DataDir, "tls.key") networkDir := filepath.Join( cfg.DataDir, "chain", "bitcoin", cfg.NetParams.Name, ) cfg.AdminMacPath = filepath.Join(networkDir, "admin.macaroon") cfg.ReadMacPath = filepath.Join(networkDir, "readonly.macaroon") cfg.InvoiceMacPath = filepath.Join(networkDir, "invoice.macaroon") generateListeningPorts(&cfg) // Run all tests with accept keysend. The keysend code is very isolated // and it is highly unlikely that it would affect regular itests when // enabled. cfg.AcceptKeySend = true // Create temporary database. var dbName string if cfg.DbBackend == BackendPostgres { var err error dbName, err = createTempPgDb() if err != nil { return nil, err } cfg.PostgresDsn = postgresDatabaseDsn(dbName) } numActiveNodesMtx.Lock() nodeNum := numActiveNodes numActiveNodes++ numActiveNodesMtx.Unlock() return &HarnessNode{ Cfg: &cfg, NodeID: nodeNum, chanWatchRequests: make(chan *chanWatchRequest), openChans: make(map[wire.OutPoint]int), openChanWatchers: make(map[wire.OutPoint][]chan struct{}), closedChans: make(map[wire.OutPoint]struct{}), closeChanWatchers: make(map[wire.OutPoint][]chan struct{}), policyUpdates: policyUpdateMap{}, postgresDbName: dbName, }, nil } func createTempPgDb() (string, error) { // Create random database name. randBytes := make([]byte, 8) _, err := rand.Read(randBytes) if err != nil { return "", err } dbName := "itest_" + hex.EncodeToString(randBytes) // Create database. err = executePgQuery("CREATE DATABASE " + dbName) if err != nil { return "", err } return dbName, nil } func executePgQuery(query string) error { pool, err := pgxpool.Connect( context.Background(), postgresDatabaseDsn("postgres"), ) if err != nil { return fmt.Errorf("unable to connect to database: %v", err) } defer pool.Close() _, err = pool.Exec(context.Background(), query) return err } // NewMiner creates a new miner using btcd backend. The baseLogDir specifies // the miner node's log dir. When tests are finished, during clean up, its log // files, including any compressed log files from logrotate, are copied to // logDir as logFilename. func NewMiner(baseLogDir, logFilename string, netParams *chaincfg.Params, handler *rpcclient.NotificationHandlers, btcdBinary string) (*rpctest.Harness, func() error, error) { args := []string{ "--rejectnonstd", "--txindex", "--nowinservice", "--nobanning", "--debuglevel=debug", "--logdir=" + baseLogDir, "--trickleinterval=100ms", // Don't disconnect if a reply takes too long. "--nostalldetect", } miner, err := rpctest.New(netParams, handler, args, btcdBinary) if err != nil { return nil, nil, fmt.Errorf( "unable to create mining node: %v", err, ) } cleanUp := func() error { if err := miner.TearDown(); err != nil { return fmt.Errorf( "failed to tear down miner, got error: %s", err, ) } // After shutting down the miner, we'll make a copy of // the log files before deleting the temporary log dir. logDir := fmt.Sprintf("%s/%s", baseLogDir, netParams.Name) files, err := ioutil.ReadDir(logDir) if err != nil { return fmt.Errorf("unable to read log directory: %v", err) } for _, file := range files { logFile := fmt.Sprintf( "%s/%s", logDir, file.Name(), ) newFilename := strings.Replace(file.Name(), "btcd.log", logFilename, 1) copyPath := fmt.Sprintf( "%s/../%s", baseLogDir, newFilename, ) err := CopyFile(filepath.Clean(copyPath), logFile) if err != nil { return fmt.Errorf("unable to copy file: %v", err) } } if err = os.RemoveAll(baseLogDir); err != nil { return fmt.Errorf( "cannot remove dir %s: %v", baseLogDir, err, ) } return nil } return miner, cleanUp, nil } // String gives the internal state of the node which is useful for debugging. func (hn *HarnessNode) String() string { type nodeCfg struct { LogFilenamePrefix string ExtraArgs []string HasSeed bool P2PPort int RPCPort int RESTPort int ProfilePort int AcceptKeySend bool AcceptAMP bool FeeURL string } nodeState := struct { NodeID int Name string PubKey string OpenChans map[string]int ClosedChans map[string]struct{} NodeCfg nodeCfg }{ NodeID: hn.NodeID, Name: hn.Cfg.Name, PubKey: hn.PubKeyStr, OpenChans: make(map[string]int), ClosedChans: make(map[string]struct{}), NodeCfg: nodeCfg{ LogFilenamePrefix: hn.Cfg.LogFilenamePrefix, ExtraArgs: hn.Cfg.ExtraArgs, HasSeed: hn.Cfg.HasSeed, P2PPort: hn.Cfg.P2PPort, RPCPort: hn.Cfg.RPCPort, RESTPort: hn.Cfg.RESTPort, AcceptKeySend: hn.Cfg.AcceptKeySend, AcceptAMP: hn.Cfg.AcceptAMP, FeeURL: hn.Cfg.FeeURL, }, } for outpoint, count := range hn.openChans { nodeState.OpenChans[outpoint.String()] = count } for outpoint, count := range hn.closedChans { nodeState.ClosedChans[outpoint.String()] = count } bytes, err := json.MarshalIndent(nodeState, "", "\t") if err != nil { return fmt.Sprintf("\n encode node state with err: %v", err) } return fmt.Sprintf("\nnode state: %s", bytes) } // DBPath returns the filepath to the channeldb database file for this node. func (hn *HarnessNode) DBPath() string { return hn.Cfg.DBPath() } // DBDir returns the path for the directory holding channeldb file(s). func (hn *HarnessNode) DBDir() string { return hn.Cfg.DBDir() } // Name returns the name of this node set during initialization. func (hn *HarnessNode) Name() string { return hn.Cfg.Name } // TLSCertStr returns the path where the TLS certificate is stored. func (hn *HarnessNode) TLSCertStr() string { return hn.Cfg.TLSCertPath } // TLSKeyStr returns the path where the TLS key is stored. func (hn *HarnessNode) TLSKeyStr() string { return hn.Cfg.TLSKeyPath } // ChanBackupPath returns the fielpath to the on-disk channel.backup file for // this node. func (hn *HarnessNode) ChanBackupPath() string { return hn.Cfg.ChanBackupPath() } // AdminMacPath returns the filepath to the admin.macaroon file for this node. func (hn *HarnessNode) AdminMacPath() string { return hn.Cfg.AdminMacPath } // ReadMacPath returns the filepath to the readonly.macaroon file for this node. func (hn *HarnessNode) ReadMacPath() string { return hn.Cfg.ReadMacPath } // InvoiceMacPath returns the filepath to the invoice.macaroon file for this // node. func (hn *HarnessNode) InvoiceMacPath() string { return hn.Cfg.InvoiceMacPath } // renameFile is a helper to rename (log) files created during integration tests. func renameFile(fromFileName, toFileName string) { err := os.Rename(fromFileName, toFileName) if err != nil { fmt.Printf("could not rename %s to %s: %v\n", fromFileName, toFileName, err) } } // Start launches a new process running lnd. Additionally, the PID of the // launched process is saved in order to possibly kill the process forcibly // later. // // This may not clean up properly if an error is returned, so the caller should // call shutdown() regardless of the return value. func (hn *HarnessNode) start(lndBinary string, lndError chan<- error, wait bool) error { hn.quit = make(chan struct{}) args := hn.Cfg.genArgs() hn.cmd = exec.Command(lndBinary, args...) // Redirect stderr output to buffer var errb bytes.Buffer hn.cmd.Stderr = &errb // Make sure the log file cleanup function is initialized, even // if no log file is created. var finalizeLogfile = func() { if hn.logFile != nil { hn.logFile.Close() } } getFinalizedLogFilePrefix := func() string { pubKeyHex := hex.EncodeToString( hn.PubKey[:logPubKeyBytes], ) return fmt.Sprintf("%s/%d-%s-%s-%s", GetLogDir(), hn.NodeID, hn.Cfg.LogFilenamePrefix, hn.Cfg.Name, pubKeyHex) } finalizeEtcdLog := func() { if hn.Cfg.DbBackend != BackendEtcd { return } etcdLogFileName := fmt.Sprintf("%s/etcd.log", hn.Cfg.LogDir) newEtcdLogFileName := fmt.Sprintf("%v-etcd.log", getFinalizedLogFilePrefix(), ) renameFile(etcdLogFileName, newEtcdLogFileName) } // If the logoutput flag is passed, redirect output from the nodes to // log files. if *logOutput { dir := GetLogDir() fileName := fmt.Sprintf("%s/%d-%s-%s-%s.log", dir, hn.NodeID, hn.Cfg.LogFilenamePrefix, hn.Cfg.Name, hex.EncodeToString(hn.PubKey[:logPubKeyBytes])) // If the node's PubKey is not yet initialized, create a // temporary file name. Later, after the PubKey has been // initialized, the file can be moved to its final name with // the PubKey included. if bytes.Equal(hn.PubKey[:4], []byte{0, 0, 0, 0}) { fileName = fmt.Sprintf("%s/%d-%s-%s-tmp__.log", dir, hn.NodeID, hn.Cfg.LogFilenamePrefix, hn.Cfg.Name) } // Once the node has done its work, the log file can be // renamed. finalizeLogfile = func() { if hn.logFile != nil { hn.logFile.Close() newFileName := fmt.Sprintf("%v.log", getFinalizedLogFilePrefix(), ) renameFile(fileName, newFileName) } } // Create file if not exists, otherwise append. file, err := os.OpenFile(fileName, os.O_WRONLY|os.O_APPEND|os.O_CREATE, 0666) if err != nil { return err } // Pass node's stderr to both errb and the file. w := io.MultiWriter(&errb, file) hn.cmd.Stderr = w // Pass the node's stdout only to the file. hn.cmd.Stdout = file // Let the node keep a reference to this file, such // that we can add to it if necessary. hn.logFile = file } if err := hn.cmd.Start(); err != nil { return err } // Launch a new goroutine which that bubbles up any potential fatal // process errors to the goroutine running the tests. hn.processExit = make(chan struct{}) hn.wg.Add(1) go func() { defer hn.wg.Done() err := hn.cmd.Wait() if err != nil { lndError <- errors.Errorf("%v\n%v\n", err, errb.String()) } // Signal any onlookers that this process has exited. close(hn.processExit) // Make sure log file is closed and renamed if necessary. finalizeLogfile() // Rename the etcd.log file if the node was running on embedded // etcd. finalizeEtcdLog() }() // Write process ID to a file. if err := hn.writePidFile(); err != nil { hn.cmd.Process.Kill() return err } // We may want to skip waiting for the node to come up (eg. the node // is waiting to become the leader). if !wait { return nil } // Since Stop uses the LightningClient to stop the node, if we fail to get a // connected client, we have to kill the process. useMacaroons := !hn.Cfg.HasSeed conn, err := hn.ConnectRPC(useMacaroons) if err != nil { hn.cmd.Process.Kill() return err } if err := hn.WaitUntilStarted(conn, DefaultTimeout); err != nil { return err } // If the node was created with a seed, we will need to perform an // additional step to unlock the wallet. The connection returned will // only use the TLS certs, and can only perform operations necessary to // unlock the daemon. if hn.Cfg.HasSeed { hn.WalletUnlockerClient = lnrpc.NewWalletUnlockerClient(conn) return nil } return hn.initLightningClient(conn) } // WaitUntilStarted waits until the wallet state flips from "WAITING_TO_START". func (hn *HarnessNode) WaitUntilStarted(conn grpc.ClientConnInterface, timeout time.Duration) error { return hn.waitForState(conn, timeout, func(s lnrpc.WalletState) bool { return s != lnrpc.WalletState_WAITING_TO_START }) } // WaitUntilStateReached waits until the given wallet state (or one of the // states following it) has been reached. func (hn *HarnessNode) WaitUntilStateReached(conn grpc.ClientConnInterface, timeout time.Duration, desiredState lnrpc.WalletState) error { return hn.waitForState(conn, timeout, func(s lnrpc.WalletState) bool { return s >= desiredState }) } // waitForState waits until the current node state fulfills the given // predicate. func (hn *HarnessNode) waitForState(conn grpc.ClientConnInterface, timeout time.Duration, predicate func(state lnrpc.WalletState) bool) error { stateClient := lnrpc.NewStateClient(conn) ctx, cancel := context.WithCancel(context.Background()) defer cancel() stateStream, err := stateClient.SubscribeState( ctx, &lnrpc.SubscribeStateRequest{}, ) if err != nil { return err } errChan := make(chan error, 1) started := make(chan struct{}) go func() { for { resp, err := stateStream.Recv() if err != nil { errChan <- err return } if predicate(resp.State) { close(started) return } } }() select { case <-started: case err = <-errChan: case <-time.After(timeout): return fmt.Errorf("WaitUntilLeader timed out") } return err } // WaitUntilLeader attempts to finish the start procedure by initiating an RPC // connection and setting up the wallet unlocker client. This is needed when // a node that has recently been started was waiting to become the leader and // we're at the point when we expect that it is the leader now (awaiting unlock). func (hn *HarnessNode) WaitUntilLeader(timeout time.Duration) error { var ( conn *grpc.ClientConn connErr error ) startTs := time.Now() if err := wait.NoError(func() error { conn, connErr = hn.ConnectRPC(!hn.Cfg.HasSeed) return connErr }, timeout); err != nil { return err } timeout -= time.Since(startTs) if err := hn.WaitUntilStarted(conn, timeout); err != nil { return err } // If the node was created with a seed, we will need to perform an // additional step to unlock the wallet. The connection returned will // only use the TLS certs, and can only perform operations necessary to // unlock the daemon. if hn.Cfg.HasSeed { hn.WalletUnlockerClient = lnrpc.NewWalletUnlockerClient(conn) return nil } return hn.initLightningClient(conn) } // initClientWhenReady waits until the main gRPC server is detected as active, // then complete the normal HarnessNode gRPC connection creation. This can be // used it a node has just been unlocked, or has its wallet state initialized. func (hn *HarnessNode) initClientWhenReady(timeout time.Duration) error { var ( conn *grpc.ClientConn connErr error ) if err := wait.NoError(func() error { conn, connErr = hn.ConnectRPC(true) return connErr }, timeout); err != nil { return err } return hn.initLightningClient(conn) } // Init initializes a harness node by passing the init request via rpc. After // the request is submitted, this method will block until a // macaroon-authenticated RPC connection can be established to the harness node. // Once established, the new connection is used to initialize the // LightningClient and subscribes the HarnessNode to topology changes. func (hn *HarnessNode) Init(ctx context.Context, initReq *lnrpc.InitWalletRequest) (*lnrpc.InitWalletResponse, error) { ctxt, cancel := context.WithTimeout(ctx, DefaultTimeout) defer cancel() response, err := hn.InitWallet(ctxt, initReq) if err != nil { return nil, err } // Wait for the wallet to finish unlocking, such that we can connect to // it via a macaroon-authenticated rpc connection. var conn *grpc.ClientConn if err = wait.Predicate(func() bool { // If the node has been initialized stateless, we need to pass // the macaroon to the client. if initReq.StatelessInit { adminMac := &macaroon.Macaroon{} err := adminMac.UnmarshalBinary(response.AdminMacaroon) if err != nil { return false } conn, err = hn.ConnectRPCWithMacaroon(adminMac) return err == nil } // Normal initialization, we expect a macaroon to be in the // file system. conn, err = hn.ConnectRPC(true) return err == nil }, DefaultTimeout); err != nil { return nil, err } return response, hn.initLightningClient(conn) } // InitChangePassword initializes a harness node by passing the change password // request via RPC. After the request is submitted, this method will block until // a macaroon-authenticated RPC connection can be established to the harness // node. Once established, the new connection is used to initialize the // LightningClient and subscribes the HarnessNode to topology changes. func (hn *HarnessNode) InitChangePassword(ctx context.Context, chngPwReq *lnrpc.ChangePasswordRequest) (*lnrpc.ChangePasswordResponse, error) { ctxt, cancel := context.WithTimeout(ctx, DefaultTimeout) defer cancel() response, err := hn.ChangePassword(ctxt, chngPwReq) if err != nil { return nil, err } // Wait for the wallet to finish unlocking, such that we can connect to // it via a macaroon-authenticated rpc connection. var conn *grpc.ClientConn if err = wait.Predicate(func() bool { // If the node has been initialized stateless, we need to pass // the macaroon to the client. if chngPwReq.StatelessInit { adminMac := &macaroon.Macaroon{} err := adminMac.UnmarshalBinary(response.AdminMacaroon) if err != nil { return false } conn, err = hn.ConnectRPCWithMacaroon(adminMac) return err == nil } // Normal initialization, we expect a macaroon to be in the // file system. conn, err = hn.ConnectRPC(true) return err == nil }, DefaultTimeout); err != nil { return nil, err } return response, hn.initLightningClient(conn) } // Unlock attempts to unlock the wallet of the target HarnessNode. This method // should be called after the restart of a HarnessNode that was created with a // seed+password. Once this method returns, the HarnessNode will be ready to // accept normal gRPC requests and harness command. func (hn *HarnessNode) Unlock(ctx context.Context, unlockReq *lnrpc.UnlockWalletRequest) error { ctxt, _ := context.WithTimeout(ctx, DefaultTimeout) // Otherwise, we'll need to unlock the node before it's able to start // up properly. if _, err := hn.UnlockWallet(ctxt, unlockReq); err != nil { return err } // Now that the wallet has been unlocked, we'll wait for the RPC client // to be ready, then establish the normal gRPC connection. return hn.initClientWhenReady(DefaultTimeout) } // waitTillServerStarted makes a subscription to the server's state change and // blocks until the server is in state ServerActive. func (hn *HarnessNode) waitTillServerStarted() error { ctxb := context.Background() ctxt, cancel := context.WithTimeout(ctxb, NodeStartTimeout) defer cancel() client, err := hn.StateClient.SubscribeState( ctxt, &lnrpc.SubscribeStateRequest{}, ) if err != nil { return fmt.Errorf("failed to subscribe to state: %w", err) } for { resp, err := client.Recv() if err != nil { return fmt.Errorf("failed to receive state "+ "client stream: %w", err) } if resp.State == lnrpc.WalletState_SERVER_ACTIVE { return nil } } } // initLightningClient constructs the grpc LightningClient from the given client // connection and subscribes the harness node to graph topology updates. // This method also spawns a lightning network watcher for this node, // which watches for topology changes. func (hn *HarnessNode) initLightningClient(conn *grpc.ClientConn) error { // Construct the LightningClient that will allow us to use the // HarnessNode directly for normal rpc operations. hn.conn = conn hn.LightningClient = lnrpc.NewLightningClient(conn) hn.InvoicesClient = invoicesrpc.NewInvoicesClient(conn) hn.RouterClient = routerrpc.NewRouterClient(conn) hn.WalletKitClient = walletrpc.NewWalletKitClient(conn) hn.Watchtower = watchtowerrpc.NewWatchtowerClient(conn) hn.WatchtowerClient = wtclientrpc.NewWatchtowerClientClient(conn) hn.SignerClient = signrpc.NewSignerClient(conn) hn.StateClient = lnrpc.NewStateClient(conn) // Wait until the server is fully started. if err := hn.waitTillServerStarted(); err != nil { return err } // Set the harness node's pubkey to what the node claims in GetInfo. // Since the RPC might not be immediately active, we wrap the call in a // wait.NoError. if err := wait.NoError(hn.FetchNodeInfo, DefaultTimeout); err != nil { return err } // Launch the watcher that will hook into graph related topology change // from the PoV of this node. hn.wg.Add(1) go hn.lightningNetworkWatcher() return nil } // FetchNodeInfo queries an unlocked node to retrieve its public key. func (hn *HarnessNode) FetchNodeInfo() error { // Obtain the lnid of this node for quick identification purposes. ctxb := context.Background() info, err := hn.GetInfo(ctxb, &lnrpc.GetInfoRequest{}) if err != nil { return err } hn.PubKeyStr = info.IdentityPubkey pubkey, err := hex.DecodeString(info.IdentityPubkey) if err != nil { return err } copy(hn.PubKey[:], pubkey) return nil } // AddToLog adds a line of choice to the node's logfile. This is useful // to interleave test output with output from the node. func (hn *HarnessNode) AddToLog(format string, a ...interface{}) { // If this node was not set up with a log file, just return early. if hn.logFile == nil { return } desc := fmt.Sprintf("itest: %s\n", fmt.Sprintf(format, a...)) if _, err := hn.logFile.WriteString(desc); err != nil { hn.PrintErr("write to log err: %v", err) } } // writePidFile writes the process ID of the running lnd process to a .pid file. func (hn *HarnessNode) writePidFile() error { filePath := filepath.Join(hn.Cfg.BaseDir, fmt.Sprintf("%v.pid", hn.NodeID)) pid, err := os.Create(filePath) if err != nil { return err } defer pid.Close() _, err = fmt.Fprintf(pid, "%v\n", hn.cmd.Process.Pid) if err != nil { return err } hn.pidFile = filePath return nil } // ReadMacaroon waits a given duration for the macaroon file to be created. If // the file is readable within the timeout, its content is de-serialized as a // macaroon and returned. func (hn *HarnessNode) ReadMacaroon(macPath string, timeout time.Duration) ( *macaroon.Macaroon, error) { // Wait until macaroon file is created and has valid content before // using it. var mac *macaroon.Macaroon err := wait.NoError(func() error { macBytes, err := ioutil.ReadFile(macPath) if err != nil { return fmt.Errorf("error reading macaroon file: %v", err) } newMac := &macaroon.Macaroon{} if err = newMac.UnmarshalBinary(macBytes); err != nil { return fmt.Errorf("error unmarshalling macaroon "+ "file: %v", err) } mac = newMac return nil }, timeout) return mac, err } // ConnectRPCWithMacaroon uses the TLS certificate and given macaroon to // create a gRPC client connection. func (hn *HarnessNode) ConnectRPCWithMacaroon(mac *macaroon.Macaroon) ( *grpc.ClientConn, error) { // Wait until TLS certificate is created and has valid content before // using it, up to 30 sec. var tlsCreds credentials.TransportCredentials err := wait.NoError(func() error { var err error tlsCreds, err = credentials.NewClientTLSFromFile( hn.Cfg.TLSCertPath, "", ) return err }, DefaultTimeout) if err != nil { return nil, fmt.Errorf("error reading TLS cert: %v", err) } opts := []grpc.DialOption{ grpc.WithBlock(), grpc.WithTransportCredentials(tlsCreds), } ctx, cancel := context.WithTimeout(context.Background(), DefaultTimeout) defer cancel() if mac == nil { return grpc.DialContext(ctx, hn.Cfg.RPCAddr(), opts...) } macCred, err := macaroons.NewMacaroonCredential(mac) if err != nil { return nil, fmt.Errorf("error cloning mac: %v", err) } opts = append(opts, grpc.WithPerRPCCredentials(macCred)) return grpc.DialContext(ctx, hn.Cfg.RPCAddr(), opts...) } // ConnectRPC uses the TLS certificate and admin macaroon files written by the // lnd node to create a gRPC client connection. func (hn *HarnessNode) ConnectRPC(useMacs bool) (*grpc.ClientConn, error) { // If we don't want to use macaroons, just pass nil, the next method // will handle it correctly. if !useMacs { return hn.ConnectRPCWithMacaroon(nil) } // If we should use a macaroon, always take the admin macaroon as a // default. mac, err := hn.ReadMacaroon(hn.Cfg.AdminMacPath, DefaultTimeout) if err != nil { return nil, err } return hn.ConnectRPCWithMacaroon(mac) } // SetExtraArgs assigns the ExtraArgs field for the node's configuration. The // changes will take effect on restart. func (hn *HarnessNode) SetExtraArgs(extraArgs []string) { hn.Cfg.ExtraArgs = extraArgs } // cleanup cleans up all the temporary files created by the node's process. func (hn *HarnessNode) cleanup() error { if hn.backupDbDir != "" { err := os.RemoveAll(hn.backupDbDir) if err != nil { return fmt.Errorf("unable to remove backup dir: %v", err) } } return os.RemoveAll(hn.Cfg.BaseDir) } // Stop attempts to stop the active lnd process. func (hn *HarnessNode) stop() error { // Do nothing if the process is not running. if hn.processExit == nil { return nil } // If start() failed before creating a client, we will just wait for the // child process to die. if hn.LightningClient != nil { // Don't watch for error because sometimes the RPC connection gets // closed before a response is returned. req := lnrpc.StopRequest{} ctx := context.Background() err := wait.NoError(func() error { _, err := hn.LightningClient.StopDaemon(ctx, &req) switch { case err == nil: return nil // Try again if a recovery/rescan is in progress. case strings.Contains(err.Error(), "recovery in progress"): return err default: return nil } }, DefaultTimeout) if err != nil { return err } } // Wait for lnd process and other goroutines to exit. select { case <-hn.processExit: case <-time.After(DefaultTimeout * 2): return fmt.Errorf("process did not exit") } close(hn.quit) hn.wg.Wait() hn.quit = nil hn.processExit = nil hn.LightningClient = nil hn.WalletUnlockerClient = nil hn.Watchtower = nil hn.WatchtowerClient = nil // Close any attempts at further grpc connections. if hn.conn != nil { err := hn.conn.Close() if err != nil && !strings.Contains(err.Error(), "connection is closing") { return fmt.Errorf("error attempting to stop grpc "+ "client: %v", err) } } return nil } // shutdown stops the active lnd process and cleans up any temporary directories // created along the way. func (hn *HarnessNode) shutdown() error { if err := hn.stop(); err != nil { return err } if err := hn.cleanup(); err != nil { return err } return nil } // kill kills the lnd process func (hn *HarnessNode) kill() error { return hn.cmd.Process.Kill() } type chanWatchType uint8 const ( // watchOpenChannel specifies that this is a request to watch an open // channel event. watchOpenChannel chanWatchType = iota // watchCloseChannel specifies that this is a request to watch a close // channel event. watchCloseChannel // watchPolicyUpdate specifies that this is a request to watch a policy // update event. watchPolicyUpdate ) // closeChanWatchRequest is a request to the lightningNetworkWatcher to be // notified once it's detected within the test Lightning Network, that a // channel has either been added or closed. type chanWatchRequest struct { chanPoint wire.OutPoint chanWatchType chanWatchType eventChan chan struct{} advertisingNode string policy *lnrpc.RoutingPolicy includeUnannounced bool } // getChanPointFundingTxid returns the given channel point's funding txid in // raw bytes. func getChanPointFundingTxid(chanPoint *lnrpc.ChannelPoint) ([]byte, error) { var txid []byte // A channel point's funding txid can be get/set as a byte slice or a // string. In the case it is a string, decode it. switch chanPoint.GetFundingTxid().(type) { case *lnrpc.ChannelPoint_FundingTxidBytes: txid = chanPoint.GetFundingTxidBytes() case *lnrpc.ChannelPoint_FundingTxidStr: s := chanPoint.GetFundingTxidStr() h, err := chainhash.NewHashFromStr(s) if err != nil { return nil, err } txid = h[:] } return txid, nil } func checkChanPointInGraph(ctx context.Context, node *HarnessNode, chanPoint wire.OutPoint) bool { ctxt, cancel := context.WithTimeout(ctx, DefaultTimeout) defer cancel() chanGraph, err := node.DescribeGraph(ctxt, &lnrpc.ChannelGraphRequest{}) if err != nil { return false } targetChanPoint := chanPoint.String() for _, chanEdge := range chanGraph.Edges { candidateChanPoint := chanEdge.ChanPoint if targetChanPoint == candidateChanPoint { return true } } return false } // lightningNetworkWatcher is a goroutine which is able to dispatch // notifications once it has been observed that a target channel has been // closed or opened within the network. In order to dispatch these // notifications, the GraphTopologySubscription client exposed as part of the // gRPC interface is used. func (hn *HarnessNode) lightningNetworkWatcher() { defer hn.wg.Done() graphUpdates := make(chan *lnrpc.GraphTopologyUpdate) // Start a goroutine to receive graph updates. hn.wg.Add(1) go func() { defer hn.wg.Done() err := hn.receiveTopologyClientStream(graphUpdates) if err != nil { hn.PrintErr("receive topology client stream "+ "got err:%v", err) } }() for { select { // A new graph update has just been received, so we'll examine // the current set of registered clients to see if we can // dispatch any requests. case graphUpdate := <-graphUpdates: hn.handleChannelEdgeUpdates(graphUpdate.ChannelUpdates) hn.handleClosedChannelUpdate(graphUpdate.ClosedChans) // TODO(yy): handle node updates too // A new watch request, has just arrived. We'll either be able // to dispatch immediately, or need to add the client for // processing later. case watchRequest := <-hn.chanWatchRequests: switch watchRequest.chanWatchType { case watchOpenChannel: // TODO(roasbeef): add update type also, checks // for multiple of 2 hn.handleOpenChannelWatchRequest(watchRequest) case watchCloseChannel: hn.handleCloseChannelWatchRequest(watchRequest) case watchPolicyUpdate: hn.handlePolicyUpdateWatchRequest(watchRequest) } case <-hn.quit: return } } } // WaitForNetworkChannelOpen will block until a channel with the target // outpoint is seen as being fully advertised within the network. A channel is // considered "fully advertised" once both of its directional edges has been // advertised within the test Lightning Network. func (hn *HarnessNode) WaitForNetworkChannelOpen(ctx context.Context, chanPoint *lnrpc.ChannelPoint) error { eventChan := make(chan struct{}) op, err := MakeOutpoint(chanPoint) if err != nil { return fmt.Errorf("failed to create outpoint for %v "+ "got err: %v", chanPoint, err) } hn.chanWatchRequests <- &chanWatchRequest{ chanPoint: op, eventChan: eventChan, chanWatchType: watchOpenChannel, } select { case <-eventChan: return nil case <-ctx.Done(): return fmt.Errorf("channel:%s not opened before timeout: %s", op, hn) } } // WaitForNetworkChannelClose will block until a channel with the target // outpoint is seen as closed within the network. A channel is considered // closed once a transaction spending the funding outpoint is seen within a // confirmed block. func (hn *HarnessNode) WaitForNetworkChannelClose(ctx context.Context, chanPoint *lnrpc.ChannelPoint) error { eventChan := make(chan struct{}) op, err := MakeOutpoint(chanPoint) if err != nil { return fmt.Errorf("failed to create outpoint for %v "+ "got err: %v", chanPoint, err) } hn.chanWatchRequests <- &chanWatchRequest{ chanPoint: op, eventChan: eventChan, chanWatchType: watchCloseChannel, } select { case <-eventChan: return nil case <-ctx.Done(): return fmt.Errorf("channel:%s not closed before timeout: "+ "%s", op, hn) } } // WaitForChannelPolicyUpdate will block until a channel policy with the target // outpoint and advertisingNode is seen within the network. func (hn *HarnessNode) WaitForChannelPolicyUpdate(ctx context.Context, advertisingNode string, policy *lnrpc.RoutingPolicy, chanPoint *lnrpc.ChannelPoint, includeUnannounced bool) error { eventChan := make(chan struct{}) op, err := MakeOutpoint(chanPoint) if err != nil { return fmt.Errorf("failed to create outpoint for %v"+ "got err: %v", chanPoint, err) } ticker := time.NewTicker(wait.PollInterval) defer ticker.Stop() for { select { // Send a watch request every second. case <-ticker.C: // Did the event can close in the meantime? We want to // avoid a "close of closed channel" panic since we're // re-using the same event chan for multiple requests. select { case <-eventChan: return nil default: } hn.chanWatchRequests <- &chanWatchRequest{ chanPoint: op, eventChan: eventChan, chanWatchType: watchPolicyUpdate, policy: policy, advertisingNode: advertisingNode, includeUnannounced: includeUnannounced, } case <-eventChan: return nil case <-ctx.Done(): return fmt.Errorf("channel:%s policy not updated "+ "before timeout: [%s:%v] %s", op, advertisingNode, policy, hn.String()) } } } // WaitForBlockchainSync waits for the target node to be fully synchronized with // the blockchain. If the passed context object has a set timeout, it will // continually poll until the timeout has elapsed. In the case that the chain // isn't synced before the timeout is up, this function will return an error. func (hn *HarnessNode) WaitForBlockchainSync(ctx context.Context) error { ticker := time.NewTicker(time.Millisecond * 100) defer ticker.Stop() for { resp, err := hn.GetInfo(ctx, &lnrpc.GetInfoRequest{}) if err != nil { return err } if resp.SyncedToChain { return nil } select { case <-ctx.Done(): return fmt.Errorf("timeout while waiting for " + "blockchain sync") case <-hn.quit: return nil case <-ticker.C: } } } // WaitForBalance waits until the node sees the expected confirmed/unconfirmed // balance within their wallet. func (hn *HarnessNode) WaitForBalance(expectedBalance btcutil.Amount, confirmed bool) error { ctx := context.Background() req := &lnrpc.WalletBalanceRequest{} var lastBalance btcutil.Amount doesBalanceMatch := func() bool { balance, err := hn.WalletBalance(ctx, req) if err != nil { return false } if confirmed { lastBalance = btcutil.Amount(balance.ConfirmedBalance) return btcutil.Amount(balance.ConfirmedBalance) == expectedBalance } lastBalance = btcutil.Amount(balance.UnconfirmedBalance) return btcutil.Amount(balance.UnconfirmedBalance) == expectedBalance } err := wait.Predicate(doesBalanceMatch, DefaultTimeout) if err != nil { return fmt.Errorf("balances not synced after deadline: "+ "expected %v, only have %v", expectedBalance, lastBalance) } return nil } // PrintErr prints an error to the console. func (hn *HarnessNode) PrintErr(format string, a ...interface{}) { fmt.Printf("itest error from [node:%s]: %s\n", hn.Cfg.Name, fmt.Sprintf(format, a...)) } // MakeOutpoint returns the outpoint of the channel's funding transaction. func MakeOutpoint(chanPoint *lnrpc.ChannelPoint) (wire.OutPoint, error) { fundingTxID, err := lnrpc.GetChanPointFundingTxid(chanPoint) if err != nil { return wire.OutPoint{}, err } return wire.OutPoint{ Hash: *fundingTxID, Index: chanPoint.OutputIndex, }, nil } // handleChannelEdgeUpdates takes a series of channel edge updates, extracts // the outpoints, and saves them to harness node's internal state. func (hn *HarnessNode) handleChannelEdgeUpdates( updates []*lnrpc.ChannelEdgeUpdate) { // For each new channel, we'll increment the number of // edges seen by one. for _, newChan := range updates { op, err := MakeOutpoint(newChan.ChanPoint) if err != nil { hn.PrintErr("failed to create outpoint for %v "+ "got err: %v", newChan.ChanPoint, err) return } hn.openChans[op]++ // For this new channel, if the number of edges seen is less // than two, then the channel hasn't been fully announced yet. if numEdges := hn.openChans[op]; numEdges < 2 { return } // Otherwise, we'll notify all the registered watchers and // remove the dispatched watchers. for _, eventChan := range hn.openChanWatchers[op] { close(eventChan) } delete(hn.openChanWatchers, op) // Check whether there's a routing policy update. If so, save // it to the node state. if newChan.RoutingPolicy == nil { continue } // Append the policy to the slice. node := newChan.AdvertisingNode policies := hn.policyUpdates[op.String()] // If the map[op] is nil, we need to initialize the map first. if policies == nil { policies = make(map[string][]*lnrpc.RoutingPolicy) } policies[node] = append( policies[node], newChan.RoutingPolicy, ) hn.policyUpdates[op.String()] = policies } } // handleOpenChannelWatchRequest processes a watch open channel request by // checking the number of the edges seen for a given channel point. If the // number is no less than 2 then the channel is considered open. Otherwise, we // will attempt to find it in its channel graph. If neither can be found, the // request is added to a watch request list than will be handled by // handleChannelEdgeUpdates. func (hn *HarnessNode) handleOpenChannelWatchRequest(req *chanWatchRequest) { targetChan := req.chanPoint // If this is an open request, then it can be dispatched if the number // of edges seen for the channel is at least two. if numEdges := hn.openChans[targetChan]; numEdges >= 2 { close(req.eventChan) return } // Before we add the channel to our set of open clients, we'll check to // see if the channel is already in the channel graph of the target // node. This lets us handle the case where a node has already seen a // channel before a notification has been requested, causing us to miss // it. chanFound := checkChanPointInGraph(context.Background(), hn, targetChan) if chanFound { close(req.eventChan) return } // Otherwise, we'll add this to the list of open channel watchers for // this out point. hn.openChanWatchers[targetChan] = append( hn.openChanWatchers[targetChan], req.eventChan, ) } // handleClosedChannelUpdate takes a series of closed channel updates, extracts // the outpoints, saves them to harness node's internal state, and notifies all // registered clients. func (hn *HarnessNode) handleClosedChannelUpdate( updates []*lnrpc.ClosedChannelUpdate) { // For each channel closed, we'll mark that we've detected a channel // closure while lnd was pruning the channel graph. for _, closedChan := range updates { op, err := MakeOutpoint(closedChan.ChanPoint) if err != nil { hn.PrintErr("failed to create outpoint for %v "+ "got err: %v", closedChan.ChanPoint, err) return } hn.closedChans[op] = struct{}{} // As the channel has been closed, we'll notify all register // watchers. for _, eventChan := range hn.closeChanWatchers[op] { close(eventChan) } delete(hn.closeChanWatchers, op) } } // handleCloseChannelWatchRequest processes a watch close channel request by // checking whether the given channel point can be found in the node's internal // state. If not, the request is added to a watch request list than will be // handled by handleCloseChannelWatchRequest. func (hn *HarnessNode) handleCloseChannelWatchRequest(req *chanWatchRequest) { targetChan := req.chanPoint // If this is a close request, then it can be immediately dispatched if // we've already seen a channel closure for this channel. if _, ok := hn.closedChans[targetChan]; ok { close(req.eventChan) return } // Otherwise, we'll add this to the list of close channel watchers for // this out point. hn.closeChanWatchers[targetChan] = append( hn.closeChanWatchers[targetChan], req.eventChan, ) } type topologyClient lnrpc.Lightning_SubscribeChannelGraphClient // newTopologyClient creates a topology client. func (hn *HarnessNode) newTopologyClient( ctx context.Context) (topologyClient, error) { req := &lnrpc.GraphTopologySubscription{} client, err := hn.SubscribeChannelGraph(ctx, req) if err != nil { return nil, fmt.Errorf("%s(%d): unable to create topology "+ "client: %v (%s)", hn.Name(), hn.NodeID, err, time.Now().String()) } return client, nil } // receiveTopologyClientStream initializes a topologyClient to subscribe // topology update events. Due to a race condition between the ChannelRouter // starting and us making the subscription request, it's possible for our graph // subscription to fail. In that case, we will retry the subscription until it // succeeds or fail after 10 seconds. // // NOTE: must be run as a goroutine. func (hn *HarnessNode) receiveTopologyClientStream( receiver chan *lnrpc.GraphTopologyUpdate) error { ctxb := context.Background() // Create a topology client to receive graph updates. client, err := hn.newTopologyClient(ctxb) if err != nil { return fmt.Errorf("create topologyClient failed: %v", err) } // We use the context to time out when retrying graph subscription. ctxt, cancel := context.WithTimeout(ctxb, DefaultTimeout) defer cancel() for { update, err := client.Recv() switch { case err == nil: // Good case. We will send the update to the receiver. case strings.Contains(err.Error(), "router not started"): // If the router hasn't been started, we will retry // every 200 ms until it has been started or fail // after the ctxt is timed out. select { case <-ctxt.Done(): return fmt.Errorf("graph subscription: " + "router not started before timeout") case <-time.After(wait.PollInterval): case <-hn.quit: return nil } // Re-create the topology client. client, err = hn.newTopologyClient(ctxb) if err != nil { return fmt.Errorf("create topologyClient "+ "failed: %v", err) } continue case strings.Contains(err.Error(), "EOF"): // End of subscription stream. Do nothing and quit. return nil default: // An expected error is returned, return and leave it // to be handled by the caller. return fmt.Errorf("graph subscription err: %v", err) } // Send the update or quit. select { case receiver <- update: case <-hn.quit: return nil } } } // CheckChannelPolicy checks that the policy matches the expected one. func CheckChannelPolicy(policy, expectedPolicy *lnrpc.RoutingPolicy) error { if policy.FeeBaseMsat != expectedPolicy.FeeBaseMsat { return fmt.Errorf("expected base fee %v, got %v", expectedPolicy.FeeBaseMsat, policy.FeeBaseMsat) } if policy.FeeRateMilliMsat != expectedPolicy.FeeRateMilliMsat { return fmt.Errorf("expected fee rate %v, got %v", expectedPolicy.FeeRateMilliMsat, policy.FeeRateMilliMsat) } if policy.TimeLockDelta != expectedPolicy.TimeLockDelta { return fmt.Errorf("expected time lock delta %v, got %v", expectedPolicy.TimeLockDelta, policy.TimeLockDelta) } if policy.MinHtlc != expectedPolicy.MinHtlc { return fmt.Errorf("expected min htlc %v, got %v", expectedPolicy.MinHtlc, policy.MinHtlc) } if policy.MaxHtlcMsat != expectedPolicy.MaxHtlcMsat { return fmt.Errorf("expected max htlc %v, got %v", expectedPolicy.MaxHtlcMsat, policy.MaxHtlcMsat) } if policy.Disabled != expectedPolicy.Disabled { return errors.New("edge should be disabled but isn't") } return nil } // handlePolicyUpdateWatchRequest checks that if the expected policy can be // found either in the node's interval state or describe graph response. If // found, it will signal the request by closing the event channel. Otherwise it // does nothing but returns nil. func (hn *HarnessNode) handlePolicyUpdateWatchRequest(req *chanWatchRequest) { op := req.chanPoint // Get a list of known policies for this chanPoint+advertisingNode // combination. Start searching in the node state first. policies, ok := hn.policyUpdates[op.String()][req.advertisingNode] if !ok { // If it cannot be found in the node state, try searching it // from the node's DescribeGraph. policyMap := hn.getChannelPolicies(req.includeUnannounced) policies, ok = policyMap[op.String()][req.advertisingNode] if !ok { return } } // Check if there's a matched policy. for _, policy := range policies { if CheckChannelPolicy(policy, req.policy) == nil { close(req.eventChan) return } } } // getChannelPolicies queries the channel graph and formats the policies into // the format defined in type policyUpdateMap. func (hn *HarnessNode) getChannelPolicies(include bool) policyUpdateMap { ctxt, cancel := context.WithTimeout( context.Background(), DefaultTimeout, ) defer cancel() graph, err := hn.DescribeGraph(ctxt, &lnrpc.ChannelGraphRequest{ IncludeUnannounced: include, }) if err != nil { hn.PrintErr("DescribeGraph got err: %v", err) return nil } policyUpdates := policyUpdateMap{} for _, e := range graph.Edges { policies := policyUpdates[e.ChanPoint] // If the map[op] is nil, we need to initialize the map first. if policies == nil { policies = make(map[string][]*lnrpc.RoutingPolicy) } if e.Node1Policy != nil { policies[e.Node1Pub] = append( policies[e.Node1Pub], e.Node1Policy, ) } if e.Node2Policy != nil { policies[e.Node2Pub] = append( policies[e.Node2Pub], e.Node2Policy, ) } policyUpdates[e.ChanPoint] = policies } return policyUpdates }