package channeldb import ( "bytes" "encoding/binary" "errors" "fmt" "io" "strings" "time" "github.com/lightningnetwork/lnd/feature" "github.com/lightningnetwork/lnd/htlcswitch/hop" "github.com/lightningnetwork/lnd/kvdb" "github.com/lightningnetwork/lnd/lntypes" "github.com/lightningnetwork/lnd/lnwire" "github.com/lightningnetwork/lnd/record" "github.com/lightningnetwork/lnd/tlv" ) var ( // unknownPreimage is an all-zeroes preimage that indicates that the // preimage for this invoice is not yet known. unknownPreimage lntypes.Preimage // BlankPayAddr is a sentinel payment address for legacy invoices. // Invoices with this payment address are special-cased in the insertion // logic to prevent being indexed in the payment address index, // otherwise they would cause collisions after the first insertion. BlankPayAddr [32]byte // invoiceBucket is the name of the bucket within the database that // stores all data related to invoices no matter their final state. // Within the invoice bucket, each invoice is keyed by its invoice ID // which is a monotonically increasing uint32. invoiceBucket = []byte("invoices") // paymentHashIndexBucket is the name of the sub-bucket within the // invoiceBucket which indexes all invoices by their payment hash. The // payment hash is the sha256 of the invoice's payment preimage. This // index is used to detect duplicates, and also to provide a fast path // for looking up incoming HTLCs to determine if we're able to settle // them fully. // // maps: payHash => invoiceKey invoiceIndexBucket = []byte("paymenthashes") // payAddrIndexBucket is the name of the top-level bucket that maps // payment addresses to their invoice number. This can be used // to efficiently query or update non-legacy invoices. Note that legacy // invoices will not be included in this index since they all have the // same, all-zero payment address, however all newly generated invoices // will end up in this index. // // maps: payAddr => invoiceKey payAddrIndexBucket = []byte("pay-addr-index") // setIDIndexBucket is the name of the top-level bucket that maps set // ids to their invoice number. This can be used to efficiently query or // update AMP invoice. Note that legacy or MPP invoices will not be // included in this index, since their HTLCs do not have a set id. // // maps: setID => invoiceKey setIDIndexBucket = []byte("set-id-index") // numInvoicesKey is the name of key which houses the auto-incrementing // invoice ID which is essentially used as a primary key. With each // invoice inserted, the primary key is incremented by one. This key is // stored within the invoiceIndexBucket. Within the invoiceBucket // invoices are uniquely identified by the invoice ID. numInvoicesKey = []byte("nik") // addIndexBucket is an index bucket that we'll use to create a // monotonically increasing set of add indexes. Each time we add a new // invoice, this sequence number will be incremented and then populated // within the new invoice. // // In addition to this sequence number, we map: // // addIndexNo => invoiceKey addIndexBucket = []byte("invoice-add-index") // settleIndexBucket is an index bucket that we'll use to create a // monotonically increasing integer for tracking a "settle index". Each // time an invoice is settled, this sequence number will be incremented // as populate within the newly settled invoice. // // In addition to this sequence number, we map: // // settleIndexNo => invoiceKey settleIndexBucket = []byte("invoice-settle-index") // ErrInvoiceAlreadySettled is returned when the invoice is already // settled. ErrInvoiceAlreadySettled = errors.New("invoice already settled") // ErrInvoiceAlreadyCanceled is returned when the invoice is already // canceled. ErrInvoiceAlreadyCanceled = errors.New("invoice already canceled") // ErrInvoiceAlreadyAccepted is returned when the invoice is already // accepted. ErrInvoiceAlreadyAccepted = errors.New("invoice already accepted") // ErrInvoiceStillOpen is returned when the invoice is still open. ErrInvoiceStillOpen = errors.New("invoice still open") // ErrInvoiceCannotOpen is returned when an attempt is made to move an // invoice to the open state. ErrInvoiceCannotOpen = errors.New("cannot move invoice to open") // ErrInvoiceCannotAccept is returned when an attempt is made to accept // an invoice while the invoice is not in the open state. ErrInvoiceCannotAccept = errors.New("cannot accept invoice") // ErrInvoicePreimageMismatch is returned when the preimage doesn't // match the invoice hash. ErrInvoicePreimageMismatch = errors.New("preimage does not match") // ErrHTLCPreimageMissing is returned when trying to accept/settle an // AMP HTLC but the HTLC-level preimage has not been set. ErrHTLCPreimageMissing = errors.New("AMP htlc missing preimage") // ErrHTLCPreimageMismatch is returned when trying to accept/settle an // AMP HTLC but the HTLC-level preimage does not satisfying the // HTLC-level payment hash. ErrHTLCPreimageMismatch = errors.New("htlc preimage mismatch") // ErrHTLCAlreadySettled is returned when trying to settle an invoice // but HTLC already exists in the settled state. ErrHTLCAlreadySettled = errors.New("htlc already settled") // ErrInvoiceHasHtlcs is returned when attempting to insert an invoice // that already has HTLCs. ErrInvoiceHasHtlcs = errors.New("cannot add invoice with htlcs") // ErrEmptyHTLCSet is returned when attempting to accept or settle and // HTLC set that has no HTLCs. ErrEmptyHTLCSet = errors.New("cannot settle/accept empty HTLC set") // ErrUnexpectedInvoicePreimage is returned when an invoice-level // preimage is provided when trying to settle an invoice that shouldn't // have one, e.g. an AMP invoice. ErrUnexpectedInvoicePreimage = errors.New( "unexpected invoice preimage provided on settle", ) // ErrHTLCPreimageAlreadyExists is returned when trying to set an // htlc-level preimage but one is already known. ErrHTLCPreimageAlreadyExists = errors.New( "htlc-level preimage already exists", ) ) // ErrDuplicateSetID is an error returned when attempting to adding an AMP HTLC // to an invoice, but another invoice is already indexed by the same set id. type ErrDuplicateSetID struct { setID [32]byte } // Error returns a human-readable description of ErrDuplicateSetID. func (e ErrDuplicateSetID) Error() string { return fmt.Sprintf("invoice with set_id=%x already exists", e.setID) } const ( // MaxMemoSize is maximum size of the memo field within invoices stored // in the database. MaxMemoSize = 1024 // MaxPaymentRequestSize is the max size of a payment request for // this invoice. // TODO(halseth): determine the max length payment request when field // lengths are final. MaxPaymentRequestSize = 4096 // A set of tlv type definitions used to serialize invoice htlcs to the // database. // // NOTE: A migration should be added whenever this list changes. This // prevents against the database being rolled back to an older // format where the surrounding logic might assume a different set of // fields are known. chanIDType tlv.Type = 1 htlcIDType tlv.Type = 3 amtType tlv.Type = 5 acceptHeightType tlv.Type = 7 acceptTimeType tlv.Type = 9 resolveTimeType tlv.Type = 11 expiryHeightType tlv.Type = 13 htlcStateType tlv.Type = 15 mppTotalAmtType tlv.Type = 17 htlcAMPType tlv.Type = 19 htlcHashType tlv.Type = 21 htlcPreimageType tlv.Type = 23 // A set of tlv type definitions used to serialize invoice bodiees. // // NOTE: A migration should be added whenever this list changes. This // prevents against the database being rolled back to an older // format where the surrounding logic might assume a different set of // fields are known. memoType tlv.Type = 0 payReqType tlv.Type = 1 createTimeType tlv.Type = 2 settleTimeType tlv.Type = 3 addIndexType tlv.Type = 4 settleIndexType tlv.Type = 5 preimageType tlv.Type = 6 valueType tlv.Type = 7 cltvDeltaType tlv.Type = 8 expiryType tlv.Type = 9 paymentAddrType tlv.Type = 10 featuresType tlv.Type = 11 invStateType tlv.Type = 12 amtPaidType tlv.Type = 13 hodlInvoiceType tlv.Type = 14 invoiceAmpStateType tlv.Type = 15 // A set of tlv type definitions used to serialize the invoice AMP // state along-side the main invoice body. ampStateSetIDType tlv.Type = 0 ampStateHtlcStateType tlv.Type = 1 ampStateSettleIndexType tlv.Type = 2 ampStateSettleDateType tlv.Type = 3 ampStateCircuitKeysType tlv.Type = 4 ampStateAmtPaidType tlv.Type = 5 ) // RefModifier is a modification on top of a base invoice ref. It allows the // caller to opt to skip out on HTLCs for a given payAddr, or only return the // set of specified HTLCs for a given setID. type RefModifier uint8 const ( // DefaultModifier is the base modifier that doesn't change any behavior. DefaultModifier RefModifier = iota // HtlcSetOnlyModifier can only be used with a setID based invoice ref, and // specifies that only the set of HTLCs related to that setID are to be // returned. HtlcSetOnlyModifier // HtlcSetOnlyModifier can only be used with a payAddr based invoice ref, // and specifies that the returned invoice shouldn't include any HTLCs at // all. HtlcSetBlankModifier ) // InvoiceRef is a composite identifier for invoices. Invoices can be referenced // by various combinations of payment hash and payment addr, in certain contexts // only some of these are known. An InvoiceRef and its constructors thus // encapsulate the valid combinations of query parameters that can be supplied // to LookupInvoice and UpdateInvoice. type InvoiceRef struct { // payHash is the payment hash of the target invoice. All invoices are // currently indexed by payment hash. This value will be used as a // fallback when no payment address is known. payHash *lntypes.Hash // payAddr is the payment addr of the target invoice. Newer invoices // (0.11 and up) are indexed by payment address in addition to payment // hash, but pre 0.8 invoices do not have one at all. When this value is // known it will be used as the primary identifier, falling back to // payHash if no value is known. payAddr *[32]byte // setID is the optional set id for an AMP payment. This can be used to // lookup or update the invoice knowing only this value. Queries by set // id are only used to facilitate user-facing requests, e.g. lookup, // settle or cancel an AMP invoice. The regular update flow from the // invoice registry will always query for the invoice by // payHash+payAddr. setID *[32]byte // refModifier allows an invoice ref to include or exclude specific // HTLC sets based on the payAddr or setId. refModifier RefModifier } // InvoiceRefByHash creates an InvoiceRef that queries for an invoice only by // its payment hash. func InvoiceRefByHash(payHash lntypes.Hash) InvoiceRef { return InvoiceRef{ payHash: &payHash, } } // InvoiceRefByHashAndAddr creates an InvoiceRef that first queries for an // invoice by the provided payment address, falling back to the payment hash if // the payment address is unknown. func InvoiceRefByHashAndAddr(payHash lntypes.Hash, payAddr [32]byte) InvoiceRef { return InvoiceRef{ payHash: &payHash, payAddr: &payAddr, } } // InvoiceRefByAddr creates an InvoiceRef that queries the payment addr index // for an invoice with the provided payment address. func InvoiceRefByAddr(addr [32]byte) InvoiceRef { return InvoiceRef{ payAddr: &addr, } } // InvoiceRefByAddrBlankHtlc creates an InvoiceRef that queries the payment addr index // for an invoice with the provided payment address, but excludes any of the // core HTLC information. func InvoiceRefByAddrBlankHtlc(addr [32]byte) InvoiceRef { return InvoiceRef{ payAddr: &addr, refModifier: HtlcSetBlankModifier, } } // InvoiceRefBySetID creates an InvoiceRef that queries the set id index for an // invoice with the provided setID. If the invoice is not found, the query will // not fallback to payHash or payAddr. func InvoiceRefBySetID(setID [32]byte) InvoiceRef { return InvoiceRef{ setID: &setID, } } // InvoiceRefBySetIDFiltered is similar to the InvoiceRefBySetID identifier, // but it specifies that the returned set of HTLCs should be filtered to only // include HTLCs that are part of that set. func InvoiceRefBySetIDFiltered(setID [32]byte) InvoiceRef { return InvoiceRef{ setID: &setID, refModifier: HtlcSetOnlyModifier, } } // PayHash returns the optional payment hash of the target invoice. // // NOTE: This value may be nil. func (r InvoiceRef) PayHash() *lntypes.Hash { if r.payHash != nil { hash := *r.payHash return &hash } return nil } // PayAddr returns the optional payment address of the target invoice. // // NOTE: This value may be nil. func (r InvoiceRef) PayAddr() *[32]byte { if r.payAddr != nil { addr := *r.payAddr return &addr } return nil } // SetID returns the optional set id of the target invoice. // // NOTE: This value may be nil. func (r InvoiceRef) SetID() *[32]byte { if r.setID != nil { id := *r.setID return &id } return nil } // Modifier defines the set of available modifications to the base invoice ref // look up that are available. func (r InvoiceRef) Modifier() RefModifier { return r.refModifier } // String returns a human-readable representation of an InvoiceRef. func (r InvoiceRef) String() string { var ids []string if r.payHash != nil { ids = append(ids, fmt.Sprintf("pay_hash=%v", *r.payHash)) } if r.payAddr != nil { ids = append(ids, fmt.Sprintf("pay_addr=%x", *r.payAddr)) } if r.setID != nil { ids = append(ids, fmt.Sprintf("set_id=%x", *r.setID)) } return fmt.Sprintf("(%s)", strings.Join(ids, ", ")) } // ContractState describes the state the invoice is in. type ContractState uint8 const ( // ContractOpen means the invoice has only been created. ContractOpen ContractState = 0 // ContractSettled means the htlc is settled and the invoice has been paid. ContractSettled ContractState = 1 // ContractCanceled means the invoice has been canceled. ContractCanceled ContractState = 2 // ContractAccepted means the HTLC has been accepted but not settled yet. ContractAccepted ContractState = 3 ) // String returns a human readable identifier for the ContractState type. func (c ContractState) String() string { switch c { case ContractOpen: return "Open" case ContractSettled: return "Settled" case ContractCanceled: return "Canceled" case ContractAccepted: return "Accepted" } return "Unknown" } // IsFinal returns a boolean indicating whether an invoice state is final. func (c ContractState) IsFinal() bool { return c == ContractSettled || c == ContractCanceled } // ContractTerm is a companion struct to the Invoice struct. This struct houses // the necessary conditions required before the invoice can be considered fully // settled by the payee. type ContractTerm struct { // FinalCltvDelta is the minimum required number of blocks before htlc // expiry when the invoice is accepted. FinalCltvDelta int32 // Expiry defines how long after creation this invoice should expire. Expiry time.Duration // PaymentPreimage is the preimage which is to be revealed in the // occasion that an HTLC paying to the hash of this preimage is // extended. Set to nil if the preimage isn't known yet. PaymentPreimage *lntypes.Preimage // Value is the expected amount of milli-satoshis to be paid to an HTLC // which can be satisfied by the above preimage. Value lnwire.MilliSatoshi // PaymentAddr is a randomly generated value include in the MPP record // by the sender to prevent probing of the receiver. PaymentAddr [32]byte // Features is the feature vectors advertised on the payment request. Features *lnwire.FeatureVector } // String returns a human-readable description of the prominent contract terms. func (c ContractTerm) String() string { return fmt.Sprintf("amt=%v, expiry=%v, final_cltv_delta=%v", c.Value, c.Expiry, c.FinalCltvDelta) } // SetID is the extra unique tuple item for AMP invoices. In addition to // setting a payment address, each repeated payment to an AMP invoice will also // contain a set ID as well. type SetID [32]byte // InvoiceStateAMP is a struct that associates the current state of an AMP // invoice identified by its set ID along with the set of invoices identified // by the circuit key. This allows callers to easily look up the latest state // of an AMP "sub-invoice" and also look up the invoice HLTCs themselves in the // greater HTLC map index. type InvoiceStateAMP struct { // State is the state of this sub-AMP invoice. State HtlcState // SettleIndex indicates the location in the settle index that // references this instance of InvoiceStateAMP, but only if // this value is set (non-zero), and State is HtlcStateSettled. SettleIndex uint64 // SettleDate is the date that the setID was settled. SettleDate time.Time // InvoiceKeys is the set of circuit keys that can be used to locate // the invoices for a given set ID. InvoiceKeys map[CircuitKey]struct{} // AmtPaid is the total amount that was paid in the AMP sub-invoice. // Fetching the full HTLC/invoice state allows one to extract the // custom records as well as the break down of the payment splits used // when paying. AmtPaid lnwire.MilliSatoshi } // copy makes a deep copy of the underlying InvoiceStateAMP. func (i *InvoiceStateAMP) copy() (InvoiceStateAMP, error) { result := *i // Make a copy of the InvoiceKeys map. result.InvoiceKeys = make(map[CircuitKey]struct{}) for k := range i.InvoiceKeys { result.InvoiceKeys[k] = struct{}{} } // As a safety measure, copy SettleDate. time.Time is concurrency safe // except when using any of the (un)marshalling methods. settleDateBytes, err := i.SettleDate.MarshalBinary() if err != nil { return InvoiceStateAMP{}, err } err = result.SettleDate.UnmarshalBinary(settleDateBytes) if err != nil { return InvoiceStateAMP{}, err } return result, nil } // AMPInvoiceState represents a type that stores metadata related to the set of // settled AMP "sub-invoices". type AMPInvoiceState map[SetID]InvoiceStateAMP // recordSize returns the amount of bytes this TLV record will occupy when // encoded. func (a *AMPInvoiceState) recordSize() uint64 { var ( b bytes.Buffer buf [8]byte ) // We know that encoding works since the tests pass in the build this file // is checked into, so we'll simplify things and simply encode it ourselves // then report the total amount of bytes used. if err := ampStateEncoder(&b, a, &buf); err != nil { // This should never error out, but we log it just in case it // does. log.Errorf("encoding the amp invoice state failed: %v", err) } return uint64(len(b.Bytes())) } // Invoice is a payment invoice generated by a payee in order to request // payment for some good or service. The inclusion of invoices within Lightning // creates a payment work flow for merchants very similar to that of the // existing financial system within PayPal, etc. Invoices are added to the // database when a payment is requested, then can be settled manually once the // payment is received at the upper layer. For record keeping purposes, // invoices are never deleted from the database, instead a bit is toggled // denoting the invoice has been fully settled. Within the database, all // invoices must have a unique payment hash which is generated by taking the // sha256 of the payment preimage. type Invoice struct { // Memo is an optional memo to be stored along side an invoice. The // memo may contain further details pertaining to the invoice itself, // or any other message which fits within the size constraints. Memo []byte // PaymentRequest is the encoded payment request for this invoice. For // spontaneous (keysend) payments, this field will be empty. PaymentRequest []byte // CreationDate is the exact time the invoice was created. CreationDate time.Time // SettleDate is the exact time the invoice was settled. SettleDate time.Time // Terms are the contractual payment terms of the invoice. Once all the // terms have been satisfied by the payer, then the invoice can be // considered fully fulfilled. // // TODO(roasbeef): later allow for multiple terms to fulfill the final // invoice: payment fragmentation, etc. Terms ContractTerm // AddIndex is an auto-incrementing integer that acts as a // monotonically increasing sequence number for all invoices created. // Clients can then use this field as a "checkpoint" of sorts when // implementing a streaming RPC to notify consumers of instances where // an invoice has been added before they re-connected. // // NOTE: This index starts at 1. AddIndex uint64 // SettleIndex is an auto-incrementing integer that acts as a // monotonically increasing sequence number for all settled invoices. // Clients can then use this field as a "checkpoint" of sorts when // implementing a streaming RPC to notify consumers of instances where // an invoice has been settled before they re-connected. // // NOTE: This index starts at 1. SettleIndex uint64 // State describes the state the invoice is in. This is the global // state of the invoice which may remain open even when a series of // sub-invoices for this invoice has been settled. State ContractState // AmtPaid is the final amount that we ultimately accepted for pay for // this invoice. We specify this value independently as it's possible // that the invoice originally didn't specify an amount, or the sender // overpaid. AmtPaid lnwire.MilliSatoshi // Htlcs records all htlcs that paid to this invoice. Some of these // htlcs may have been marked as canceled. Htlcs map[CircuitKey]*InvoiceHTLC // AMPState describes the state of any related sub-invoices AMP to this // greater invoice. A sub-invoice is defined by a set of HTLCs with the // same set ID that attempt to make one time or recurring payments to // this greater invoice. It's possible for a sub-invoice to be canceled // or settled, but the greater invoice still open. AMPState AMPInvoiceState // HodlInvoice indicates whether the invoice should be held in the // Accepted state or be settled right away. HodlInvoice bool } // HTLCSet returns the set of HTLCs belonging to setID and in the provided // state. Passing a nil setID will return all HTLCs in the provided state in the // case of legacy or MPP, and no HTLCs in the case of AMP. Otherwise, the // returned set will be filtered by the populated setID which is used to // retrieve AMP HTLC sets. func (i *Invoice) HTLCSet(setID *[32]byte, state HtlcState) map[CircuitKey]*InvoiceHTLC { htlcSet := make(map[CircuitKey]*InvoiceHTLC) for key, htlc := range i.Htlcs { // Only add HTLCs that are in the requested HtlcState. if htlc.State != state { continue } if !htlc.IsInHTLCSet(setID) { continue } htlcSet[key] = htlc } return htlcSet } // HTLCSetCompliment returns the set of all HTLCs not belonging to setID that // are in the target state. Passing a nil setID will return no invoices, since // all MPP HTLCs are part of the same HTLC set. func (i *Invoice) HTLCSetCompliment(setID *[32]byte, state HtlcState) map[CircuitKey]*InvoiceHTLC { htlcSet := make(map[CircuitKey]*InvoiceHTLC) for key, htlc := range i.Htlcs { // Only add HTLCs that are in the requested HtlcState. if htlc.State != state { continue } // We are constructing the compliment, so filter anything that // matches this set id. if htlc.IsInHTLCSet(setID) { continue } htlcSet[key] = htlc } return htlcSet } // HtlcState defines the states an htlc paying to an invoice can be in. type HtlcState uint8 const ( // HtlcStateAccepted indicates the htlc is locked-in, but not resolved. HtlcStateAccepted HtlcState = iota // HtlcStateCanceled indicates the htlc is canceled back to the // sender. HtlcStateCanceled // HtlcStateSettled indicates the htlc is settled. HtlcStateSettled ) // InvoiceHTLC contains details about an htlc paying to this invoice. type InvoiceHTLC struct { // Amt is the amount that is carried by this htlc. Amt lnwire.MilliSatoshi // MppTotalAmt is a field for mpp that indicates the expected total // amount. MppTotalAmt lnwire.MilliSatoshi // AcceptHeight is the block height at which the invoice registry // decided to accept this htlc as a payment to the invoice. At this // height, the invoice cltv delay must have been met. AcceptHeight uint32 // AcceptTime is the wall clock time at which the invoice registry // decided to accept the htlc. AcceptTime time.Time // ResolveTime is the wall clock time at which the invoice registry // decided to settle the htlc. ResolveTime time.Time // Expiry is the expiry height of this htlc. Expiry uint32 // State indicates the state the invoice htlc is currently in. A // canceled htlc isn't just removed from the invoice htlcs map, because // we need AcceptHeight to properly cancel the htlc back. State HtlcState // CustomRecords contains the custom key/value pairs that accompanied // the htlc. CustomRecords record.CustomSet // AMP encapsulates additional data relevant to AMP HTLCs. This includes // the AMP onion record, in addition to the HTLC's payment hash and // preimage since these are unique to each AMP HTLC, and not the invoice // as a whole. // // NOTE: This value will only be set for AMP HTLCs. AMP *InvoiceHtlcAMPData } // Copy makes a deep copy of the target InvoiceHTLC. func (h *InvoiceHTLC) Copy() *InvoiceHTLC { result := *h // Make a copy of the CustomSet map. result.CustomRecords = make(record.CustomSet) for k, v := range h.CustomRecords { result.CustomRecords[k] = v } result.AMP = h.AMP.Copy() return &result } // IsInHTLCSet returns true if this HTLC is part an HTLC set. If nil is passed, // this method returns true if this is an MPP HTLC. Otherwise, it only returns // true if the AMP HTLC's set id matches the populated setID. func (h *InvoiceHTLC) IsInHTLCSet(setID *[32]byte) bool { wantAMPSet := setID != nil isAMPHtlc := h.AMP != nil // Non-AMP HTLCs cannot be part of AMP HTLC sets, and vice versa. if wantAMPSet != isAMPHtlc { return false } // Skip AMP HTLCs that have differing set ids. if isAMPHtlc && *setID != h.AMP.Record.SetID() { return false } return true } // InvoiceHtlcAMPData is a struct hodling the additional metadata stored for // each received AMP HTLC. This includes the AMP onion record, in addition to // the HTLC's payment hash and preimage. type InvoiceHtlcAMPData struct { // AMP is a copy of the AMP record presented in the onion payload // containing the information necessary to correlate and settle a // spontaneous HTLC set. Newly accepted legacy keysend payments will // also have this field set as we automatically promote them into an AMP // payment for internal processing. Record record.AMP // Hash is an HTLC-level payment hash that is stored only for AMP // payments. This is done because an AMP HTLC will carry a different // payment hash from the invoice it might be satisfying, so we track the // payment hashes individually to able to compute whether or not the // reconstructed preimage correctly matches the HTLC's hash. Hash lntypes.Hash // Preimage is an HTLC-level preimage that satisfies the AMP HTLC's // Hash. The preimage will be be derived either from secret share // reconstruction of the shares in the AMP payload. // // NOTE: Preimage will only be present once the HTLC is in // HtlcStateSettled. Preimage *lntypes.Preimage } // Copy returns a deep copy of the InvoiceHtlcAMPData. func (d *InvoiceHtlcAMPData) Copy() *InvoiceHtlcAMPData { if d == nil { return nil } var preimage *lntypes.Preimage if d.Preimage != nil { pimg := *d.Preimage preimage = &pimg } return &InvoiceHtlcAMPData{ Record: d.Record, Hash: d.Hash, Preimage: preimage, } } // HtlcAcceptDesc describes the details of a newly accepted htlc. type HtlcAcceptDesc struct { // AcceptHeight is the block height at which this htlc was accepted. AcceptHeight int32 // Amt is the amount that is carried by this htlc. Amt lnwire.MilliSatoshi // MppTotalAmt is a field for mpp that indicates the expected total // amount. MppTotalAmt lnwire.MilliSatoshi // Expiry is the expiry height of this htlc. Expiry uint32 // CustomRecords contains the custom key/value pairs that accompanied // the htlc. CustomRecords record.CustomSet // AMP encapsulates additional data relevant to AMP HTLCs. This includes // the AMP onion record, in addition to the HTLC's payment hash and // preimage since these are unique to each AMP HTLC, and not the invoice // as a whole. // // NOTE: This value will only be set for AMP HTLCs. AMP *InvoiceHtlcAMPData } // InvoiceUpdateDesc describes the changes that should be applied to the // invoice. type InvoiceUpdateDesc struct { // State is the new state that this invoice should progress to. If nil, // the state is left unchanged. State *InvoiceStateUpdateDesc // CancelHtlcs describes the htlcs that need to be canceled. CancelHtlcs map[CircuitKey]struct{} // AddHtlcs describes the newly accepted htlcs that need to be added to // the invoice. AddHtlcs map[CircuitKey]*HtlcAcceptDesc // SetID is an optional set ID for AMP invoices that allows operations // to be more efficient by ensuring we don't need to read out the // entire HTLC set each timee an HTLC is to be cancelled. SetID *SetID } // InvoiceStateUpdateDesc describes an invoice-level state transition. type InvoiceStateUpdateDesc struct { // NewState is the new state that this invoice should progress to. NewState ContractState // Preimage must be set to the preimage when NewState is settled. Preimage *lntypes.Preimage // HTLCPreimages set the HTLC-level preimages stored for AMP HTLCs. // These are only learned when settling the invoice as a whole. Must be // set when settling an invoice with non-nil SetID. HTLCPreimages map[CircuitKey]lntypes.Preimage // SetID identifies a specific set of HTLCs destined for the same // invoice as part of a larger AMP payment. This value will be nil for // legacy or MPP payments. SetID *[32]byte } // InvoiceUpdateCallback is a callback used in the db transaction to update the // invoice. type InvoiceUpdateCallback = func(invoice *Invoice) (*InvoiceUpdateDesc, error) func validateInvoice(i *Invoice, paymentHash lntypes.Hash) error { // Avoid conflicts with all-zeroes magic value in the database. if paymentHash == unknownPreimage.Hash() { return fmt.Errorf("cannot use hash of all-zeroes preimage") } if len(i.Memo) > MaxMemoSize { return fmt.Errorf("max length a memo is %v, and invoice "+ "of length %v was provided", MaxMemoSize, len(i.Memo)) } if len(i.PaymentRequest) > MaxPaymentRequestSize { return fmt.Errorf("max length of payment request is %v, length "+ "provided was %v", MaxPaymentRequestSize, len(i.PaymentRequest)) } if i.Terms.Features == nil { return errors.New("invoice must have a feature vector") } err := feature.ValidateDeps(i.Terms.Features) if err != nil { return err } // AMP invoices and hodl invoices are allowed to have no preimage // specified. isAMP := i.Terms.Features.HasFeature( lnwire.AMPOptional, ) if i.Terms.PaymentPreimage == nil && !(i.HodlInvoice || isAMP) { return errors.New("non-hodl invoices must have a preimage") } if len(i.Htlcs) > 0 { return ErrInvoiceHasHtlcs } return nil } // IsPending returns true if the invoice is in ContractOpen state. func (i *Invoice) IsPending() bool { return i.State == ContractOpen || i.State == ContractAccepted } // AddInvoice inserts the targeted invoice into the database. If the invoice has // *any* payment hashes which already exists within the database, then the // insertion will be aborted and rejected due to the strict policy banning any // duplicate payment hashes. A side effect of this function is that it sets // AddIndex on newInvoice. func (d *DB) AddInvoice(newInvoice *Invoice, paymentHash lntypes.Hash) ( uint64, error) { if err := validateInvoice(newInvoice, paymentHash); err != nil { return 0, err } var invoiceAddIndex uint64 err := kvdb.Update(d, func(tx kvdb.RwTx) error { invoices, err := tx.CreateTopLevelBucket(invoiceBucket) if err != nil { return err } invoiceIndex, err := invoices.CreateBucketIfNotExists( invoiceIndexBucket, ) if err != nil { return err } addIndex, err := invoices.CreateBucketIfNotExists( addIndexBucket, ) if err != nil { return err } // Ensure that an invoice an identical payment hash doesn't // already exist within the index. if invoiceIndex.Get(paymentHash[:]) != nil { return ErrDuplicateInvoice } // Check that we aren't inserting an invoice with a duplicate // payment address. The all-zeros payment address is // special-cased to support legacy keysend invoices which don't // assign one. This is safe since later we also will avoid // indexing them and avoid collisions. payAddrIndex := tx.ReadWriteBucket(payAddrIndexBucket) if newInvoice.Terms.PaymentAddr != BlankPayAddr { if payAddrIndex.Get(newInvoice.Terms.PaymentAddr[:]) != nil { return ErrDuplicatePayAddr } } // If the current running payment ID counter hasn't yet been // created, then create it now. var invoiceNum uint32 invoiceCounter := invoiceIndex.Get(numInvoicesKey) if invoiceCounter == nil { var scratch [4]byte byteOrder.PutUint32(scratch[:], invoiceNum) err := invoiceIndex.Put(numInvoicesKey, scratch[:]) if err != nil { return err } } else { invoiceNum = byteOrder.Uint32(invoiceCounter) } newIndex, err := putInvoice( invoices, invoiceIndex, payAddrIndex, addIndex, newInvoice, invoiceNum, paymentHash, ) if err != nil { return err } invoiceAddIndex = newIndex return nil }, func() { invoiceAddIndex = 0 }) if err != nil { return 0, err } return invoiceAddIndex, err } // InvoicesAddedSince can be used by callers to seek into the event time series // of all the invoices added in the database. The specified sinceAddIndex // should be the highest add index that the caller knows of. This method will // return all invoices with an add index greater than the specified // sinceAddIndex. // // NOTE: The index starts from 1, as a result. We enforce that specifying a // value below the starting index value is a noop. func (d *DB) InvoicesAddedSince(sinceAddIndex uint64) ([]Invoice, error) { var newInvoices []Invoice // If an index of zero was specified, then in order to maintain // backwards compat, we won't send out any new invoices. if sinceAddIndex == 0 { return newInvoices, nil } var startIndex [8]byte byteOrder.PutUint64(startIndex[:], sinceAddIndex) err := kvdb.View(d, func(tx kvdb.RTx) error { invoices := tx.ReadBucket(invoiceBucket) if invoices == nil { return nil } addIndex := invoices.NestedReadBucket(addIndexBucket) if addIndex == nil { return nil } // We'll now run through each entry in the add index starting // at our starting index. We'll continue until we reach the // very end of the current key space. invoiceCursor := addIndex.ReadCursor() // We'll seek to the starting index, then manually advance the // cursor in order to skip the entry with the since add index. invoiceCursor.Seek(startIndex[:]) addSeqNo, invoiceKey := invoiceCursor.Next() for ; addSeqNo != nil && bytes.Compare(addSeqNo, startIndex[:]) > 0; addSeqNo, invoiceKey = invoiceCursor.Next() { // For each key found, we'll look up the actual // invoice, then accumulate it into our return value. invoice, err := fetchInvoice(invoiceKey, invoices) if err != nil { return err } newInvoices = append(newInvoices, invoice) } return nil }, func() { newInvoices = nil }) if err != nil { return nil, err } return newInvoices, nil } // LookupInvoice attempts to look up an invoice according to its 32 byte // payment hash. If an invoice which can settle the HTLC identified by the // passed payment hash isn't found, then an error is returned. Otherwise, the // full invoice is returned. Before setting the incoming HTLC, the values // SHOULD be checked to ensure the payer meets the agreed upon contractual // terms of the payment. func (d *DB) LookupInvoice(ref InvoiceRef) (Invoice, error) { var invoice Invoice err := kvdb.View(d, func(tx kvdb.RTx) error { invoices := tx.ReadBucket(invoiceBucket) if invoices == nil { return ErrNoInvoicesCreated } invoiceIndex := invoices.NestedReadBucket(invoiceIndexBucket) if invoiceIndex == nil { return ErrNoInvoicesCreated } payAddrIndex := tx.ReadBucket(payAddrIndexBucket) setIDIndex := tx.ReadBucket(setIDIndexBucket) // Retrieve the invoice number for this invoice using // the provided invoice reference. invoiceNum, err := fetchInvoiceNumByRef( invoiceIndex, payAddrIndex, setIDIndex, ref, ) if err != nil { return err } var setID *SetID switch { // If this is a payment address ref, and the blank modified was // specified, then we'll use the zero set ID to indicate that // we won't want any HTLCs returned. case ref.PayAddr() != nil && ref.Modifier() == HtlcSetBlankModifier: var zeroSetID SetID setID = &zeroSetID // If this is a set ID ref, and the htlc set only modified was // specified, then we'll pass through the specified setID so // only that will be returned. case ref.SetID() != nil && ref.Modifier() == HtlcSetOnlyModifier: setID = (*SetID)(ref.SetID()) } // An invoice was found, retrieve the remainder of the invoice // body. i, err := fetchInvoice(invoiceNum, invoices, setID) if err != nil { return err } invoice = i return nil }, func() {}) if err != nil { return invoice, err } return invoice, nil } // fetchInvoiceNumByRef retrieve the invoice number for the provided invoice // reference. The payment address will be treated as the primary key, falling // back to the payment hash if nothing is found for the payment address. An // error is returned if the invoice is not found. func fetchInvoiceNumByRef(invoiceIndex, payAddrIndex, setIDIndex kvdb.RBucket, ref InvoiceRef) ([]byte, error) { // If the set id is present, we only consult the set id index for this // invoice. This type of query is only used to facilitate user-facing // requests to lookup, settle or cancel an AMP invoice. setID := ref.SetID() if setID != nil { invoiceNumBySetID := setIDIndex.Get(setID[:]) if invoiceNumBySetID == nil { return nil, ErrInvoiceNotFound } return invoiceNumBySetID, nil } payHash := ref.PayHash() payAddr := ref.PayAddr() getInvoiceNumByHash := func() []byte { if payHash != nil { return invoiceIndex.Get(payHash[:]) } return nil } getInvoiceNumByAddr := func() []byte { if payAddr != nil { // Only allow lookups for payment address if it is not a // blank payment address, which is a special-cased value // for legacy keysend invoices. if *payAddr != BlankPayAddr { return payAddrIndex.Get(payAddr[:]) } } return nil } invoiceNumByHash := getInvoiceNumByHash() invoiceNumByAddr := getInvoiceNumByAddr() switch { // If payment address and payment hash both reference an existing // invoice, ensure they reference the _same_ invoice. case invoiceNumByAddr != nil && invoiceNumByHash != nil: if !bytes.Equal(invoiceNumByAddr, invoiceNumByHash) { return nil, ErrInvRefEquivocation } return invoiceNumByAddr, nil // Return invoices by payment addr only. // // NOTE: We constrain this lookup to only apply if the invoice ref does // not contain a payment hash. Legacy and MPP payments depend on the // payment hash index to enforce that the HTLCs payment hash matches the // payment hash for the invoice, without this check we would // inadvertently assume the invoice contains the correct preimage for // the HTLC, which we only enforce via the lookup by the invoice index. case invoiceNumByAddr != nil && payHash == nil: return invoiceNumByAddr, nil // If we were only able to reference the invoice by hash, return the // corresponding invoice number. This can happen when no payment address // was provided, or if it didn't match anything in our records. case invoiceNumByHash != nil: return invoiceNumByHash, nil // Otherwise we don't know of the target invoice. default: return nil, ErrInvoiceNotFound } } // ScanInvoices scans through all invoices and calls the passed scanFunc for // for each invoice with its respective payment hash. Additionally a reset() // closure is passed which is used to reset/initialize partial results and also // to signal if the kvdb.View transaction has been retried. func (d *DB) ScanInvoices( scanFunc func(lntypes.Hash, *Invoice) error, reset func()) error { return kvdb.View(d, func(tx kvdb.RTx) error { invoices := tx.ReadBucket(invoiceBucket) if invoices == nil { return ErrNoInvoicesCreated } invoiceIndex := invoices.NestedReadBucket(invoiceIndexBucket) if invoiceIndex == nil { // Mask the error if there's no invoice // index as that simply means there are no // invoices added yet to the DB. In this case // we simply return an empty list. return nil } return invoiceIndex.ForEach(func(k, v []byte) error { // Skip the special numInvoicesKey as that does not // point to a valid invoice. if bytes.Equal(k, numInvoicesKey) { return nil } // Skip sub-buckets. if v == nil { return nil } invoice, err := fetchInvoice(v, invoices) if err != nil { return err } var paymentHash lntypes.Hash copy(paymentHash[:], k) return scanFunc(paymentHash, &invoice) }) }, reset) } // InvoiceQuery represents a query to the invoice database. The query allows a // caller to retrieve all invoices starting from a particular add index and // limit the number of results returned. type InvoiceQuery struct { // IndexOffset is the offset within the add indices to start at. This // can be used to start the response at a particular invoice. IndexOffset uint64 // NumMaxInvoices is the maximum number of invoices that should be // starting from the add index. NumMaxInvoices uint64 // PendingOnly, if set, returns unsettled invoices starting from the // add index. PendingOnly bool // Reversed, if set, indicates that the invoices returned should start // from the IndexOffset and go backwards. Reversed bool } // InvoiceSlice is the response to a invoice query. It includes the original // query, the set of invoices that match the query, and an integer which // represents the offset index of the last item in the set of returned invoices. // This integer allows callers to resume their query using this offset in the // event that the query's response exceeds the maximum number of returnable // invoices. type InvoiceSlice struct { InvoiceQuery // Invoices is the set of invoices that matched the query above. Invoices []Invoice // FirstIndexOffset is the index of the first element in the set of // returned Invoices above. Callers can use this to resume their query // in the event that the slice has too many events to fit into a single // response. FirstIndexOffset uint64 // LastIndexOffset is the index of the last element in the set of // returned Invoices above. Callers can use this to resume their query // in the event that the slice has too many events to fit into a single // response. LastIndexOffset uint64 } // QueryInvoices allows a caller to query the invoice database for invoices // within the specified add index range. func (d *DB) QueryInvoices(q InvoiceQuery) (InvoiceSlice, error) { var resp InvoiceSlice err := kvdb.View(d, func(tx kvdb.RTx) error { // If the bucket wasn't found, then there aren't any invoices // within the database yet, so we can simply exit. invoices := tx.ReadBucket(invoiceBucket) if invoices == nil { return ErrNoInvoicesCreated } // Get the add index bucket which we will use to iterate through // our indexed invoices. invoiceAddIndex := invoices.NestedReadBucket(addIndexBucket) if invoiceAddIndex == nil { return ErrNoInvoicesCreated } // Create a paginator which reads from our add index bucket with // the parameters provided by the invoice query. paginator := newPaginator( invoiceAddIndex.ReadCursor(), q.Reversed, q.IndexOffset, q.NumMaxInvoices, ) // accumulateInvoices looks up an invoice based on the index we // are given, adds it to our set of invoices if it has the right // characteristics for our query and returns the number of items // we have added to our set of invoices. accumulateInvoices := func(_, indexValue []byte) (bool, error) { invoice, err := fetchInvoice(indexValue, invoices) if err != nil { return false, err } // Skip any settled or canceled invoices if the caller // is only interested in pending ones. if q.PendingOnly && !invoice.IsPending() { return false, nil } // At this point, we've exhausted the offset, so we'll // begin collecting invoices found within the range. resp.Invoices = append(resp.Invoices, invoice) return true, nil } // Query our paginator using accumulateInvoices to build up a // set of invoices. if err := paginator.query(accumulateInvoices); err != nil { return err } // If we iterated through the add index in reverse order, then // we'll need to reverse the slice of invoices to return them in // forward order. if q.Reversed { numInvoices := len(resp.Invoices) for i := 0; i < numInvoices/2; i++ { opposite := numInvoices - i - 1 resp.Invoices[i], resp.Invoices[opposite] = resp.Invoices[opposite], resp.Invoices[i] } } return nil }, func() { resp = InvoiceSlice{ InvoiceQuery: q, } }) if err != nil && err != ErrNoInvoicesCreated { return resp, err } // Finally, record the indexes of the first and last invoices returned // so that the caller can resume from this point later on. if len(resp.Invoices) > 0 { resp.FirstIndexOffset = resp.Invoices[0].AddIndex resp.LastIndexOffset = resp.Invoices[len(resp.Invoices)-1].AddIndex } return resp, nil } // UpdateInvoice attempts to update an invoice corresponding to the passed // payment hash. If an invoice matching the passed payment hash doesn't exist // within the database, then the action will fail with a "not found" error. // // The update is performed inside the same database transaction that fetches the // invoice and is therefore atomic. The fields to update are controlled by the // supplied callback. func (d *DB) UpdateInvoice(ref InvoiceRef, setIDHint *SetID, callback InvoiceUpdateCallback) (*Invoice, error) { var updatedInvoice *Invoice err := kvdb.Update(d, func(tx kvdb.RwTx) error { invoices, err := tx.CreateTopLevelBucket(invoiceBucket) if err != nil { return err } invoiceIndex, err := invoices.CreateBucketIfNotExists( invoiceIndexBucket, ) if err != nil { return err } settleIndex, err := invoices.CreateBucketIfNotExists( settleIndexBucket, ) if err != nil { return err } payAddrIndex := tx.ReadBucket(payAddrIndexBucket) setIDIndex := tx.ReadWriteBucket(setIDIndexBucket) // Retrieve the invoice number for this invoice using the // provided invoice reference. invoiceNum, err := fetchInvoiceNumByRef( invoiceIndex, payAddrIndex, setIDIndex, ref, ) if err != nil { return err } payHash := ref.PayHash() updatedInvoice, err = d.updateInvoice( payHash, setIDHint, invoices, settleIndex, setIDIndex, invoiceNum, callback, ) return err }, func() { updatedInvoice = nil }) return updatedInvoice, err } // InvoicesSettledSince can be used by callers to catch up any settled invoices // they missed within the settled invoice time series. We'll return all known // settled invoice that have a settle index higher than the passed // sinceSettleIndex. // // NOTE: The index starts from 1, as a result. We enforce that specifying a // value below the starting index value is a noop. func (d *DB) InvoicesSettledSince(sinceSettleIndex uint64) ([]Invoice, error) { var settledInvoices []Invoice // If an index of zero was specified, then in order to maintain // backwards compat, we won't send out any new invoices. if sinceSettleIndex == 0 { return settledInvoices, nil } var startIndex [8]byte byteOrder.PutUint64(startIndex[:], sinceSettleIndex) err := kvdb.View(d, func(tx kvdb.RTx) error { invoices := tx.ReadBucket(invoiceBucket) if invoices == nil { return nil } settleIndex := invoices.NestedReadBucket(settleIndexBucket) if settleIndex == nil { return nil } // We'll now run through each entry in the add index starting // at our starting index. We'll continue until we reach the // very end of the current key space. invoiceCursor := settleIndex.ReadCursor() // We'll seek to the starting index, then manually advance the // cursor in order to skip the entry with the since add index. invoiceCursor.Seek(startIndex[:]) seqNo, indexValue := invoiceCursor.Next() for ; seqNo != nil && bytes.Compare(seqNo, startIndex[:]) > 0; seqNo, indexValue = invoiceCursor.Next() { // Depending on the length of the index value, this may // or may not be an AMP invoice, so we'll extract the // invoice value into two components: the invoice num, // and the setID (may not be there). var ( invoiceKey [4]byte setID *SetID ) valueLen := copy(invoiceKey[:], indexValue) if len(indexValue) == invoiceSetIDKeyLen { setID = new(SetID) copy(setID[:], indexValue[valueLen:]) } // For each key found, we'll look up the actual // invoice, then accumulate it into our return value. invoice, err := fetchInvoice(invoiceKey[:], invoices, setID) if err != nil { return err } settledInvoices = append(settledInvoices, invoice) } return nil }, func() { settledInvoices = nil }) if err != nil { return nil, err } return settledInvoices, nil } func putInvoice(invoices, invoiceIndex, payAddrIndex, addIndex kvdb.RwBucket, i *Invoice, invoiceNum uint32, paymentHash lntypes.Hash) ( uint64, error) { // Create the invoice key which is just the big-endian representation // of the invoice number. var invoiceKey [4]byte byteOrder.PutUint32(invoiceKey[:], invoiceNum) // Increment the num invoice counter index so the next invoice bares // the proper ID. var scratch [4]byte invoiceCounter := invoiceNum + 1 byteOrder.PutUint32(scratch[:], invoiceCounter) if err := invoiceIndex.Put(numInvoicesKey, scratch[:]); err != nil { return 0, err } // Add the payment hash to the invoice index. This will let us quickly // identify if we can settle an incoming payment, and also to possibly // allow a single invoice to have multiple payment installations. err := invoiceIndex.Put(paymentHash[:], invoiceKey[:]) if err != nil { return 0, err } // Add the invoice to the payment address index, but only if the invoice // has a non-zero payment address. The all-zero payment address is still // in use by legacy keysend, so we special-case here to avoid // collisions. if i.Terms.PaymentAddr != BlankPayAddr { err = payAddrIndex.Put(i.Terms.PaymentAddr[:], invoiceKey[:]) if err != nil { return 0, err } } // Next, we'll obtain the next add invoice index (sequence // number), so we can properly place this invoice within this // event stream. nextAddSeqNo, err := addIndex.NextSequence() if err != nil { return 0, err } // With the next sequence obtained, we'll updating the event series in // the add index bucket to map this current add counter to the index of // this new invoice. var seqNoBytes [8]byte byteOrder.PutUint64(seqNoBytes[:], nextAddSeqNo) if err := addIndex.Put(seqNoBytes[:], invoiceKey[:]); err != nil { return 0, err } i.AddIndex = nextAddSeqNo // Finally, serialize the invoice itself to be written to the disk. var buf bytes.Buffer if err := serializeInvoice(&buf, i); err != nil { return 0, err } if err := invoices.Put(invoiceKey[:], buf.Bytes()); err != nil { return 0, err } return nextAddSeqNo, nil } // serializeInvoice serializes an invoice to a writer. // // Note: this function is in use for a migration. Before making changes that // would modify the on disk format, make a copy of the original code and store // it with the migration. func serializeInvoice(w io.Writer, i *Invoice) error { creationDateBytes, err := i.CreationDate.MarshalBinary() if err != nil { return err } settleDateBytes, err := i.SettleDate.MarshalBinary() if err != nil { return err } var fb bytes.Buffer err = i.Terms.Features.EncodeBase256(&fb) if err != nil { return err } featureBytes := fb.Bytes() preimage := [32]byte(unknownPreimage) if i.Terms.PaymentPreimage != nil { preimage = *i.Terms.PaymentPreimage if preimage == unknownPreimage { return errors.New("cannot use all-zeroes preimage") } } value := uint64(i.Terms.Value) cltvDelta := uint32(i.Terms.FinalCltvDelta) expiry := uint64(i.Terms.Expiry) amtPaid := uint64(i.AmtPaid) state := uint8(i.State) var hodlInvoice uint8 if i.HodlInvoice { hodlInvoice = 1 } tlvStream, err := tlv.NewStream( // Memo and payreq. tlv.MakePrimitiveRecord(memoType, &i.Memo), tlv.MakePrimitiveRecord(payReqType, &i.PaymentRequest), // Add/settle metadata. tlv.MakePrimitiveRecord(createTimeType, &creationDateBytes), tlv.MakePrimitiveRecord(settleTimeType, &settleDateBytes), tlv.MakePrimitiveRecord(addIndexType, &i.AddIndex), tlv.MakePrimitiveRecord(settleIndexType, &i.SettleIndex), // Terms. tlv.MakePrimitiveRecord(preimageType, &preimage), tlv.MakePrimitiveRecord(valueType, &value), tlv.MakePrimitiveRecord(cltvDeltaType, &cltvDelta), tlv.MakePrimitiveRecord(expiryType, &expiry), tlv.MakePrimitiveRecord(paymentAddrType, &i.Terms.PaymentAddr), tlv.MakePrimitiveRecord(featuresType, &featureBytes), // Invoice state. tlv.MakePrimitiveRecord(invStateType, &state), tlv.MakePrimitiveRecord(amtPaidType, &amtPaid), tlv.MakePrimitiveRecord(hodlInvoiceType, &hodlInvoice), // Invoice AMP state. tlv.MakeDynamicRecord( invoiceAmpStateType, &i.AMPState, i.AMPState.recordSize, ampStateEncoder, ampStateDecoder, ), ) if err != nil { return err } var b bytes.Buffer if err = tlvStream.Encode(&b); err != nil { return err } err = binary.Write(w, byteOrder, uint64(b.Len())) if err != nil { return err } if _, err = w.Write(b.Bytes()); err != nil { return err } // Only if this is a _non_ AMP invoice do we serialize the HTLCs // in-line with the rest of the invoice. ampInvoice := i.Terms.Features.HasFeature( lnwire.AMPOptional, ) if ampInvoice { return nil } return serializeHtlcs(w, i.Htlcs) } // serializeHtlcs serializes a map containing circuit keys and invoice htlcs to // a writer. func serializeHtlcs(w io.Writer, htlcs map[CircuitKey]*InvoiceHTLC) error { for key, htlc := range htlcs { // Encode the htlc in a tlv stream. chanID := key.ChanID.ToUint64() amt := uint64(htlc.Amt) mppTotalAmt := uint64(htlc.MppTotalAmt) acceptTime := putNanoTime(htlc.AcceptTime) resolveTime := putNanoTime(htlc.ResolveTime) state := uint8(htlc.State) var records []tlv.Record records = append(records, tlv.MakePrimitiveRecord(chanIDType, &chanID), tlv.MakePrimitiveRecord(htlcIDType, &key.HtlcID), tlv.MakePrimitiveRecord(amtType, &amt), tlv.MakePrimitiveRecord( acceptHeightType, &htlc.AcceptHeight, ), tlv.MakePrimitiveRecord(acceptTimeType, &acceptTime), tlv.MakePrimitiveRecord(resolveTimeType, &resolveTime), tlv.MakePrimitiveRecord(expiryHeightType, &htlc.Expiry), tlv.MakePrimitiveRecord(htlcStateType, &state), tlv.MakePrimitiveRecord(mppTotalAmtType, &mppTotalAmt), ) if htlc.AMP != nil { setIDRecord := tlv.MakeDynamicRecord( htlcAMPType, &htlc.AMP.Record, htlc.AMP.Record.PayloadSize, record.AMPEncoder, record.AMPDecoder, ) records = append(records, setIDRecord) hash32 := [32]byte(htlc.AMP.Hash) hashRecord := tlv.MakePrimitiveRecord( htlcHashType, &hash32, ) records = append(records, hashRecord) if htlc.AMP.Preimage != nil { preimage32 := [32]byte(*htlc.AMP.Preimage) preimageRecord := tlv.MakePrimitiveRecord( htlcPreimageType, &preimage32, ) records = append(records, preimageRecord) } } // Convert the custom records to tlv.Record types that are ready // for serialization. customRecords := tlv.MapToRecords(htlc.CustomRecords) // Append the custom records. Their ids are in the experimental // range and sorted, so there is no need to sort again. records = append(records, customRecords...) tlvStream, err := tlv.NewStream(records...) if err != nil { return err } var b bytes.Buffer if err := tlvStream.Encode(&b); err != nil { return err } // Write the length of the tlv stream followed by the stream // bytes. err = binary.Write(w, byteOrder, uint64(b.Len())) if err != nil { return err } if _, err := w.Write(b.Bytes()); err != nil { return err } } return nil } // putNanoTime returns the unix nano time for the passed timestamp. A zero-value // timestamp will be mapped to 0, since calling UnixNano in that case is // undefined. func putNanoTime(t time.Time) uint64 { if t.IsZero() { return 0 } return uint64(t.UnixNano()) } // getNanoTime returns a timestamp for the given number of nano seconds. If zero // is provided, an zero-value time stamp is returned. func getNanoTime(ns uint64) time.Time { if ns == 0 { return time.Time{} } return time.Unix(0, int64(ns)) } // fetchFilteredAmpInvoices retrieves only a select set of AMP invoices // identified by the setID value. func fetchFilteredAmpInvoices(invoiceBucket kvdb.RBucket, invoiceNum []byte, setIDs ...*SetID) (map[CircuitKey]*InvoiceHTLC, error) { htlcs := make(map[CircuitKey]*InvoiceHTLC) for _, setID := range setIDs { invoiceSetIDKey := makeInvoiceSetIDKey(invoiceNum, setID[:]) htlcSetBytes := invoiceBucket.Get(invoiceSetIDKey[:]) if htlcSetBytes == nil { // A set ID was passed in, but we don't have this // stored yet, meaning that the setID is being added // for the first time. return htlcs, ErrInvoiceNotFound } htlcSetReader := bytes.NewReader(htlcSetBytes) htlcsBySetID, err := deserializeHtlcs(htlcSetReader) if err != nil { return nil, err } for key, htlc := range htlcsBySetID { htlcs[key] = htlc } } return htlcs, nil } // forEachAMPInvoice is a helper function that attempts to iterate over each of // the HTLC sets (based on their set ID) for the given AMP invoice identified // by its invoiceNum. The callback closure is called for each key within the // prefix range. func forEachAMPInvoice(invoiceBucket kvdb.RBucket, invoiceNum []byte, callback func(key, htlcSet []byte) error) error { invoiceCursor := invoiceBucket.ReadCursor() // Seek to the first key that includes the invoice data itself. invoiceCursor.Seek(invoiceNum) // Advance to the very first key _after_ the invoice data, as this is // where we'll encounter our first HTLC (if any are present). cursorKey, htlcSet := invoiceCursor.Next() // If at this point, the cursor key doesn't match the invoice num // prefix, then we know that this HTLC doesn't have any set ID HTLCs // associated with it. if !bytes.HasPrefix(cursorKey, invoiceNum) { return nil } // Otherwise continue to iterate until we no longer match the prefix, // executing the call back at each step. for ; cursorKey != nil && bytes.HasPrefix(cursorKey, invoiceNum); cursorKey, htlcSet = invoiceCursor.Next() { err := callback(cursorKey, htlcSet) if err != nil { return err } } return nil } // fetchAmpSubInvoices attempts to use the invoiceNum as a prefix within the // AMP bucket to find all the individual HTLCs (by setID) associated with a // given invoice. If a list of set IDs are specified, then only HTLCs // associated with that setID will be retrieved. func fetchAmpSubInvoices(invoiceBucket kvdb.RBucket, invoiceNum []byte, setIDs ...*SetID) (map[CircuitKey]*InvoiceHTLC, error) { // If a set of setIDs was specified, then we can skip the cursor and // just read out exactly what we need. if len(setIDs) != 0 && setIDs[0] != nil { return fetchFilteredAmpInvoices( invoiceBucket, invoiceNum, setIDs..., ) } // Otherwise, iterate over all the htlc sets that are prefixed beside // this invoice in the main invoice bucket. htlcs := make(map[CircuitKey]*InvoiceHTLC) err := forEachAMPInvoice(invoiceBucket, invoiceNum, func(key, htlcSet []byte) error { htlcSetReader := bytes.NewReader(htlcSet) htlcsBySetID, err := deserializeHtlcs(htlcSetReader) if err != nil { return err } for key, htlc := range htlcsBySetID { htlcs[key] = htlc } return nil }) if err != nil { return nil, err } return htlcs, nil } // fetchInvoice attempts to read out the relevant state for the invoice as // specified by the invoice number. If the setID fields are set, then only the // HTLC information pertaining to those set IDs is returned. func fetchInvoice(invoiceNum []byte, invoices kvdb.RBucket, setIDs ...*SetID) (Invoice, error) { invoiceBytes := invoices.Get(invoiceNum) if invoiceBytes == nil { return Invoice{}, ErrInvoiceNotFound } invoiceReader := bytes.NewReader(invoiceBytes) invoice, err := deserializeInvoice(invoiceReader) if err != nil { return Invoice{}, err } // If this is an AMP invoice, then we'll also attempt to read out the // set of HTLCs that were paid to prior set IDs. However, we'll only do // this is the invoice didn't already have HTLCs stored in-line. invoiceIsAMP := invoice.Terms.Features.HasFeature( lnwire.AMPOptional, ) switch { case !invoiceIsAMP: return invoice, nil // For AMP invoice that already have HTLCs populated (created before // recurring invoices), then we don't need to read from the prefix // keyed section of the bucket. case invoiceIsAMP && len(invoice.Htlcs) != 0: return invoice, nil // If the "zero" setID was specified, then this means that no HTLC data // should be returned alongside of it. case invoiceIsAMP && len(setIDs) != 0 && setIDs[0] != nil && *setIDs[0] == BlankPayAddr: return invoice, nil } invoice.Htlcs, err = fetchAmpSubInvoices( invoices, invoiceNum, setIDs..., ) if err != nil { return invoice, nil } return invoice, nil } // fetchInvoiceStateAMP retrieves the state of all the relevant sub-invoice for // an AMP invoice. This methods only decode the relevant state vs the entire // invoice. func fetchInvoiceStateAMP(invoiceNum []byte, invoices kvdb.RBucket) (AMPInvoiceState, error) { // Fetch the raw invoice bytes. invoiceBytes := invoices.Get(invoiceNum) if invoiceBytes == nil { return nil, ErrInvoiceNotFound } r := bytes.NewReader(invoiceBytes) var bodyLen int64 err := binary.Read(r, byteOrder, &bodyLen) if err != nil { return nil, err } // Next, we'll make a new TLV stream that only attempts to decode the // bytes we actually need. ampState := make(AMPInvoiceState) tlvStream, err := tlv.NewStream( // Invoice AMP state. tlv.MakeDynamicRecord( invoiceAmpStateType, &State, nil, ampStateEncoder, ampStateDecoder, ), ) if err != nil { return nil, err } invoiceReader := io.LimitReader(r, bodyLen) if err = tlvStream.Decode(invoiceReader); err != nil { return nil, err } return ampState, nil } func deserializeInvoice(r io.Reader) (Invoice, error) { var ( preimageBytes [32]byte value uint64 cltvDelta uint32 expiry uint64 amtPaid uint64 state uint8 hodlInvoice uint8 creationDateBytes []byte settleDateBytes []byte featureBytes []byte ) var i Invoice i.AMPState = make(AMPInvoiceState) tlvStream, err := tlv.NewStream( // Memo and payreq. tlv.MakePrimitiveRecord(memoType, &i.Memo), tlv.MakePrimitiveRecord(payReqType, &i.PaymentRequest), // Add/settle metadata. tlv.MakePrimitiveRecord(createTimeType, &creationDateBytes), tlv.MakePrimitiveRecord(settleTimeType, &settleDateBytes), tlv.MakePrimitiveRecord(addIndexType, &i.AddIndex), tlv.MakePrimitiveRecord(settleIndexType, &i.SettleIndex), // Terms. tlv.MakePrimitiveRecord(preimageType, &preimageBytes), tlv.MakePrimitiveRecord(valueType, &value), tlv.MakePrimitiveRecord(cltvDeltaType, &cltvDelta), tlv.MakePrimitiveRecord(expiryType, &expiry), tlv.MakePrimitiveRecord(paymentAddrType, &i.Terms.PaymentAddr), tlv.MakePrimitiveRecord(featuresType, &featureBytes), // Invoice state. tlv.MakePrimitiveRecord(invStateType, &state), tlv.MakePrimitiveRecord(amtPaidType, &amtPaid), tlv.MakePrimitiveRecord(hodlInvoiceType, &hodlInvoice), // Invoice AMP state. tlv.MakeDynamicRecord( invoiceAmpStateType, &i.AMPState, nil, ampStateEncoder, ampStateDecoder, ), ) if err != nil { return i, err } var bodyLen int64 err = binary.Read(r, byteOrder, &bodyLen) if err != nil { return i, err } lr := io.LimitReader(r, bodyLen) if err = tlvStream.Decode(lr); err != nil { return i, err } preimage := lntypes.Preimage(preimageBytes) if preimage != unknownPreimage { i.Terms.PaymentPreimage = &preimage } i.Terms.Value = lnwire.MilliSatoshi(value) i.Terms.FinalCltvDelta = int32(cltvDelta) i.Terms.Expiry = time.Duration(expiry) i.AmtPaid = lnwire.MilliSatoshi(amtPaid) i.State = ContractState(state) if hodlInvoice != 0 { i.HodlInvoice = true } err = i.CreationDate.UnmarshalBinary(creationDateBytes) if err != nil { return i, err } err = i.SettleDate.UnmarshalBinary(settleDateBytes) if err != nil { return i, err } rawFeatures := lnwire.NewRawFeatureVector() err = rawFeatures.DecodeBase256( bytes.NewReader(featureBytes), len(featureBytes), ) if err != nil { return i, err } i.Terms.Features = lnwire.NewFeatureVector( rawFeatures, lnwire.Features, ) i.Htlcs, err = deserializeHtlcs(r) return i, err } func encodeCircuitKeys(w io.Writer, val interface{}, buf *[8]byte) error { if v, ok := val.(*map[CircuitKey]struct{}); ok { // We encode the set of circuit keys as a varint length prefix. // followed by a series of fixed sized uint8 integers. numKeys := uint64(len(*v)) if err := tlv.WriteVarInt(w, numKeys, buf); err != nil { return err } for key := range *v { scidInt := key.ChanID.ToUint64() if err := tlv.EUint64(w, &scidInt, buf); err != nil { return err } if err := tlv.EUint64(w, &key.HtlcID, buf); err != nil { return err } } return nil } return tlv.NewTypeForEncodingErr(val, "*map[CircuitKey]struct{}") } func decodeCircuitKeys(r io.Reader, val interface{}, buf *[8]byte, l uint64) error { if v, ok := val.(*map[CircuitKey]struct{}); ok { // First, we'll read out the varint that encodes the number of // circuit keys encoded. numKeys, err := tlv.ReadVarInt(r, buf) if err != nil { return err } // Now that we know how many keys to expect, iterate reading each // one until we're done. for i := uint64(0); i < numKeys; i++ { var ( key CircuitKey scid uint64 ) if err := tlv.DUint64(r, &scid, buf, 8); err != nil { return err } key.ChanID = lnwire.NewShortChanIDFromInt(scid) if err := tlv.DUint64(r, &key.HtlcID, buf, 8); err != nil { return err } (*v)[key] = struct{}{} } return nil } return tlv.NewTypeForDecodingErr(val, "*map[CircuitKey]struct{}", l, l) } // ampStateEncoder is a custom TLV encoder for the AMPInvoiceState record. func ampStateEncoder(w io.Writer, val interface{}, buf *[8]byte) error { if v, ok := val.(*AMPInvoiceState); ok { // We'll encode the AMP state as a series of KV pairs on the // wire with a length prefix. numRecords := uint64(len(*v)) // First, we'll write out the number of records as a var int. if err := tlv.WriteVarInt(w, numRecords, buf); err != nil { return err } // With that written out, we'll now encode the entries // themselves as a sub-TLV record, which includes its _own_ // inner length prefix. for setID, ampState := range *v { setID := [32]byte(setID) ampState := ampState htlcState := uint8(ampState.State) settleDateBytes, err := ampState.SettleDate.MarshalBinary() if err != nil { return err } amtPaid := uint64(ampState.AmtPaid) var ampStateTlvBytes bytes.Buffer tlvStream, err := tlv.NewStream( tlv.MakePrimitiveRecord( ampStateSetIDType, &setID, ), tlv.MakePrimitiveRecord( ampStateHtlcStateType, &htlcState, ), tlv.MakePrimitiveRecord( ampStateSettleIndexType, &State.SettleIndex, ), tlv.MakePrimitiveRecord( ampStateSettleDateType, &settleDateBytes, ), tlv.MakeDynamicRecord( ampStateCircuitKeysType, &State.InvoiceKeys, func() uint64 { // The record takes 8 bytes to encode the // set of circuits, 8 bytes for the scid // for the key, and 8 bytes for the HTLC // index. numKeys := uint64(len(ampState.InvoiceKeys)) return tlv.VarIntSize(numKeys) + (numKeys * 16) }, encodeCircuitKeys, decodeCircuitKeys, ), tlv.MakePrimitiveRecord( ampStateAmtPaidType, &amtPaid, ), ) if err != nil { return err } if err := tlvStream.Encode(&StateTlvBytes); err != nil { return err } // We encode the record with a varint length followed by // the _raw_ TLV bytes. tlvLen := uint64(len(ampStateTlvBytes.Bytes())) if err := tlv.WriteVarInt(w, tlvLen, buf); err != nil { return err } if _, err := w.Write(ampStateTlvBytes.Bytes()); err != nil { return err } } return nil } return tlv.NewTypeForEncodingErr(val, "channeldb.AMPInvoiceState") } // ampStateDecoder is a custom TLV decoder for the AMPInvoiceState record. func ampStateDecoder(r io.Reader, val interface{}, buf *[8]byte, l uint64) error { if v, ok := val.(*AMPInvoiceState); ok { // First, we'll decode the varint that encodes how many set IDs // are encoded within the greater map. numRecords, err := tlv.ReadVarInt(r, buf) if err != nil { return err } // Now that we know how many records we'll need to read, we can // iterate and read them all out in series. for i := uint64(0); i < numRecords; i++ { // Read out the varint that encodes the size of this inner // TLV record stateRecordSize, err := tlv.ReadVarInt(r, buf) if err != nil { return err } // Using this information, we'll create a new limited // reader that'll return an EOF once the end has been // reached so the stream stops consuming bytes. innerTlvReader := io.LimitedReader{ R: r, N: int64(stateRecordSize), } var ( setID [32]byte htlcState uint8 settleIndex uint64 settleDateBytes []byte invoiceKeys = make(map[CircuitKey]struct{}) amtPaid uint64 ) tlvStream, err := tlv.NewStream( tlv.MakePrimitiveRecord( ampStateSetIDType, &setID, ), tlv.MakePrimitiveRecord( ampStateHtlcStateType, &htlcState, ), tlv.MakePrimitiveRecord( ampStateSettleIndexType, &settleIndex, ), tlv.MakePrimitiveRecord( ampStateSettleDateType, &settleDateBytes, ), tlv.MakeDynamicRecord( ampStateCircuitKeysType, &invoiceKeys, nil, encodeCircuitKeys, decodeCircuitKeys, ), tlv.MakePrimitiveRecord( ampStateAmtPaidType, &amtPaid, ), ) if err != nil { return err } if err := tlvStream.Decode(&innerTlvReader); err != nil { return err } var settleDate time.Time err = settleDate.UnmarshalBinary(settleDateBytes) if err != nil { return err } (*v)[setID] = InvoiceStateAMP{ State: HtlcState(htlcState), SettleIndex: settleIndex, SettleDate: settleDate, InvoiceKeys: invoiceKeys, AmtPaid: lnwire.MilliSatoshi(amtPaid), } } return nil } return tlv.NewTypeForDecodingErr( val, "channeldb.AMPInvoiceState", l, l, ) } // deserializeHtlcs reads a list of invoice htlcs from a reader and returns it // as a map. func deserializeHtlcs(r io.Reader) (map[CircuitKey]*InvoiceHTLC, error) { htlcs := make(map[CircuitKey]*InvoiceHTLC) for { // Read the length of the tlv stream for this htlc. var streamLen int64 if err := binary.Read(r, byteOrder, &streamLen); err != nil { if err == io.EOF { break } return nil, err } // Limit the reader so that it stops at the end of this htlc's // stream. htlcReader := io.LimitReader(r, streamLen) // Decode the contents into the htlc fields. var ( htlc InvoiceHTLC key CircuitKey chanID uint64 state uint8 acceptTime, resolveTime uint64 amt, mppTotalAmt uint64 amp = &record.AMP{} hash32 = &[32]byte{} preimage32 = &[32]byte{} ) tlvStream, err := tlv.NewStream( tlv.MakePrimitiveRecord(chanIDType, &chanID), tlv.MakePrimitiveRecord(htlcIDType, &key.HtlcID), tlv.MakePrimitiveRecord(amtType, &amt), tlv.MakePrimitiveRecord( acceptHeightType, &htlc.AcceptHeight, ), tlv.MakePrimitiveRecord(acceptTimeType, &acceptTime), tlv.MakePrimitiveRecord(resolveTimeType, &resolveTime), tlv.MakePrimitiveRecord(expiryHeightType, &htlc.Expiry), tlv.MakePrimitiveRecord(htlcStateType, &state), tlv.MakePrimitiveRecord(mppTotalAmtType, &mppTotalAmt), tlv.MakeDynamicRecord( htlcAMPType, amp, amp.PayloadSize, record.AMPEncoder, record.AMPDecoder, ), tlv.MakePrimitiveRecord(htlcHashType, hash32), tlv.MakePrimitiveRecord(htlcPreimageType, preimage32), ) if err != nil { return nil, err } parsedTypes, err := tlvStream.DecodeWithParsedTypes(htlcReader) if err != nil { return nil, err } if _, ok := parsedTypes[htlcAMPType]; !ok { amp = nil } var preimage *lntypes.Preimage if _, ok := parsedTypes[htlcPreimageType]; ok { pimg := lntypes.Preimage(*preimage32) preimage = &pimg } var hash *lntypes.Hash if _, ok := parsedTypes[htlcHashType]; ok { h := lntypes.Hash(*hash32) hash = &h } key.ChanID = lnwire.NewShortChanIDFromInt(chanID) htlc.AcceptTime = getNanoTime(acceptTime) htlc.ResolveTime = getNanoTime(resolveTime) htlc.State = HtlcState(state) htlc.Amt = lnwire.MilliSatoshi(amt) htlc.MppTotalAmt = lnwire.MilliSatoshi(mppTotalAmt) if amp != nil && hash != nil { htlc.AMP = &InvoiceHtlcAMPData{ Record: *amp, Hash: *hash, Preimage: preimage, } } // Reconstruct the custom records fields from the parsed types // map return from the tlv parser. htlc.CustomRecords = hop.NewCustomRecords(parsedTypes) htlcs[key] = &htlc } return htlcs, nil } // copySlice allocates a new slice and copies the source into it. func copySlice(src []byte) []byte { dest := make([]byte, len(src)) copy(dest, src) return dest } // copyInvoice makes a deep copy of the supplied invoice. func copyInvoice(src *Invoice) (*Invoice, error) { dest := Invoice{ Memo: copySlice(src.Memo), PaymentRequest: copySlice(src.PaymentRequest), CreationDate: src.CreationDate, SettleDate: src.SettleDate, Terms: src.Terms, AddIndex: src.AddIndex, SettleIndex: src.SettleIndex, State: src.State, AmtPaid: src.AmtPaid, Htlcs: make( map[CircuitKey]*InvoiceHTLC, len(src.Htlcs), ), AMPState: make(map[SetID]InvoiceStateAMP), HodlInvoice: src.HodlInvoice, } dest.Terms.Features = src.Terms.Features.Clone() if src.Terms.PaymentPreimage != nil { preimage := *src.Terms.PaymentPreimage dest.Terms.PaymentPreimage = &preimage } for k, v := range src.Htlcs { dest.Htlcs[k] = v.Copy() } // Lastly, copy the amp invoice state. for k, v := range src.AMPState { ampInvState, err := v.copy() if err != nil { return nil, err } dest.AMPState[k] = ampInvState } return &dest, nil } // invoiceSetIDKeyLen is the length of the key that's used to store the // individual HTLCs prefixed by their ID along side the main invoice within the // invoiceBytes. We use 4 bytes for the invoice number, and 32 bytes for the // set ID. const invoiceSetIDKeyLen = 4 + 32 // makeInvoiceSetIDKey returns the prefix key, based on the set ID and invoice // number where the HTLCs for this setID will be stored udner. func makeInvoiceSetIDKey(invoiceNum, setID []byte) [invoiceSetIDKeyLen]byte { // Construct the prefix key we need to obtain the invoice information: // invoiceNum || setID. var invoiceSetIDKey [invoiceSetIDKeyLen]byte copy(invoiceSetIDKey[:], invoiceNum) copy(invoiceSetIDKey[len(invoiceNum):], setID) return invoiceSetIDKey } // updateAMPInvoices updates the set of AMP invoices in-place. For AMP, rather // then continually write the invoices to the end of the invoice value, we // instead write the invoices into a new key preifx that follows the main // invoice number. This ensures that we don't need to continually decode a // potentially massive HTLC set, and also allows us to quickly find the HLTCs // associated with a particular HTLC set. func updateAMPInvoices(invoiceBucket kvdb.RwBucket, invoiceNum []byte, htlcsToUpdate map[SetID]map[CircuitKey]*InvoiceHTLC) error { for setID, htlcSet := range htlcsToUpdate { // First write out the set of HTLCs including all the relevant TLV // values. var b bytes.Buffer if err := serializeHtlcs(&b, htlcSet); err != nil { return err } // Next store each HTLC in-line, using a prefix based off the // invoice number. invoiceSetIDKey := makeInvoiceSetIDKey(invoiceNum, setID[:]) err := invoiceBucket.Put(invoiceSetIDKey[:], b.Bytes()) if err != nil { return err } } return nil } // updateHtlcsAmp takes an invoice, and a new HTLC to be added (along with its // set ID), and update sthe internal AMP state of an invoice, and also tallies // the set of HTLCs to be updated on disk. func updateHtlcsAmp(invoice *Invoice, updateMap map[SetID]map[CircuitKey]*InvoiceHTLC, htlc *InvoiceHTLC, setID SetID, circuitKey CircuitKey) { ampState, ok := invoice.AMPState[setID] if !ok { // If an entry for this set ID doesn't already exist, then // we'll need to create it. ampState = InvoiceStateAMP{ State: HtlcStateAccepted, InvoiceKeys: make(map[CircuitKey]struct{}), } } ampState.AmtPaid += htlc.Amt ampState.InvoiceKeys[circuitKey] = struct{}{} // Due to the way maps work, we need to read out the value, update it, // then re-assign it into the map. invoice.AMPState[setID] = ampState // Now that we've updated the invoice state, we'll inform the caller of // the _neitre_ HTLC set they need to write for this new set ID. if _, ok := updateMap[setID]; !ok { // If we're just now creating the HTLCs for this set then we'll // also pull in the existing HTLCs are part of this set, so we // can write them all to disk together (same value) updateMap[setID] = invoice.HTLCSet( (*[32]byte)(&setID), HtlcStateAccepted, ) } updateMap[setID][circuitKey] = htlc } // cancelHtlcsAmp processes a cancellation of an HTLC that belongs to an AMP // HTLC set. We'll need to update the meta data in the main invoice, and also // apply the new update to the update MAP, since all the HTLCs for a given HTLC // set need to be written in-line with each other. func cancelHtlcsAmp(invoice *Invoice, updateMap map[SetID]map[CircuitKey]*InvoiceHTLC, htlc *InvoiceHTLC, circuitKey CircuitKey) { setID := htlc.AMP.Record.SetID() // First, we'll update the state of the entire HTLC set to cancelled. ampState := invoice.AMPState[setID] ampState.State = HtlcStateCanceled ampState.InvoiceKeys[circuitKey] = struct{}{} ampState.AmtPaid -= htlc.Amt // With the state update,d we'll set the new value so the struct // changes are propagated. invoice.AMPState[setID] = ampState if _, ok := updateMap[setID]; !ok { // Only HTLCs in the accepted state, can be cancelled, but we // also want to merge that with HTLCs that may be canceled as // well since it can be cancelled one by one. updateMap[setID] = invoice.HTLCSet(&setID, HtlcStateAccepted) cancelledHtlcs := invoice.HTLCSet(&setID, HtlcStateCanceled) for htlcKey, htlc := range cancelledHtlcs { updateMap[setID][htlcKey] = htlc } } // Finally, include the newly cancelled HTLC in the set of HTLCs we // need to cancel. updateMap[setID][circuitKey] = htlc // We'll only decrement the total amount paid if the invoice was // already in the accepted state. if invoice.AmtPaid != 0 { invoice.AmtPaid -= htlc.Amt } } // settleHtlcsAmp processes a new settle operation on an HTLC set for an AMP // invoice. We'll update some meta data in the main invoice, and also signal // that this HTLC set needs to be re-written back to disk. func settleHtlcsAmp(invoice *Invoice, settledSetIDs map[SetID]struct{}, updateMap map[SetID]map[CircuitKey]*InvoiceHTLC, htlc *InvoiceHTLC, circuitKey CircuitKey) { // First, add the set ID to the set that was settled in this invoice // update. We'll use this later to update the settle index. setID := htlc.AMP.Record.SetID() settledSetIDs[setID] = struct{}{} // Next update the main AMP meta-data to indicate that this HTLC set // has been fully settled. ampState := invoice.AMPState[setID] ampState.State = HtlcStateSettled ampState.InvoiceKeys[circuitKey] = struct{}{} invoice.AMPState[setID] = ampState // Finally, we'll add this to the set of HTLCs that need to be updated. if _, ok := updateMap[setID]; !ok { updateMap[setID] = make(map[CircuitKey]*InvoiceHTLC) } updateMap[setID][circuitKey] = htlc } // updateInvoice fetches the invoice, obtains the update descriptor from the // callback and applies the updates in a single db transaction. func (d *DB) updateInvoice(hash *lntypes.Hash, refSetID *SetID, invoices, settleIndex, setIDIndex kvdb.RwBucket, invoiceNum []byte, callback InvoiceUpdateCallback) (*Invoice, error) { // If the set ID is non-nil, then we'll use that to filter out the // HTLCs for AMP invoice so we don't need to read them all out to // satisfy the invoice callback below. If it's nil, then we pass in the // zero set ID which means no HTLCs will be read out. var invSetID SetID if refSetID != nil { invSetID = *refSetID } invoice, err := fetchInvoice(invoiceNum, invoices, &invSetID) if err != nil { return nil, err } // Create deep copy to prevent any accidental modification in the // callback. invoiceCopy, err := copyInvoice(&invoice) if err != nil { return nil, err } // Call the callback and obtain the update descriptor. update, err := callback(invoiceCopy) if err != nil { return &invoice, err } // If there is nothing to update, return early. if update == nil { return &invoice, nil } var ( newState = invoice.State setID *[32]byte ) // We can either get the set ID from the main state update (if the // state is changing), or via the hint passed in returned by the update // call back. if update.State != nil { setID = update.State.SetID newState = update.State.NewState } else if update.SetID != nil { // When we go to cancel HTLCs, there's no new state, but the // set of HTLCs to be cancelled along with the setID affected // will be passed in. setID = (*[32]byte)(update.SetID) } now := d.clock.Now() invoiceIsAMP := invoiceCopy.Terms.Features.HasFeature( lnwire.AMPOptional, ) // Process add actions from update descriptor. htlcsAmpUpdate := make(map[SetID]map[CircuitKey]*InvoiceHTLC) for key, htlcUpdate := range update.AddHtlcs { if _, exists := invoice.Htlcs[key]; exists { return nil, fmt.Errorf("duplicate add of htlc %v", key) } // Force caller to supply htlc without custom records in a // consistent way. if htlcUpdate.CustomRecords == nil { return nil, errors.New("nil custom records map") } // If a newly added HTLC has an associated set id, use it to // index this invoice in the set id index. An error is returned // if we find the index already points to a different invoice. var setID [32]byte if htlcUpdate.AMP != nil { setID = htlcUpdate.AMP.Record.SetID() setIDInvNum := setIDIndex.Get(setID[:]) if setIDInvNum == nil { err = setIDIndex.Put(setID[:], invoiceNum) if err != nil { return nil, err } } else if !bytes.Equal(setIDInvNum, invoiceNum) { return nil, ErrDuplicateSetID{setID: setID} } } htlc := &InvoiceHTLC{ Amt: htlcUpdate.Amt, MppTotalAmt: htlcUpdate.MppTotalAmt, Expiry: htlcUpdate.Expiry, AcceptHeight: uint32(htlcUpdate.AcceptHeight), AcceptTime: now, State: HtlcStateAccepted, CustomRecords: htlcUpdate.CustomRecords, AMP: htlcUpdate.AMP.Copy(), } invoice.Htlcs[key] = htlc // Collect the set of new HTLCs so we can write them properly // below, but only if this is an AMP invoice. if invoiceIsAMP { updateHtlcsAmp( &invoice, htlcsAmpUpdate, htlc, setID, key, ) } } // Process cancel actions from update descriptor. cancelHtlcs := update.CancelHtlcs for key, htlc := range invoice.Htlcs { htlc := htlc // Check whether this htlc needs to be canceled. If it does, // update the htlc state to Canceled. _, cancel := cancelHtlcs[key] if !cancel { continue } // Consistency check to verify that there is no overlap between // the add and cancel sets. if _, added := update.AddHtlcs[key]; added { return nil, fmt.Errorf("added htlc %v canceled", key) } err := cancelSingleHtlc(now, htlc, newState) if err != nil { return nil, err } // Delete processed cancel action, so that we can check later // that there are no actions left. delete(cancelHtlcs, key) // Tally this into the set of HTLCs that need to be updated on // disk, but once again, only if this is an AMP invoice. if invoiceIsAMP { cancelHtlcsAmp( &invoice, htlcsAmpUpdate, htlc, key, ) } } // Verify that we didn't get an action for htlcs that are not present on // the invoice. if len(cancelHtlcs) > 0 { return nil, errors.New("cancel action on non-existent htlc(s)") } // At this point, the set of accepted HTLCs should be fully // populated with added HTLCs or removed of canceled ones. Update // invoice state if the update descriptor indicates an invoice state // change, which depends on having an accurate view of the accepted // HTLCs. if update.State != nil { newState, err := updateInvoiceState( &invoice, hash, *update.State, ) if err != nil { return nil, err } // If this isn't an AMP invoice, then we'll go ahead and update // the invoice state directly here. For AMP invoices, we // instead will keep the top-level invoice open, and instead // update the state of each _htlc set_ instead. However, we'll // allow the invoice to transition to the cancelled state // regardless. if !invoiceIsAMP || *newState == ContractCanceled { invoice.State = *newState } // If this is a non-AMP invoice, then the state can eventually // go to ContractSettled, so we pass in nil value as part of // setSettleMetaFields. if !invoiceIsAMP && update.State.NewState == ContractSettled { err := setSettleMetaFields( settleIndex, invoiceNum, &invoice, now, nil, ) if err != nil { return nil, err } } } // The set of HTLC pre-images will only be set if we were actually able // to reconstruct all the AMP pre-images. var settleEligibleAMP bool if update.State != nil { settleEligibleAMP = len(update.State.HTLCPreimages) != 0 } // With any invoice level state transitions recorded, we'll now // finalize the process by updating the state transitions for // individual HTLCs var ( settledSetIDs = make(map[SetID]struct{}) amtPaid lnwire.MilliSatoshi ) for key, htlc := range invoice.Htlcs { // Set the HTLC preimage for any AMP HTLCs. if setID != nil && update.State != nil { preimage, ok := update.State.HTLCPreimages[key] switch { // If we don't already have a preimage for this HTLC, we // can set it now. case ok && htlc.AMP.Preimage == nil: htlc.AMP.Preimage = &preimage // Otherwise, prevent over-writing an existing // preimage. Ignore the case where the preimage is // identical. case ok && *htlc.AMP.Preimage != preimage: return nil, ErrHTLCPreimageAlreadyExists } } // The invoice state may have changed and this could have // implications for the states of the individual htlcs. Align // the htlc state with the current invoice state. // // If we have all the pre-images for an AMP invoice, then we'll // act as if we're able to settle the entire invoice. We need // to do this since it's possible for us to settle AMP invoices // while the contract state (on disk) is still in the accept // state. htlcContextState := invoice.State if settleEligibleAMP { htlcContextState = ContractSettled } htlcSettled, err := updateHtlc( now, htlc, htlcContextState, setID, ) if err != nil { return nil, err } // If the HTLC has being settled for the first time, and this // is an AMP invoice, then we'll need to update some additional // meta data state. if htlcSettled && invoiceIsAMP { settleHtlcsAmp( &invoice, settledSetIDs, htlcsAmpUpdate, htlc, key, ) } invoiceStateReady := (htlc.State == HtlcStateAccepted || htlc.State == HtlcStateSettled) if !invoiceIsAMP { // Update the running amount paid to this invoice. We // don't include accepted htlcs when the invoice is // still open. if invoice.State != ContractOpen && invoiceStateReady { amtPaid += htlc.Amt } } else { // For AMP invoices, since we won't always be reading // out the total invoice set each time, we'll instead // accumulate newly added invoices to the total amount // paid. if _, ok := update.AddHtlcs[key]; !ok { continue } // Update the running amount paid to this invoice. AMP // invoices never go to the settled state, so if it's // open, then we tally the HTLC. if invoice.State == ContractOpen && invoiceStateReady { amtPaid += htlc.Amt } } } // For non-AMP invoices we recalculate the amount paid from scratch // each time, while for AMP invoices, we'll accumulate only based on // newly added HTLCs. if !invoiceIsAMP { invoice.AmtPaid = amtPaid } else { invoice.AmtPaid += amtPaid } // As we don't update the settle index above for AMP invoices, we'll do // it here for each sub-AMP invoice that was settled. for settledSetID := range settledSetIDs { settledSetID := settledSetID err := setSettleMetaFields( settleIndex, invoiceNum, &invoice, now, &settledSetID, ) if err != nil { return nil, err } } // Reserialize and update invoice. var buf bytes.Buffer if err := serializeInvoice(&buf, &invoice); err != nil { return nil, err } if err := invoices.Put(invoiceNum[:], buf.Bytes()); err != nil { return nil, err } // If this is an AMP invoice, then we'll actually store the rest of the // HTLCs in-line with the invoice, using the invoice ID as a prefix, // and the AMP key as a suffix: invoiceNum || setID. if invoiceIsAMP { err := updateAMPInvoices(invoices, invoiceNum, htlcsAmpUpdate) if err != nil { return nil, err } } return &invoice, nil } // updateInvoiceState validates and processes an invoice state update. The new // state to transition to is returned, so the caller is able to select exactly // how the invoice state is updated. func updateInvoiceState(invoice *Invoice, hash *lntypes.Hash, update InvoiceStateUpdateDesc) (*ContractState, error) { // Returning to open is never allowed from any state. if update.NewState == ContractOpen { return nil, ErrInvoiceCannotOpen } switch invoice.State { // Once a contract is accepted, we can only transition to settled or // canceled. Forbid transitioning back into this state. Otherwise this // state is identical to ContractOpen, so we fallthrough to apply the // same checks that we apply to open invoices. case ContractAccepted: if update.NewState == ContractAccepted { return nil, ErrInvoiceCannotAccept } fallthrough // If a contract is open, permit a state transition to accepted, settled // or canceled. The only restriction is on transitioning to settled // where we ensure the preimage is valid. case ContractOpen: if update.NewState == ContractCanceled { return &update.NewState, nil } // Sanity check that the user isn't trying to settle or accept a // non-existent HTLC set. if len(invoice.HTLCSet(update.SetID, HtlcStateAccepted)) == 0 { return nil, ErrEmptyHTLCSet } // For AMP invoices, there are no invoice-level preimage checks. // However, we still sanity check that we aren't trying to // settle an AMP invoice with a preimage. if update.SetID != nil { if update.Preimage != nil { return nil, errors.New("AMP set cannot have " + "preimage") } return &update.NewState, nil } switch { // If an invoice-level preimage was supplied, but the InvoiceRef // doesn't specify a hash (e.g. AMP invoices) we fail. case update.Preimage != nil && hash == nil: return nil, ErrUnexpectedInvoicePreimage // Validate the supplied preimage for non-AMP invoices. case update.Preimage != nil: if update.Preimage.Hash() != *hash { return nil, ErrInvoicePreimageMismatch } invoice.Terms.PaymentPreimage = update.Preimage // Permit non-AMP invoices to be accepted without knowing the // preimage. When trying to settle we'll have to pass through // the above check in order to not hit the one below. case update.NewState == ContractAccepted: // Fail if we still don't have a preimage when transitioning to // settle the non-AMP invoice. case update.NewState == ContractSettled && invoice.Terms.PaymentPreimage == nil: return nil, errors.New("unknown preimage") } return &update.NewState, nil // Once settled, we are in a terminal state. case ContractSettled: return nil, ErrInvoiceAlreadySettled // Once canceled, we are in a terminal state. case ContractCanceled: return nil, ErrInvoiceAlreadyCanceled default: return nil, errors.New("unknown state transition") } } // cancelSingleHtlc validates cancellation of a single htlc and update its state. func cancelSingleHtlc(resolveTime time.Time, htlc *InvoiceHTLC, invState ContractState) error { // It is only possible to cancel individual htlcs on an open invoice. if invState != ContractOpen { return fmt.Errorf("htlc canceled on invoice in "+ "state %v", invState) } // It is only possible if the htlc is still pending. if htlc.State != HtlcStateAccepted { return fmt.Errorf("htlc canceled in state %v", htlc.State) } htlc.State = HtlcStateCanceled htlc.ResolveTime = resolveTime return nil } // updateHtlc aligns the state of an htlc with the given invoice state. A // boolean is returned if the HTLC was settled. func updateHtlc(resolveTime time.Time, htlc *InvoiceHTLC, invState ContractState, setID *[32]byte) (bool, error) { trySettle := func(persist bool) (bool, error) { if htlc.State != HtlcStateAccepted { return false, nil } // Settle the HTLC if it matches the settled set id. If // there're other HTLCs with distinct setIDs, then we'll leave // them, as they may eventually be settled as we permit // multiple settles to a single pay_addr for AMP. var htlcState HtlcState if htlc.IsInHTLCSet(setID) { // Non-AMP HTLCs can be settled immediately since we // already know the preimage is valid due to checks at // the invoice level. For AMP HTLCs, verify that the // per-HTLC preimage-hash pair is valid. switch { // Non-AMP HTLCs can be settle immediately since we // already know the preimage is valid due to checks at // the invoice level. case setID == nil: // At this point, the setID is non-nil, meaning this is // an AMP HTLC. We know that htlc.AMP cannot be nil, // otherwise IsInHTLCSet would have returned false. // // Fail if an accepted AMP HTLC has no preimage. case htlc.AMP.Preimage == nil: return false, ErrHTLCPreimageMissing // Fail if the accepted AMP HTLC has an invalid // preimage. case !htlc.AMP.Preimage.Matches(htlc.AMP.Hash): return false, ErrHTLCPreimageMismatch } htlcState = HtlcStateSettled } // Only persist the changes if the invoice is moving to the // settled state, and we're actually updating the state to // settled. if persist && htlcState == HtlcStateSettled { htlc.State = htlcState htlc.ResolveTime = resolveTime } return persist && htlcState == HtlcStateSettled, nil } if invState == ContractSettled { // Check that we can settle the HTLCs. For legacy and MPP HTLCs // this will be a NOP, but for AMP HTLCs this asserts that we // have a valid hash/preimage pair. Passing true permits the // method to update the HTLC to HtlcStateSettled. return trySettle(true) } // We should never find a settled HTLC on an invoice that isn't in // ContractSettled. if htlc.State == HtlcStateSettled { return false, ErrHTLCAlreadySettled } switch invState { case ContractCanceled: if htlc.State == HtlcStateAccepted { htlc.State = HtlcStateCanceled htlc.ResolveTime = resolveTime } return false, nil // TODO(roasbeef): never fully passed thru now? case ContractAccepted: // Check that we can settle the HTLCs. For legacy and MPP HTLCs // this will be a NOP, but for AMP HTLCs this asserts that we // have a valid hash/preimage pair. Passing false prevents the // method from putting the HTLC in HtlcStateSettled, leaving it // in HtlcStateAccepted. return trySettle(false) case ContractOpen: return false, nil default: return false, errors.New("unknown state transition") } } // setSettleMetaFields updates the metadata associated with settlement of an // invoice. If a non-nil setID is passed in, then the value will be append to // the invoice number as well, in order to allow us to detect repeated payments // to the same AMP invoices "across time". func setSettleMetaFields(settleIndex kvdb.RwBucket, invoiceNum []byte, invoice *Invoice, now time.Time, setID *SetID) error { // Now that we know the invoice hasn't already been settled, we'll // update the settle index so we can place this settle event in the // proper location within our time series. nextSettleSeqNo, err := settleIndex.NextSequence() if err != nil { return err } // Make a new byte array on the stack that can potentially store the 4 // byte invoice number along w/ the 32 byte set ID. We capture valueLen // here which is the number of bytes copied so we can only store the 4 // bytes if this is a non-AMP invoice. var indexKey [invoiceSetIDKeyLen]byte valueLen := copy(indexKey[:], invoiceNum) if setID != nil { valueLen += copy(indexKey[valueLen:], setID[:]) } var seqNoBytes [8]byte byteOrder.PutUint64(seqNoBytes[:], nextSettleSeqNo) if err := settleIndex.Put(seqNoBytes[:], indexKey[:valueLen]); err != nil { return err } // If the setID is nil, then this means that this is a non-AMP settle, // so we'll update the invoice settle index directly. if setID == nil { invoice.SettleDate = now invoice.SettleIndex = nextSettleSeqNo } else { // If the set ID isn't blank, we'll update the AMP state map // which tracks when each of the setIDs associated with a given // AMP invoice are settled. ampState := invoice.AMPState[*setID] ampState.SettleDate = now ampState.SettleIndex = nextSettleSeqNo invoice.AMPState[*setID] = ampState } return nil } // delAMPInvoices attempts to delete all the "sub" invoices associated with a // greater AMP invoices. We do this by deleting the set of keys that share the // invoice number as a prefix. func delAMPInvoices(invoiceNum []byte, invoiceBucket kvdb.RwBucket) error { // Since it isn't safe to delete using an active cursor, we'll use the // cursor simply to collect the set of keys we need to delete, _then_ // delete them in another pass. var keysToDel [][]byte err := forEachAMPInvoice(invoiceBucket, invoiceNum, func(cursorKey, v []byte) error { keysToDel = append(keysToDel, cursorKey) return nil }) if err != nil { return err } // In this next phase, we'll then delete all the relevant invoices. for _, keyToDel := range keysToDel { if err := invoiceBucket.Delete(keyToDel); err != nil { return err } } return nil } // delAMPSettleIndex removes all the entries in the settle index associated // with a given AMP invoice. func delAMPSettleIndex(invoiceNum []byte, invoices, settleIndex kvdb.RwBucket) error { // First, we need to grab the AMP invoice state to see if there's // anything that we even need to delete. ampState, err := fetchInvoiceStateAMP(invoiceNum, invoices) if err != nil { return err } // If there's no AMP state at all (non-AMP invoice), then we can return early. if len(ampState) == 0 { return nil } // Otherwise, we'll need to iterate and delete each settle index within // the set of returned entries. var settleIndexKey [8]byte for _, subState := range ampState { byteOrder.PutUint64( settleIndexKey[:], subState.SettleIndex, ) if err := settleIndex.Delete(settleIndexKey[:]); err != nil { return err } } return nil } // InvoiceDeleteRef holds a reference to an invoice to be deleted. type InvoiceDeleteRef struct { // PayHash is the payment hash of the target invoice. All invoices are // currently indexed by payment hash. PayHash lntypes.Hash // PayAddr is the payment addr of the target invoice. Newer invoices // (0.11 and up) are indexed by payment address in addition to payment // hash, but pre 0.8 invoices do not have one at all. PayAddr *[32]byte // AddIndex is the add index of the invoice. AddIndex uint64 // SettleIndex is the settle index of the invoice. SettleIndex uint64 } // DeleteInvoice attempts to delete the passed invoices from the database in // one transaction. The passed delete references hold all keys required to // delete the invoices without also needing to deserialze them. func (d *DB) DeleteInvoice(invoicesToDelete []InvoiceDeleteRef) error { err := kvdb.Update(d, func(tx kvdb.RwTx) error { invoices := tx.ReadWriteBucket(invoiceBucket) if invoices == nil { return ErrNoInvoicesCreated } invoiceIndex := invoices.NestedReadWriteBucket( invoiceIndexBucket, ) if invoiceIndex == nil { return ErrNoInvoicesCreated } invoiceAddIndex := invoices.NestedReadWriteBucket( addIndexBucket, ) if invoiceAddIndex == nil { return ErrNoInvoicesCreated } // settleIndex can be nil, as the bucket is created lazily // when the first invoice is settled. settleIndex := invoices.NestedReadWriteBucket(settleIndexBucket) payAddrIndex := tx.ReadWriteBucket(payAddrIndexBucket) for _, ref := range invoicesToDelete { // Fetch the invoice key for using it to check for // consistency and also to delete from the invoice index. invoiceKey := invoiceIndex.Get(ref.PayHash[:]) if invoiceKey == nil { return ErrInvoiceNotFound } err := invoiceIndex.Delete(ref.PayHash[:]) if err != nil { return err } // Delete payment address index reference if there's a // valid payment address passed. if ref.PayAddr != nil { // To ensure consistency check that the already // fetched invoice key matches the one in the // payment address index. key := payAddrIndex.Get(ref.PayAddr[:]) if bytes.Equal(key, invoiceKey) { // Delete from the payment address index. // Note that since the payment address // index has been introduced with an // empty migration it may be possible // that the index doesn't have an entry // for this invoice. // ref: https://github.com/lightningnetwork/lnd/pull/4285/commits/cbf71b5452fa1d3036a43309e490787c5f7f08dc#r426368127 if err := payAddrIndex.Delete( ref.PayAddr[:], ); err != nil { return err } } } var addIndexKey [8]byte byteOrder.PutUint64(addIndexKey[:], ref.AddIndex) // To ensure consistency check that the key stored in // the add index also matches the previously fetched // invoice key. key := invoiceAddIndex.Get(addIndexKey[:]) if !bytes.Equal(key, invoiceKey) { return fmt.Errorf("unknown invoice " + "in add index") } // Remove from the add index. err = invoiceAddIndex.Delete(addIndexKey[:]) if err != nil { return err } // Remove from the settle index if available and // if the invoice is settled. if settleIndex != nil && ref.SettleIndex > 0 { var settleIndexKey [8]byte byteOrder.PutUint64( settleIndexKey[:], ref.SettleIndex, ) // To ensure consistency check that the already // fetched invoice key matches the one in the // settle index key := settleIndex.Get(settleIndexKey[:]) if !bytes.Equal(key, invoiceKey) { return fmt.Errorf("unknown invoice " + "in settle index") } err = settleIndex.Delete(settleIndexKey[:]) if err != nil { return err } } // In addition to deleting the main invoice state, if // this is an AMP invoice, then we'll also need to // delete the set HTLC set stored as a key prefix. For // non-AMP invoices, this'll be a noop. err = delAMPSettleIndex( invoiceKey, invoices, settleIndex, ) if err != nil { return err } err = delAMPInvoices(invoiceKey, invoices) if err != nil { return err } // Finally remove the serialized invoice from the // invoice bucket. err = invoices.Delete(invoiceKey) if err != nil { return err } } return nil }, func() {}) return err }