# Table of Contents 1. [Overview](#overview) 2. [Getting Started](#getting-started) 3. [Tor Stream Isolation](#tor-stream-isolation) 4. [Authentication](#authentication) 5. [Listening for Inbound Connections](#listening-for-inbound-connections) ## Overview `lnd` currently has complete support for using Lightning over [Tor](https://www.torproject.org/). Usage of Lightning over Tor is valuable as routing nodes no longer need to potentially expose their location via their advertised IP address. Additionally, leaf nodes can also protect their location by using Tor for anonymous networking to establish connections. With widespread usage of Onion Services within the network, concerns about the difficulty of proper NAT traversal are alleviated, as usage of onion services allows nodes to accept inbound connections even if they're behind a NAT. At the time of writing this documentation, `lnd` supports both types of onion services: v2 and v3. Before following the remainder of this documentation, you should ensure that you already have Tor installed locally. **If you want to run v3 Onion Services, make sure that you run at least version 0.3.3.6.** Official instructions to install the latest release of Tor can be found [here](https://www.torproject.org/docs/tor-doc-unix.html.en). **NOTE**: This documentation covers how to ensure that `lnd`'s _Lightning protocol traffic_ is tunneled over Tor. Users must ensure that when also running a Bitcoin full-node, that it is also proxying all traffic over Tor. If using the `neutrino` backend for `lnd`, then it will automatically also default to Tor usage if active within `lnd`. ## Getting Started First, you'll want to run `tor` locally before starting up `lnd`. Depending on how you installed Tor, you'll find the configuration file at `/usr/local/etc/tor/torrc`. Here's an example configuration file that we'll be using for the remainder of the tutorial: ```text SOCKSPort 9050 Log notice stdout ControlPort 9051 CookieAuthentication 1 ``` With the configuration file created, you'll then want to start the Tor daemon: ```shell $ tor Feb 05 17:02:06.501 [notice] Tor 0.3.1.8 (git-ad5027f7dc790624) running on Darwin with Libevent 2.1.8-stable, OpenSSL 1.0.2l, Zlib 1.2.8, Liblzma N/A, and Libzstd N/A. Feb 05 17:02:06.502 [notice] Tor can't help you if you use it wrong! Learn how to be safe at https://www.torproject.org/download/download#warning Feb 05 17:02:06.502 [notice] Read configuration file "/usr/local/etc/tor/torrc". Feb 05 17:02:06.506 [notice] Opening Socks listener on 127.0.0.1:9050 Feb 05 17:02:06.506 [notice] Opening Control listener on 127.0.0.1:9051 ``` Once the `tor` daemon has started and it has finished bootstrapping, you'll see this in the logs: ```text Feb 05 17:02:06.000 [notice] Bootstrapped 0%: Starting Feb 05 17:02:07.000 [notice] Starting with guard context "default" Feb 05 17:02:07.000 [notice] Bootstrapped 80%: Connecting to the Tor network Feb 05 17:02:07.000 [notice] Bootstrapped 85%: Finishing handshake with first hop Feb 05 17:02:08.000 [notice] Bootstrapped 90%: Establishing a Tor circuit Feb 05 17:02:11.000 [notice] Tor has successfully opened a circuit. Looks like client functionality is working. Feb 05 17:02:11.000 [notice] Bootstrapped 100%: Done ``` This indicates the daemon is fully bootstrapped and ready to proxy connections. At this point, we can now start `lnd` with the relevant arguments: ```shell $ ./lnd -h Tor: --tor.active Allow outbound and inbound connections to be routed through Tor --tor.socks= The host:port that Tor's exposed SOCKS5 proxy is listening on (default: localhost:9050) --tor.dns= The DNS server as host:port that Tor will use for SRV queries - NOTE must have TCP resolution enabled (default: soa.nodes.lightning.directory:53) --tor.streamisolation Enable Tor stream isolation by randomizing user credentials for each connection. --tor.control= The host:port that Tor is listening on for Tor control connections (default: localhost:9051) --tor.targetipaddress= IP address that Tor should use as the target of the hidden service --tor.password= The password used to arrive at the HashedControlPassword for the control port. If provided, the HASHEDPASSWORD authentication method will be used instead of the SAFECOOKIE one. --tor.v2 Automatically set up a v2 onion service to listen for inbound connections --tor.v3 Automatically set up a v3 onion service to listen for inbound connections --tor.privatekeypath= The path to the private key of the onion service being created ``` There are a couple things here, so let's dissect them. The `--tor.active` flag allows `lnd` to route all outbound and inbound connections through Tor. Outbound connections are possible with the use of the `--tor.socks` and `--tor.dns` arguments. The `--tor.socks` argument should point to the interface that the `Tor` daemon is listening on to proxy connections. The `--tor.dns` flag is required in order to be able to properly automatically bootstrap a set of peer connections. The `tor` daemon doesn't currently support proxying `SRV` queries over Tor. So instead, we need to connect directly to the authoritative DNS server over TCP, in order query for `SRV` records that we can use to bootstrap our connections. Inbound connections are possible due to `lnd` automatically creating an onion service. A path to save the onion service's private key can be specified with the `--tor.privatekeypath` flag. Most of these arguments have defaults, so as long as they apply to you, routing all outbound and inbound connections through Tor can simply be done with either v2 or v3 onion services: ```shell $ ./lnd --tor.active --tor.v2 ``` ```shell $ ./lnd --tor.active --tor.v3 ``` See [Listening for Inbound Connections](#listening-for-inbound-connections) for more info about allowing inbound connections via Tor. Outbound support only can also be used with: ```shell $ ./lnd --tor.active ``` This will allow you to make all outgoing connections over Tor. Listening is disabled to prevent inadvertent leaks. ## Tor Stream Isolation Our support for Tor also has an additional privacy enhancing modified: stream isolation. Usage of this mode means that Tor will always use _new circuit_ for each connection. This added features means that it's harder to correlate connections. As otherwise, several applications using Tor might share the same circuit. Activating stream isolation is very straightforward, we only require the specification of an additional argument: ```shell $ ./lnd --tor.active --tor.streamisolation ``` ## Authentication In order for `lnd` to communicate with the Tor daemon securely, it must first establish an authenticated connection. `lnd` supports the following Tor control authentication methods (arguably, from most to least secure): * `SAFECOOKIE`: This authentication method relies on a cookie created and stored by the Tor daemon and is the default assuming the Tor daemon supports it by specifying `CookieAuthentication 1` in its configuration file. * `HASHEDPASSWORD`: This authentication method is stateless as it relies on a password hash scheme and may be useful if the Tor daemon is operating under a separate host from the `lnd` node. The password hash can be obtained through the Tor daemon with `tor --hash-password PASSWORD`, which should then be specified in Tor's configuration file with `HashedControlPassword PASSWORD_HASH`. Finally, to use it within `lnd`, the `--tor.password` flag should be provided with the corresponding password. * `NULL`: To bypass any authentication at all, this scheme can be used instead. It doesn't require any additional flags to `lnd` or configuration options to the Tor daemon. ## Listening for Inbound Connections In order to listen for inbound connections through Tor, an onion service must be created. There are two types of onion services: v2 and v3. v3 onion services are the latest generation of onion services and they provide a number of advantages over the legacy v2 onion services. To learn more about these benefits, see [Intro to Next Gen Onion Services](https://trac.torproject.org/projects/tor/wiki/doc/NextGenOnions). Both types can be created and used automatically by `lnd`. Specifying which type should be used can easily be done by either using the `tor.v2` or `tor.v3` flag. To prevent unintentional leaking of identifying information, it is also necessary to add the flag `listen=localhost`. For example, v3 onion services can be used with the following flags: ```shell $ ./lnd --tor.active --tor.v3 --listen=localhost ``` This will automatically create a hidden service for your node to use to listen for inbound connections and advertise itself to the network. The onion service's private key is saved to a file named `v2_onion_private_key` or `v3_onion_private_key` depending on the type of onion service used in `lnd`'s base directory. This will allow `lnd` to recreate the same hidden service upon restart. If you wish to generate a new onion service, you can simply delete this file. The path to this private key file can also be modified with the `--tor.privatekeypath` argument. You can optionally encrypt the Tor private key by using the `--tor.encryptkey` flag. This will still write to the same private key files. However instead of writing the plaintext private key, `lnd` encrypts the private key using the wallet's seed and writes the encrypted blob to the file.