package routing import ( "errors" "fmt" "sync" "time" "github.com/btcsuite/btcd/btcec/v2" "github.com/davecgh/go-spew/spew" sphinx "github.com/lightningnetwork/lightning-onion" "github.com/lightningnetwork/lnd/channeldb" "github.com/lightningnetwork/lnd/channeldb/models" "github.com/lightningnetwork/lnd/htlcswitch" "github.com/lightningnetwork/lnd/lntypes" "github.com/lightningnetwork/lnd/lnwire" "github.com/lightningnetwork/lnd/routing/route" "github.com/lightningnetwork/lnd/routing/shards" ) // errShardHandlerExiting is returned from the shardHandler when it exits. var errShardHandlerExiting = errors.New("shard handler exiting") // paymentLifecycle holds all information about the current state of a payment // needed to resume if from any point. type paymentLifecycle struct { router *ChannelRouter feeLimit lnwire.MilliSatoshi identifier lntypes.Hash paySession PaymentSession shardTracker shards.ShardTracker timeoutChan <-chan time.Time currentHeight int32 // shardErrors is a channel where errors collected by calling // collectResultAsync will be delivered. These results are meant to be // inspected by calling waitForShard or checkShards, and the channel // doesn't need to be initiated if the caller is using the sync // collectResult directly. // TODO(yy): delete. shardErrors chan error // quit is closed to signal the sub goroutines of the payment lifecycle // to stop. quit chan struct{} wg sync.WaitGroup } // newPaymentLifecycle initiates a new payment lifecycle and returns it. func newPaymentLifecycle(r *ChannelRouter, feeLimit lnwire.MilliSatoshi, identifier lntypes.Hash, paySession PaymentSession, shardTracker shards.ShardTracker, timeout time.Duration, currentHeight int32) *paymentLifecycle { p := &paymentLifecycle{ router: r, feeLimit: feeLimit, identifier: identifier, paySession: paySession, shardTracker: shardTracker, currentHeight: currentHeight, shardErrors: make(chan error), quit: make(chan struct{}), } // If a timeout is specified, create a timeout channel. If no timeout is // specified, the channel is left nil and will never abort the payment // loop. if timeout != 0 { p.timeoutChan = time.After(timeout) } return p } // calcFeeBudget returns the available fee to be used for sending HTLC // attempts. func (p *paymentLifecycle) calcFeeBudget( feesPaid lnwire.MilliSatoshi) lnwire.MilliSatoshi { budget := p.feeLimit // We'll subtract the used fee from our fee budget. In case of // overflow, we need to check whether feesPaid exceeds our budget // already. if feesPaid <= budget { budget -= feesPaid } else { budget = 0 } return budget } // resumePayment resumes the paymentLifecycle from the current state. func (p *paymentLifecycle) resumePayment() ([32]byte, *route.Route, error) { // When the payment lifecycle loop exits, we make sure to signal any // sub goroutine of the HTLC attempt to exit, then wait for them to // return. defer p.stop() // If we had any existing attempts outstanding, we'll start by spinning // up goroutines that'll collect their results and deliver them to the // lifecycle loop below. payment, err := p.router.cfg.Control.FetchPayment(p.identifier) if err != nil { return [32]byte{}, nil, err } for _, a := range payment.InFlightHTLCs() { a := a log.Infof("Resuming payment shard %v for payment %v", a.AttemptID, p.identifier) p.collectResultAsync(&a) } // exitWithErr is a helper closure that logs and returns an error. exitWithErr := func(err error) ([32]byte, *route.Route, error) { log.Errorf("Payment %v with status=%v failed: %v", p.identifier, payment.GetStatus(), err) return [32]byte{}, nil, err } // We'll continue until either our payment succeeds, or we encounter a // critical error during path finding. lifecycle: for { // Start by quickly checking if there are any outcomes already // available to handle before we reevaluate our state. if err := p.checkShards(); err != nil { return exitWithErr(err) } // We update the payment state on every iteration. Since the // payment state is affected by multiple goroutines (ie, // collectResultAsync), it is NOT guaranteed that we always // have the latest state here. This is fine as long as the // state is consistent as a whole. // Fetch the latest payment from db. payment, err := p.router.cfg.Control.FetchPayment(p.identifier) if err != nil { return exitWithErr(err) } ps := payment.GetState() remainingFees := p.calcFeeBudget(ps.FeesPaid) log.Debugf("Payment %v in state terminate=%v, "+ "active_shards=%v, rem_value=%v, fee_limit=%v", p.identifier, payment.Terminated(), ps.NumAttemptsInFlight, ps.RemainingAmt, remainingFees) // TODO(yy): sanity check all the states to make sure // everything is expected. // We have a terminal condition and no active shards, we are // ready to exit. if payment.Terminated() { // Find the first successful shard and return // the preimage and route. for _, a := range payment.GetHTLCs() { if a.Settle == nil { continue } err := p.router.cfg.Control.DeleteFailedAttempts( p.identifier, ) if err != nil { log.Errorf("Error deleting failed "+ "payment attempts for "+ "payment %v: %v", p.identifier, err) } return a.Settle.Preimage, &a.Route, nil } // Payment failed. return exitWithErr(*payment.GetFailureReason()) } // If we either reached a terminal error condition (but had // active shards still) or there is no remaining value to send, // we'll wait for a shard outcome. wait, err := payment.NeedWaitAttempts() if err != nil { return exitWithErr(err) } if wait { // We still have outstanding shards, so wait for a new // outcome to be available before re-evaluating our // state. if err := p.waitForShard(); err != nil { return exitWithErr(err) } continue lifecycle } // Before we attempt any new shard, we'll check to see if // either we've gone past the payment attempt timeout, or the // router is exiting. In either case, we'll stop this payment // attempt short. If a timeout is not applicable, timeoutChan // will be nil. if err := p.checkTimeout(); err != nil { return exitWithErr(err) } // Now request a route to be used to create our HTLC attempt. rt, err := p.requestRoute(ps) if err != nil { return exitWithErr(err) } // NOTE: might cause an infinite loop, see notes in // `requestRoute` for details. if rt == nil { continue lifecycle } log.Tracef("Found route: %s", spew.Sdump(rt.Hops)) // We found a route to try, create a new HTLC attempt to try. attempt, err := p.registerAttempt(rt, ps.RemainingAmt) if err != nil { return exitWithErr(err) } // Once the attempt is created, send it to the htlcswitch. result, err := p.sendAttempt(attempt) if err != nil { return exitWithErr(err) } // Now that the shard was successfully sent, launch a go // routine that will handle its result when its back. if result.err == nil { p.collectResultAsync(attempt) } } } // checkTimeout checks whether the payment has reached its timeout. func (p *paymentLifecycle) checkTimeout() error { select { case <-p.timeoutChan: log.Warnf("payment attempt not completed before timeout") // By marking the payment failed, depending on whether it has // inflight HTLCs or not, its status will now either be // `StatusInflight` or `StatusFailed`. In either case, no more // HTLCs will be attempted. err := p.router.cfg.Control.FailPayment( p.identifier, channeldb.FailureReasonTimeout, ) if err != nil { return fmt.Errorf("FailPayment got %w", err) } case <-p.router.quit: return fmt.Errorf("check payment timeout got: %w", ErrRouterShuttingDown) // Fall through if we haven't hit our time limit. default: } return nil } // requestRoute is responsible for finding a route to be used to create an HTLC // attempt. func (p *paymentLifecycle) requestRoute( ps *channeldb.MPPaymentState) (*route.Route, error) { remainingFees := p.calcFeeBudget(ps.FeesPaid) // Query our payment session to construct a route. rt, err := p.paySession.RequestRoute( ps.RemainingAmt, remainingFees, uint32(ps.NumAttemptsInFlight), uint32(p.currentHeight), ) // Exit early if there's no error. if err == nil { return rt, nil } // Otherwise we need to handle the error. log.Warnf("Failed to find route for payment %v: %v", p.identifier, err) // If the error belongs to `noRouteError` set, it means a non-critical // error has happened during path finding and we might be able to find // another route during next HTLC attempt. Otherwise, we'll return the // critical error found. var routeErr noRouteError if !errors.As(err, &routeErr) { return nil, fmt.Errorf("requestRoute got: %w", err) } // There is no route to try, and we have no active shards. This means // that there is no way for us to send the payment, so mark it failed // with no route. // // NOTE: if we have zero `numShardsInFlight`, it means all the HTLC // attempts have failed. Otherwise, if there are still inflight // attempts, we might enter an infinite loop in our lifecycle if // there's still remaining amount since we will keep adding new HTLC // attempts and they all fail with `noRouteError`. // // TODO(yy): further check the error returned here. It's the // `paymentSession`'s responsibility to find a route for us with best // effort. When it cannot find a path, we need to treat it as a // terminal condition and fail the payment no matter it has inflight // HTLCs or not. if ps.NumAttemptsInFlight == 0 { failureCode := routeErr.FailureReason() log.Debugf("Marking payment %v permanently failed with no "+ "route: %v", p.identifier, failureCode) err := p.router.cfg.Control.FailPayment( p.identifier, failureCode, ) if err != nil { return nil, fmt.Errorf("FailPayment got: %w", err) } } return nil, nil } // stop signals any active shard goroutine to exit and waits for them to exit. func (p *paymentLifecycle) stop() { close(p.quit) p.wg.Wait() } // waitForShard blocks until any of the outstanding shards return. func (p *paymentLifecycle) waitForShard() error { select { case err := <-p.shardErrors: return err case <-p.quit: return errShardHandlerExiting case <-p.router.quit: return ErrRouterShuttingDown } } // checkShards is a non-blocking method that check if any shards has finished // their execution. func (p *paymentLifecycle) checkShards() error { for { select { case err := <-p.shardErrors: if err != nil { return err } case <-p.quit: return errShardHandlerExiting case <-p.router.quit: return ErrRouterShuttingDown default: return nil } } } // attemptResult holds the HTLC attempt and a possible error returned from // sending it. type attemptResult struct { // err is non-nil if a non-critical error was encountered when trying // to send the attempt, and we successfully updated the control tower // to reflect this error. This can be errors like not enough local // balance for the given route etc. err error // attempt is the attempt structure as recorded in the database. attempt *channeldb.HTLCAttempt } // collectResultAsync launches a goroutine that will wait for the result of the // given HTLC attempt to be available then handle its result. It will fail the // payment with the control tower if a terminal error is encountered. func (p *paymentLifecycle) collectResultAsync(attempt *channeldb.HTLCAttempt) { // errToSend is the error to be sent to sh.shardErrors. var errToSend error // handleResultErr is a function closure must be called using defer. It // finishes collecting result by updating the payment state and send // the error (or nil) to sh.shardErrors. handleResultErr := func() { // Send the error or quit. select { case p.shardErrors <- errToSend: case <-p.router.quit: case <-p.quit: } p.wg.Done() } p.wg.Add(1) go func() { defer handleResultErr() // Block until the result is available. result, err := p.collectResult(attempt) if err != nil { if err != ErrRouterShuttingDown && err != htlcswitch.ErrSwitchExiting && err != errShardHandlerExiting { log.Errorf("Error collecting result for "+ "shard %v for payment %v: %v", attempt.AttemptID, p.identifier, err) } // Overwrite the param errToSend and return so that the // defer function will use the param to proceed. errToSend = err return } // If a non-critical error was encountered handle it and mark // the payment failed if the failure was terminal. if result.err != nil { // Overwrite the param errToSend and return so that the // defer function will use the param to proceed. Notice // that the errToSend could be nil here. _, errToSend = p.handleSwitchErr(attempt, result.err) return } }() } // collectResult waits for the result for the given attempt to be available // from the Switch, then records the attempt outcome with the control tower. // An attemptResult is returned, indicating the final outcome of this HTLC // attempt. func (p *paymentLifecycle) collectResult(attempt *channeldb.HTLCAttempt) ( *attemptResult, error) { // We'll retrieve the hash specific to this shard from the // shardTracker, since it will be needed to regenerate the circuit // below. hash, err := p.shardTracker.GetHash(attempt.AttemptID) if err != nil { return nil, err } // Regenerate the circuit for this attempt. _, circuit, err := generateSphinxPacket( &attempt.Route, hash[:], attempt.SessionKey(), ) if err != nil { return nil, err } // Using the created circuit, initialize the error decrypter so we can // parse+decode any failures incurred by this payment within the // switch. errorDecryptor := &htlcswitch.SphinxErrorDecrypter{ OnionErrorDecrypter: sphinx.NewOnionErrorDecrypter(circuit), } // Now ask the switch to return the result of the payment when // available. resultChan, err := p.router.cfg.Payer.GetAttemptResult( attempt.AttemptID, p.identifier, errorDecryptor, ) switch { // If this attempt ID is unknown to the Switch, it means it was never // checkpointed and forwarded by the switch before a restart. In this // case we can safely send a new payment attempt, and wait for its // result to be available. case err == htlcswitch.ErrPaymentIDNotFound: log.Debugf("Attempt ID %v for payment %v not found in "+ "the Switch, retrying.", attempt.AttemptID, p.identifier) return p.failAttempt(attempt.AttemptID, err) // A critical, unexpected error was encountered. case err != nil: log.Errorf("Failed getting result for attemptID %d "+ "from switch: %v", attempt.AttemptID, err) return nil, err } // The switch knows about this payment, we'll wait for a result to be // available. var ( result *htlcswitch.PaymentResult ok bool ) select { case result, ok = <-resultChan: if !ok { return nil, htlcswitch.ErrSwitchExiting } case <-p.router.quit: return nil, ErrRouterShuttingDown } // In case of a payment failure, fail the attempt with the control // tower and return. if result.Error != nil { return p.failAttempt(attempt.AttemptID, result.Error) } // We successfully got a payment result back from the switch. log.Debugf("Payment %v succeeded with pid=%v", p.identifier, attempt.AttemptID) // Report success to mission control. err = p.router.cfg.MissionControl.ReportPaymentSuccess( attempt.AttemptID, &attempt.Route, ) if err != nil { log.Errorf("Error reporting payment success to mc: %v", err) } // In case of success we atomically store settle result to the DB move // the shard to the settled state. htlcAttempt, err := p.router.cfg.Control.SettleAttempt( p.identifier, attempt.AttemptID, &channeldb.HTLCSettleInfo{ Preimage: result.Preimage, SettleTime: p.router.cfg.Clock.Now(), }, ) if err != nil { log.Errorf("Unable to settle payment attempt: %v", err) return nil, err } return &attemptResult{ attempt: htlcAttempt, }, nil } // registerAttempt is responsible for creating and saving an HTLC attempt in db // by using the route info provided. The `remainingAmt` is used to decide // whether this is the last attempt. func (p *paymentLifecycle) registerAttempt(rt *route.Route, remainingAmt lnwire.MilliSatoshi) (*channeldb.HTLCAttempt, error) { // If this route will consume the last remaining amount to send // to the receiver, this will be our last shard (for now). isLastAttempt := rt.ReceiverAmt() == remainingAmt // Using the route received from the payment session, create a new // shard to send. attempt, err := p.createNewPaymentAttempt(rt, isLastAttempt) if err != nil { return nil, err } // Before sending this HTLC to the switch, we checkpoint the fresh // paymentID and route to the DB. This lets us know on startup the ID // of the payment that we attempted to send, such that we can query the // Switch for its whereabouts. The route is needed to handle the result // when it eventually comes back. err = p.router.cfg.Control.RegisterAttempt( p.identifier, &attempt.HTLCAttemptInfo, ) return attempt, err } // createNewPaymentAttempt creates a new payment attempt from the given route. func (p *paymentLifecycle) createNewPaymentAttempt(rt *route.Route, lastShard bool) (*channeldb.HTLCAttempt, error) { // Generate a new key to be used for this attempt. sessionKey, err := generateNewSessionKey() if err != nil { return nil, err } // We generate a new, unique payment ID that we will use for // this HTLC. attemptID, err := p.router.cfg.NextPaymentID() if err != nil { return nil, err } // Request a new shard from the ShardTracker. If this is an AMP // payment, and this is the last shard, the outstanding shards together // with this one will be enough for the receiver to derive all HTLC // preimages. If this a non-AMP payment, the ShardTracker will return a // simple shard with the payment's static payment hash. shard, err := p.shardTracker.NewShard(attemptID, lastShard) if err != nil { return nil, err } // It this shard carries MPP or AMP options, add them to the last hop // on the route. hop := rt.Hops[len(rt.Hops)-1] if shard.MPP() != nil { hop.MPP = shard.MPP() } if shard.AMP() != nil { hop.AMP = shard.AMP() } hash := shard.Hash() // We now have all the information needed to populate the current // attempt information. attempt := channeldb.NewHtlcAttempt( attemptID, sessionKey, *rt, p.router.cfg.Clock.Now(), &hash, ) return attempt, nil } // sendAttempt attempts to send the current attempt to the switch to complete // the payment. If this attempt fails, then we'll continue on to the next // available route. func (p *paymentLifecycle) sendAttempt( attempt *channeldb.HTLCAttempt) (*attemptResult, error) { log.Debugf("Attempting to send payment %v (pid=%v)", p.identifier, attempt.AttemptID) rt := attempt.Route // Construct the first hop. firstHop := lnwire.NewShortChanIDFromInt(rt.Hops[0].ChannelID) // Craft an HTLC packet to send to the htlcswitch. The metadata within // this packet will be used to route the payment through the network, // starting with the first-hop. htlcAdd := &lnwire.UpdateAddHTLC{ Amount: rt.TotalAmount, Expiry: rt.TotalTimeLock, PaymentHash: *attempt.Hash, } // Generate the raw encoded sphinx packet to be included along // with the htlcAdd message that we send directly to the // switch. onionBlob, _, err := generateSphinxPacket( &rt, attempt.Hash[:], attempt.SessionKey(), ) if err != nil { log.Errorf("Failed to create onion blob: attempt=%d in "+ "payment=%v, err:%v", attempt.AttemptID, p.identifier, err) return p.failAttempt(attempt.AttemptID, err) } copy(htlcAdd.OnionBlob[:], onionBlob) // Send it to the Switch. When this method returns we assume // the Switch successfully has persisted the payment attempt, // such that we can resume waiting for the result after a // restart. err = p.router.cfg.Payer.SendHTLC(firstHop, attempt.AttemptID, htlcAdd) if err != nil { log.Errorf("Failed sending attempt %d for payment %v to "+ "switch: %v", attempt.AttemptID, p.identifier, err) return p.handleSwitchErr(attempt, err) } log.Debugf("Attempt %v for payment %v successfully sent to switch, "+ "route: %v", attempt.AttemptID, p.identifier, &attempt.Route) return &attemptResult{ attempt: attempt, }, nil } // failAttemptAndPayment fails both the payment and its attempt via the // router's control tower, which marks the payment as failed in db. func (p *paymentLifecycle) failPaymentAndAttempt( attemptID uint64, reason *channeldb.FailureReason, sendErr error) (*attemptResult, error) { log.Errorf("Payment %v failed: final_outcome=%v, raw_err=%v", p.identifier, *reason, sendErr) // Fail the payment via control tower. // // NOTE: we must fail the payment first before failing the attempt. // Otherwise, once the attempt is marked as failed, another goroutine // might make another attempt while we are failing the payment. err := p.router.cfg.Control.FailPayment(p.identifier, *reason) if err != nil { log.Errorf("Unable to fail payment: %v", err) return nil, err } // Fail the attempt. return p.failAttempt(attemptID, sendErr) } // handleSwitchErr inspects the given error from the Switch and determines // whether we should make another payment attempt, or if it should be // considered a terminal error. Terminal errors will be recorded with the // control tower. It analyzes the sendErr for the payment attempt received from // the switch and updates mission control and/or channel policies. Depending on // the error type, the error is either the final outcome of the payment or we // need to continue with an alternative route. A final outcome is indicated by // a non-nil reason value. func (p *paymentLifecycle) handleSwitchErr(attempt *channeldb.HTLCAttempt, sendErr error) (*attemptResult, error) { internalErrorReason := channeldb.FailureReasonError attemptID := attempt.AttemptID // reportAndFail is a helper closure that reports the failure to the // mission control, which helps us to decide whether we want to retry // the payment or not. If a non nil reason is returned from mission // control, it will further fail the payment via control tower. reportAndFail := func(srcIdx *int, msg lnwire.FailureMessage) (*attemptResult, error) { // Report outcome to mission control. reason, err := p.router.cfg.MissionControl.ReportPaymentFail( attemptID, &attempt.Route, srcIdx, msg, ) if err != nil { log.Errorf("Error reporting payment result to mc: %v", err) reason = &internalErrorReason } // Fail the attempt only if there's no reason. if reason == nil { // Fail the attempt. return p.failAttempt(attemptID, sendErr) } // Otherwise fail both the payment and the attempt. return p.failPaymentAndAttempt(attemptID, reason, sendErr) } if sendErr == htlcswitch.ErrUnreadableFailureMessage { log.Warn("Unreadable failure when sending htlc: id=%v, hash=%v", attempt.AttemptID, attempt.Hash) // Since this error message cannot be decrypted, we will send a // nil error message to our mission controller and fail the // payment. return reportAndFail(nil, nil) } // If the error is a ClearTextError, we have received a valid wire // failure message, either from our own outgoing link or from a node // down the route. If the error is not related to the propagation of // our payment, we can stop trying because an internal error has // occurred. rtErr, ok := sendErr.(htlcswitch.ClearTextError) if !ok { return p.failPaymentAndAttempt( attemptID, &internalErrorReason, sendErr, ) } // failureSourceIdx is the index of the node that the failure occurred // at. If the ClearTextError received is not a ForwardingError the // payment error occurred at our node, so we leave this value as 0 // to indicate that the failure occurred locally. If the error is a // ForwardingError, it did not originate at our node, so we set // failureSourceIdx to the index of the node where the failure occurred. failureSourceIdx := 0 source, ok := rtErr.(*htlcswitch.ForwardingError) if ok { failureSourceIdx = source.FailureSourceIdx } // Extract the wire failure and apply channel update if it contains one. // If we received an unknown failure message from a node along the // route, the failure message will be nil. failureMessage := rtErr.WireMessage() err := p.handleFailureMessage( &attempt.Route, failureSourceIdx, failureMessage, ) if err != nil { return p.failPaymentAndAttempt( attemptID, &internalErrorReason, sendErr, ) } log.Tracef("Node=%v reported failure when sending htlc", failureSourceIdx) return reportAndFail(&failureSourceIdx, failureMessage) } // handleFailureMessage tries to apply a channel update present in the failure // message if any. func (p *paymentLifecycle) handleFailureMessage(rt *route.Route, errorSourceIdx int, failure lnwire.FailureMessage) error { if failure == nil { return nil } // It makes no sense to apply our own channel updates. if errorSourceIdx == 0 { log.Errorf("Channel update of ourselves received") return nil } // Extract channel update if the error contains one. update := p.router.extractChannelUpdate(failure) if update == nil { return nil } // Parse pubkey to allow validation of the channel update. This should // always succeed, otherwise there is something wrong in our // implementation. Therefore return an error. errVertex := rt.Hops[errorSourceIdx-1].PubKeyBytes errSource, err := btcec.ParsePubKey(errVertex[:]) if err != nil { log.Errorf("Cannot parse pubkey: idx=%v, pubkey=%v", errorSourceIdx, errVertex) return err } var ( isAdditionalEdge bool policy *models.CachedEdgePolicy ) // Before we apply the channel update, we need to decide whether the // update is for additional (ephemeral) edge or normal edge stored in // db. // // Note: the p.paySession might be nil here if it's called inside // SendToRoute where there's no payment lifecycle. if p.paySession != nil { policy = p.paySession.GetAdditionalEdgePolicy( errSource, update.ShortChannelID.ToUint64(), ) if policy != nil { isAdditionalEdge = true } } // Apply channel update to additional edge policy. if isAdditionalEdge { if !p.paySession.UpdateAdditionalEdge( update, errSource, policy) { log.Debugf("Invalid channel update received: node=%v", errVertex) } return nil } // Apply channel update to the channel edge policy in our db. if !p.router.applyChannelUpdate(update) { log.Debugf("Invalid channel update received: node=%v", errVertex) } return nil } // failAttempt calls control tower to fail the current payment attempt. func (p *paymentLifecycle) failAttempt(attemptID uint64, sendError error) (*attemptResult, error) { log.Warnf("Attempt %v for payment %v failed: %v", attemptID, p.identifier, sendError) failInfo := marshallError( sendError, p.router.cfg.Clock.Now(), ) // Now that we are failing this payment attempt, cancel the shard with // the ShardTracker such that it can derive the correct hash for the // next attempt. if err := p.shardTracker.CancelShard(attemptID); err != nil { return nil, err } attempt, err := p.router.cfg.Control.FailAttempt( p.identifier, attemptID, failInfo, ) if err != nil { return nil, err } return &attemptResult{ attempt: attempt, err: sendError, }, nil } // marshallError marshall an error as received from the switch to a structure // that is suitable for database storage. func marshallError(sendError error, time time.Time) *channeldb.HTLCFailInfo { response := &channeldb.HTLCFailInfo{ FailTime: time, } switch sendError { case htlcswitch.ErrPaymentIDNotFound: response.Reason = channeldb.HTLCFailInternal return response case htlcswitch.ErrUnreadableFailureMessage: response.Reason = channeldb.HTLCFailUnreadable return response } rtErr, ok := sendError.(htlcswitch.ClearTextError) if !ok { response.Reason = channeldb.HTLCFailInternal return response } message := rtErr.WireMessage() if message != nil { response.Reason = channeldb.HTLCFailMessage response.Message = message } else { response.Reason = channeldb.HTLCFailUnknown } // If the ClearTextError received is a ForwardingError, the error // originated from a node along the route, not locally on our outgoing // link. We set failureSourceIdx to the index of the node where the // failure occurred. If the error is not a ForwardingError, the failure // occurred at our node, so we leave the index as 0 to indicate that // we failed locally. fErr, ok := rtErr.(*htlcswitch.ForwardingError) if ok { response.FailureSourceIndex = uint32(fErr.FailureSourceIdx) } return response }