package contractcourt import ( "bytes" "fmt" "math" "os" "reflect" "runtime/pprof" "sync" "testing" "time" "github.com/btcsuite/btcd/btcec/v2" "github.com/btcsuite/btcd/btcutil" "github.com/btcsuite/btcd/chaincfg/chainhash" "github.com/btcsuite/btcd/txscript" "github.com/btcsuite/btcd/wire" "github.com/lightningnetwork/lnd/channeldb" "github.com/lightningnetwork/lnd/input" "github.com/lightningnetwork/lnd/lntest/mock" "github.com/lightningnetwork/lnd/lnwallet" "github.com/lightningnetwork/lnd/sweep" "github.com/stretchr/testify/require" ) var ( outPoints = []wire.OutPoint{ { Hash: [chainhash.HashSize]byte{ 0x51, 0xb6, 0x37, 0xd8, 0xfc, 0xd2, 0xc6, 0xda, 0x48, 0x59, 0xe6, 0x96, 0x31, 0x13, 0xa1, 0x17, 0x2d, 0xe7, 0x93, 0xe4, 0xb7, 0x25, 0xb8, 0x4d, 0x1f, 0xb, 0x4c, 0xf9, 0x9e, 0xc5, 0x8c, 0xe9, }, Index: 9, }, { Hash: [chainhash.HashSize]byte{ 0xb7, 0x94, 0x38, 0x5f, 0x2d, 0x1e, 0xf7, 0xab, 0x4d, 0x92, 0x73, 0xd1, 0x90, 0x63, 0x81, 0xb4, 0x4f, 0x2f, 0x6f, 0x25, 0x88, 0xa3, 0xef, 0xb9, 0x6a, 0x49, 0x18, 0x83, 0x31, 0x98, 0x47, 0x53, }, Index: 49, }, { Hash: [chainhash.HashSize]byte{ 0x81, 0xb6, 0x37, 0xd8, 0xfc, 0xd2, 0xc6, 0xda, 0x63, 0x59, 0xe6, 0x96, 0x31, 0x13, 0xa1, 0x17, 0x0d, 0xe7, 0x95, 0xe4, 0xb7, 0x25, 0xb8, 0x4d, 0x1e, 0xb, 0x4c, 0xfd, 0x9e, 0xc5, 0x8c, 0xe9, }, Index: 23, }, { Hash: [chainhash.HashSize]byte{ 0x1e, 0xb, 0x4c, 0xfd, 0x9e, 0xc5, 0x8c, 0xe9, 0x81, 0xb6, 0x37, 0xd8, 0xfc, 0xd2, 0xc6, 0xda, 0x0d, 0xe7, 0x95, 0xe4, 0xb7, 0x25, 0xb8, 0x4d, 0x63, 0x59, 0xe6, 0x96, 0x31, 0x13, 0xa1, 0x17, }, Index: 30, }, { Hash: [chainhash.HashSize]byte{ 0x0d, 0xe7, 0x95, 0xe4, 0xfc, 0xd2, 0xc6, 0xda, 0xb7, 0x25, 0xb8, 0x4d, 0x63, 0x59, 0xe6, 0x96, 0x31, 0x13, 0xa1, 0x17, 0x81, 0xb6, 0x37, 0xd8, 0x1e, 0x0b, 0x4c, 0xfd, 0x9e, 0xc5, 0x8c, 0xe9, }, Index: 2, }, { Hash: [chainhash.HashSize]byte{ 0x48, 0x59, 0xe6, 0x96, 0x31, 0x13, 0xa1, 0x17, 0x51, 0xb6, 0x37, 0xd8, 0x1f, 0x0b, 0x4c, 0xf9, 0x9e, 0xc5, 0x8c, 0xe9, 0xfc, 0xd2, 0xc6, 0xda, 0x2d, 0xe7, 0x93, 0xe4, 0xb7, 0x25, 0xb8, 0x4d, }, Index: 9, }, } keys = [][]byte{ {0x04, 0x11, 0xdb, 0x93, 0xe1, 0xdc, 0xdb, 0x8a, 0x01, 0x6b, 0x49, 0x84, 0x0f, 0x8c, 0x53, 0xbc, 0x1e, 0xb6, 0x8a, 0x38, 0x2e, 0x97, 0xb1, 0x48, 0x2e, 0xca, 0xd7, 0xb1, 0x48, 0xa6, 0x90, 0x9a, 0x5c, 0xb2, 0xe0, 0xea, 0xdd, 0xfb, 0x84, 0xcc, 0xf9, 0x74, 0x44, 0x64, 0xf8, 0x2e, 0x16, 0x0b, 0xfa, 0x9b, 0x8b, 0x64, 0xf9, 0xd4, 0xc0, 0x3f, 0x99, 0x9b, 0x86, 0x43, 0xf6, 0x56, 0xb4, 0x12, 0xa3, }, {0x07, 0x11, 0xdb, 0x93, 0xe1, 0xdc, 0xdb, 0x8a, 0x01, 0x6b, 0x49, 0x84, 0x0f, 0x8c, 0x53, 0xbc, 0x1e, 0xb6, 0x8a, 0x38, 0x2e, 0x97, 0xb1, 0x48, 0x2e, 0xca, 0xd7, 0xb1, 0x48, 0xa6, 0x90, 0x9a, 0x5c, 0xb2, 0xe0, 0xea, 0xdd, 0xfb, 0x84, 0xcc, 0xf9, 0x74, 0x44, 0x64, 0xf8, 0x2e, 0x16, 0x0b, 0xfa, 0x9b, 0x8b, 0x64, 0xf9, 0xd4, 0xc0, 0x3f, 0x99, 0x9b, 0x86, 0x43, 0xf6, 0x56, 0xb4, 0x12, 0xa3, }, {0x02, 0xce, 0x0b, 0x14, 0xfb, 0x84, 0x2b, 0x1b, 0xa5, 0x49, 0xfd, 0xd6, 0x75, 0xc9, 0x80, 0x75, 0xf1, 0x2e, 0x9c, 0x51, 0x0f, 0x8e, 0xf5, 0x2b, 0xd0, 0x21, 0xa9, 0xa1, 0xf4, 0x80, 0x9d, 0x3b, 0x4d, }, } signDescriptors = []input.SignDescriptor{ { SingleTweak: []byte{ 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, }, WitnessScript: []byte{ 0x00, 0x14, 0xee, 0x91, 0x41, 0x7e, 0x85, 0x6c, 0xde, 0x10, 0xa2, 0x91, 0x1e, 0xdc, 0xbd, 0xbd, 0x69, 0xe2, 0xef, 0xb5, 0x71, 0x48, }, Output: &wire.TxOut{ Value: 5000000000, PkScript: []byte{ 0x41, // OP_DATA_65 0x04, 0xd6, 0x4b, 0xdf, 0xd0, 0x9e, 0xb1, 0xc5, 0xfe, 0x29, 0x5a, 0xbd, 0xeb, 0x1d, 0xca, 0x42, 0x81, 0xbe, 0x98, 0x8e, 0x2d, 0xa0, 0xb6, 0xc1, 0xc6, 0xa5, 0x9d, 0xc2, 0x26, 0xc2, 0x86, 0x24, 0xe1, 0x81, 0x75, 0xe8, 0x51, 0xc9, 0x6b, 0x97, 0x3d, 0x81, 0xb0, 0x1c, 0xc3, 0x1f, 0x04, 0x78, 0x34, 0xbc, 0x06, 0xd6, 0xd6, 0xed, 0xf6, 0x20, 0xd1, 0x84, 0x24, 0x1a, 0x6a, 0xed, 0x8b, 0x63, 0xa6, // 65-byte signature 0xac, // OP_CHECKSIG }, }, HashType: txscript.SigHashAll, }, { SingleTweak: []byte{ 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, }, WitnessScript: []byte{ 0x00, 0x14, 0xee, 0x91, 0x41, 0x7e, 0x85, 0x6c, 0xde, 0x10, 0xa2, 0x91, 0x1e, 0xdc, 0xbd, 0xbd, 0x69, 0xe2, 0xef, 0xb5, 0x71, 0x48, }, Output: &wire.TxOut{ Value: 5000000000, PkScript: []byte{ 0x41, // OP_DATA_65 0x04, 0xd6, 0x4b, 0xdf, 0xd0, 0x9e, 0xb1, 0xc5, 0xfe, 0x29, 0x5a, 0xbd, 0xeb, 0x1d, 0xca, 0x42, 0x81, 0xbe, 0x98, 0x8e, 0x2d, 0xa0, 0xb6, 0xc1, 0xc6, 0xa5, 0x9d, 0xc2, 0x26, 0xc2, 0x86, 0x24, 0xe1, 0x81, 0x75, 0xe8, 0x51, 0xc9, 0x6b, 0x97, 0x3d, 0x81, 0xb0, 0x1c, 0xc3, 0x1f, 0x04, 0x78, 0x34, 0xbc, 0x06, 0xd6, 0xd6, 0xed, 0xf6, 0x20, 0xd1, 0x84, 0x24, 0x1a, 0x6a, 0xed, 0x8b, 0x63, 0xa6, // 65-byte signature 0xac, // OP_CHECKSIG }, }, HashType: txscript.SigHashAll, }, { SingleTweak: []byte{ 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, }, WitnessScript: []byte{ 0x00, 0x14, 0xee, 0x91, 0x41, 0x7e, 0x85, 0x6c, 0xde, 0x10, 0xa2, 0x91, 0x1e, 0xdc, 0xbd, 0xbd, 0x69, 0xe2, 0xef, 0xb5, 0x71, 0x48, }, Output: &wire.TxOut{ Value: 5000000000, PkScript: []byte{ 0x41, // OP_DATA_65 0x04, 0xd6, 0x4b, 0xdf, 0xd0, 0x9e, 0xb1, 0xc5, 0xfe, 0x29, 0x5a, 0xbd, 0xeb, 0x1d, 0xca, 0x42, 0x81, 0xbe, 0x98, 0x8e, 0x2d, 0xa0, 0xb6, 0xc1, 0xc6, 0xa5, 0x9d, 0xc2, 0x26, 0xc2, 0x86, 0x24, 0xe1, 0x81, 0x75, 0xe8, 0x51, 0xc9, 0x6b, 0x97, 0x3d, 0x81, 0xb0, 0x1c, 0xc3, 0x1f, 0x04, 0x78, 0x34, 0xbc, 0x06, 0xd6, 0xd6, 0xed, 0xf6, 0x20, 0xd1, 0x84, 0x24, 0x1a, 0x6a, 0xed, 0x8b, 0x63, 0xa6, // 65-byte signature 0xac, // OP_CHECKSIG }, }, HashType: txscript.SigHashAll, }, } kidOutputs = []kidOutput{ { breachedOutput: breachedOutput{ amt: btcutil.Amount(13e7), outpoint: outPoints[1], witnessType: input.CommitmentTimeLock, confHeight: uint32(1000), }, originChanPoint: outPoints[0], blocksToMaturity: uint32(42), }, { breachedOutput: breachedOutput{ amt: btcutil.Amount(24e7), outpoint: outPoints[2], witnessType: input.CommitmentTimeLock, confHeight: uint32(1000), }, originChanPoint: outPoints[0], blocksToMaturity: uint32(42), }, { breachedOutput: breachedOutput{ amt: btcutil.Amount(2e5), outpoint: outPoints[3], witnessType: input.CommitmentTimeLock, confHeight: uint32(500), }, originChanPoint: outPoints[0], blocksToMaturity: uint32(28), }, { breachedOutput: breachedOutput{ amt: btcutil.Amount(10e6), outpoint: outPoints[4], witnessType: input.CommitmentTimeLock, confHeight: uint32(500), }, originChanPoint: outPoints[0], blocksToMaturity: uint32(28), }, } babyOutputs = []babyOutput{ { kidOutput: kidOutputs[1], expiry: 3829, timeoutTx: timeoutTx, }, { kidOutput: kidOutputs[2], expiry: 4, timeoutTx: timeoutTx, }, { kidOutput: kidOutputs[3], expiry: 4, timeoutTx: timeoutTx, }, } // Dummy timeout tx used to test serialization, borrowed from btcd // msgtx_test timeoutTx = &wire.MsgTx{ Version: 1, TxIn: []*wire.TxIn{ { PreviousOutPoint: wire.OutPoint{ Hash: chainhash.Hash{ 0xa5, 0x33, 0x52, 0xd5, 0x13, 0x57, 0x66, 0xf0, 0x30, 0x76, 0x59, 0x74, 0x18, 0x26, 0x3d, 0xa2, 0xd9, 0xc9, 0x58, 0x31, 0x59, 0x68, 0xfe, 0xa8, 0x23, 0x52, 0x94, 0x67, 0x48, 0x1f, 0xf9, 0xcd, }, Index: 19, }, SignatureScript: []byte{}, Witness: [][]byte{ { // 70-byte signature 0x30, 0x43, 0x02, 0x1f, 0x4d, 0x23, 0x81, 0xdc, 0x97, 0xf1, 0x82, 0xab, 0xd8, 0x18, 0x5f, 0x51, 0x75, 0x30, 0x18, 0x52, 0x32, 0x12, 0xf5, 0xdd, 0xc0, 0x7c, 0xc4, 0xe6, 0x3a, 0x8d, 0xc0, 0x36, 0x58, 0xda, 0x19, 0x02, 0x20, 0x60, 0x8b, 0x5c, 0x4d, 0x92, 0xb8, 0x6b, 0x6d, 0xe7, 0xd7, 0x8e, 0xf2, 0x3a, 0x2f, 0xa7, 0x35, 0xbc, 0xb5, 0x9b, 0x91, 0x4a, 0x48, 0xb0, 0xe1, 0x87, 0xc5, 0xe7, 0x56, 0x9a, 0x18, 0x19, 0x70, 0x01, }, { // 33-byte serialize pub key 0x03, 0x07, 0xea, 0xd0, 0x84, 0x80, 0x7e, 0xb7, 0x63, 0x46, 0xdf, 0x69, 0x77, 0x00, 0x0c, 0x89, 0x39, 0x2f, 0x45, 0xc7, 0x64, 0x25, 0xb2, 0x61, 0x81, 0xf5, 0x21, 0xd7, 0xf3, 0x70, 0x06, 0x6a, 0x8f, }, }, Sequence: 0xffffffff, }, }, TxOut: []*wire.TxOut{ { Value: 395019, PkScript: []byte{ // p2wkh output 0x00, // Version 0 witness program 0x14, // OP_DATA_20 0x9d, 0xda, 0xc6, 0xf3, 0x9d, 0x51, 0xe0, 0x39, 0x8e, 0x53, 0x2a, 0x22, 0xc4, 0x1b, 0xa1, 0x89, 0x40, 0x6a, 0x85, 0x23, // 20-byte pub key hash }, }, }, } testChanPoint = wire.OutPoint{} defaultTestTimeout = 5 * time.Second ) func init() { // Finish initializing our test vectors by parsing the desired public keys and // properly populating the sign descriptors of all baby and kid outputs. for i := range signDescriptors { pk, err := btcec.ParsePubKey(keys[i]) if err != nil { panic(fmt.Sprintf("unable to parse pub key during init: %v", err)) } signDescriptors[i].KeyDesc.PubKey = pk } for i := range kidOutputs { isd := i % len(signDescriptors) kidOutputs[i].signDesc = signDescriptors[isd] } for i := range babyOutputs { isd := i % len(signDescriptors) babyOutputs[i].kidOutput.signDesc = signDescriptors[isd] } initIncubateTests() } func TestKidOutputSerialization(t *testing.T) { t.Parallel() for i, kid := range kidOutputs { var b bytes.Buffer if err := kid.Encode(&b); err != nil { t.Fatalf("Encode #%d: unable to serialize "+ "kid output: %v", i, err) } var deserializedKid kidOutput if err := deserializedKid.Decode(&b); err != nil { t.Fatalf("Decode #%d: unable to deserialize "+ "kid output: %v", i, err) } if !reflect.DeepEqual(kid, deserializedKid) { t.Fatalf("DeepEqual #%d: unexpected kidOutput, "+ "want %+v, got %+v", i, kid, deserializedKid) } } } func TestBabyOutputSerialization(t *testing.T) { t.Parallel() for i, baby := range babyOutputs { var b bytes.Buffer if err := baby.Encode(&b); err != nil { t.Fatalf("Encode #%d: unable to serialize "+ "baby output: %v", i, err) } var deserializedBaby babyOutput if err := deserializedBaby.Decode(&b); err != nil { t.Fatalf("Decode #%d: unable to deserialize "+ "baby output: %v", i, err) } if !reflect.DeepEqual(baby, deserializedBaby) { t.Fatalf("DeepEqual #%d: unexpected babyOutput, "+ "want %+v, got %+v", i, baby, deserializedBaby) } } } type nurseryTestContext struct { nursery *UtxoNursery notifier *sweep.MockNotifier chainIO *mock.ChainIO publishChan chan wire.MsgTx store *nurseryStoreInterceptor restart func() bool receiveTx func() wire.MsgTx sweeper *mockSweeperFull timeoutChan chan chan time.Time t *testing.T } func createNurseryTestContext(t *testing.T, checkStartStop func(func()) bool) *nurseryTestContext { // Create a temporary database and connect nurseryStore to it. The // alternative, mocking nurseryStore, is not chosen because there is // still considerable logic in the store. cdb, err := channeldb.MakeTestDB(t) require.NoError(t, err, "unable to open channeldb") store, err := NewNurseryStore(&chainhash.Hash{}, cdb) if err != nil { t.Fatal(err) } // Wrap the store in an inceptor to be able to wait for events in this // test. storeIntercepter := newNurseryStoreInterceptor(store) notifier := sweep.NewMockNotifier(t) publishChan := make(chan wire.MsgTx, 1) publishFunc := func(tx *wire.MsgTx, source string) error { log.Tracef("Publishing tx %v by %v", tx.TxHash(), source) publishChan <- *tx return nil } timeoutChan := make(chan chan time.Time) chainIO := &mock.ChainIO{ BestHeight: 0, } sweeper := newMockSweeperFull(t) nurseryCfg := NurseryConfig{ Notifier: notifier, FetchClosedChannels: func(pendingOnly bool) ( []*channeldb.ChannelCloseSummary, error) { return []*channeldb.ChannelCloseSummary{}, nil }, FetchClosedChannel: func(chanID *wire.OutPoint) ( *channeldb.ChannelCloseSummary, error) { return &channeldb.ChannelCloseSummary{ CloseHeight: 0, }, nil }, Store: storeIntercepter, ChainIO: chainIO, SweepInput: sweeper.sweepInput, PublishTransaction: func(tx *wire.MsgTx, _ string) error { return publishFunc(tx, "nursery") }, } nursery := NewUtxoNursery(&nurseryCfg) nursery.Start() ctx := &nurseryTestContext{ nursery: nursery, notifier: notifier, chainIO: chainIO, store: storeIntercepter, publishChan: publishChan, sweeper: sweeper, timeoutChan: timeoutChan, t: t, } ctx.receiveTx = func() wire.MsgTx { var tx wire.MsgTx select { case tx = <-ctx.publishChan: log.Debugf("Published tx %v", tx.TxHash()) return tx case <-time.After(defaultTestTimeout): pprof.Lookup("goroutine").WriteTo(os.Stdout, 1) t.Fatalf("tx not published") } return tx } ctx.restart = func() bool { return checkStartStop(func() { log.Tracef("Restart sweeper and nursery") // Simulate lnd restart. ctx.nursery.Stop() // Restart sweeper. ctx.sweeper = newMockSweeperFull(t) /// Restart nursery. nurseryCfg.SweepInput = ctx.sweeper.sweepInput ctx.nursery = NewUtxoNursery(&nurseryCfg) require.NoError(t, ctx.nursery.Start()) }) } // Start with testing an immediate restart. ctx.restart() return ctx } func (ctx *nurseryTestContext) notifyEpoch(height int32) { ctx.t.Helper() ctx.chainIO.BestHeight = height ctx.notifier.NotifyEpoch(height) } func (ctx *nurseryTestContext) finish() { // Add a final restart point in this state ctx.restart() // We assume that when finish is called, nursery has finished all its // goroutines. This implies that the waitgroup is empty. signalChan := make(chan struct{}) go func() { ctx.nursery.wg.Wait() close(signalChan) }() // The only goroutine that is still expected to be running is // incubator(). Simulate exit of this goroutine. ctx.nursery.wg.Done() // We now expect the Wait to succeed. select { case <-signalChan: case <-time.After(time.Second): ctx.t.Fatalf("lingering goroutines detected after test " + "is finished") } // Restore waitgroup state to what it was before. ctx.nursery.wg.Add(1) ctx.nursery.Stop() // We should have consumed and asserted all published transactions in // our unit tests. select { case <-ctx.publishChan: ctx.t.Fatalf("unexpected transactions published") default: } // Assert that the database is empty. All channels removed and height // index cleared. nurseryChannels, err := ctx.nursery.cfg.Store.ListChannels() if err != nil { ctx.t.Fatal(err) } if len(nurseryChannels) > 0 { ctx.t.Fatalf("Expected all channels to be removed from store") } activeHeights, err := ctx.nursery.cfg.Store.HeightsBelowOrEqual( math.MaxUint32) if err != nil { ctx.t.Fatal(err) } if len(activeHeights) > 0 { ctx.t.Fatalf("Expected height index to be empty") } } func createOutgoingRes(onLocalCommitment bool) *lnwallet.OutgoingHtlcResolution { // Set up an outgoing htlc resolution to hand off to nursery. closeTx := &wire.MsgTx{} htlcOp := wire.OutPoint{ Hash: closeTx.TxHash(), Index: 0, } outgoingRes := lnwallet.OutgoingHtlcResolution{ Expiry: 125, SweepSignDesc: input.SignDescriptor{ Output: &wire.TxOut{ Value: 10000, }, }, } if onLocalCommitment { timeoutTx := &wire.MsgTx{ TxIn: []*wire.TxIn{ { PreviousOutPoint: htlcOp, Witness: [][]byte{{}}, }, }, TxOut: []*wire.TxOut{ {}, }, } outgoingRes.SignedTimeoutTx = timeoutTx outgoingRes.CsvDelay = 2 } else { outgoingRes.ClaimOutpoint = htlcOp outgoingRes.CsvDelay = 0 } return &outgoingRes } func incubateTestOutput(t *testing.T, nursery *UtxoNursery, onLocalCommitment bool) *lnwallet.OutgoingHtlcResolution { outgoingRes := createOutgoingRes(onLocalCommitment) // Hand off to nursery. err := nursery.IncubateOutputs( testChanPoint, []lnwallet.OutgoingHtlcResolution{*outgoingRes}, nil, 0, ) if err != nil { t.Fatal(err) } // IncubateOutputs is executing synchronously and we expect the output // to immediately show up in the report. expectedStage := uint32(2) if onLocalCommitment { expectedStage = 1 } assertNurseryReport(t, nursery, 1, expectedStage, 10000) return outgoingRes } // TestRejectedCribTransaction makes sure that our nursery does not fail to // start up in case a Crib transaction (htlc-timeout) is rejected by the // bitcoin backend for some excepted reasons. func TestRejectedCribTransaction(t *testing.T) { t.Parallel() tests := []struct { name string // The specific error during broadcasting the transaction. broadcastErr error // expectErr specifies whether the rejection of the transaction // fails the nursery engine. expectErr bool }{ { name: "Crib tx is rejected because of low mempool " + "fees", broadcastErr: lnwallet.ErrMempoolFee, }, { // We map a rejected rbf transaction to ErrDoubleSpend // in lnd. name: "Crib tx is rejected because of a " + "rbf transaction not succeeding", broadcastErr: lnwallet.ErrDoubleSpend, }, { name: "Crib tx is rejected with an " + "unmatched error", broadcastErr: fmt.Errorf("Reject Commitment Tx"), expectErr: true, }, } for _, test := range tests { test := test t.Run(test.name, func(t *testing.T) { t.Parallel() // The checkStartStop function just calls the callback // here to make sure the restart routine works // correctly. ctx := createNurseryTestContext(t, func(callback func()) bool { callback() return true }) outgoingRes := createOutgoingRes(true) ctx.nursery.cfg.PublishTransaction = func(tx *wire.MsgTx, source string) error { log.Tracef("Publishing tx %v "+ "by %v", tx.TxHash(), source) return test.broadcastErr } ctx.notifyEpoch(125) // Hand off to nursery. err := ctx.nursery.IncubateOutputs( testChanPoint, []lnwallet.OutgoingHtlcResolution{*outgoingRes}, nil, 0, ) if test.expectErr { require.ErrorIs(t, err, test.broadcastErr) return } require.NoError(t, err) // Make sure that a restart is not affected by the // rejected Crib transaction. ctx.restart() // Confirm the timeout tx. This should promote the // HTLC to KNDR state. timeoutTxHash := outgoingRes.SignedTimeoutTx.TxHash() err = ctx.notifier.ConfirmTx(&timeoutTxHash, 126) require.NoError(t, err) // Wait for output to be promoted in store to KNDR. select { case <-ctx.store.cribToKinderChan: case <-time.After(defaultTestTimeout): t.Fatalf("output not promoted to KNDR") } // Notify arrival of block where second level HTLC // unlocks. ctx.notifyEpoch(128) // Check final sweep into wallet. testSweepHtlc(t, ctx) // Cleanup utxonursery. ctx.finish() }) } } func assertNurseryReport(t *testing.T, nursery *UtxoNursery, expectedNofHtlcs int, expectedStage uint32, expectedLimboBalance btcutil.Amount) { report, err := nursery.NurseryReport(&testChanPoint) if err != nil { t.Fatal(err) } if len(report.Htlcs) != expectedNofHtlcs { t.Fatalf("expected %v outputs to be reported, but report "+ "only contains %v", expectedNofHtlcs, len(report.Htlcs)) } if expectedNofHtlcs != 0 { htlcReport := report.Htlcs[0] if htlcReport.Stage != expectedStage { t.Fatalf("expected htlc be advanced to stage %v, but "+ "it is reported in stage %v", expectedStage, htlcReport.Stage) } } if report.LimboBalance != expectedLimboBalance { t.Fatalf("expected limbo balance to be %v, but it is %v instead", expectedLimboBalance, report.LimboBalance) } } func assertNurseryReportUnavailable(t *testing.T, nursery *UtxoNursery) { _, err := nursery.NurseryReport(&testChanPoint) if err != ErrContractNotFound { t.Fatal("expected report to be unavailable") } } // testRestartLoop runs the specified test multiple times and in every run it // will attempt to execute a restart action in a different location. This is to // assert that the unit under test is recovering correctly from restarts. func testRestartLoop(t *testing.T, test func(*testing.T, func(func()) bool)) { // Start with running the test without any restarts (index zero) restartIdx := 0 for { currentStartStopIdx := 0 // checkStartStop is called at every point in the test where a // restart should be exercised. When this function is called as // many times as the current value of currentStartStopIdx, it // will execute startStopFunc. checkStartStop := func(startStopFunc func()) bool { currentStartStopIdx++ if restartIdx == currentStartStopIdx { startStopFunc() return true } log.Debugf("Skipping restart point %v", currentStartStopIdx) return false } var subTestName string if restartIdx == 0 { subTestName = "no_restart" } else { subTestName = fmt.Sprintf("restart_%v", restartIdx) } t.Run(subTestName, func(t *testing.T) { test(t, checkStartStop) }) // Exit the loop when all restart points have been tested. if currentStartStopIdx == restartIdx { return } restartIdx++ } } func TestNurseryOutgoingHtlcSuccessOnLocal(t *testing.T) { testRestartLoop(t, testNurseryOutgoingHtlcSuccessOnLocal) } func testNurseryOutgoingHtlcSuccessOnLocal(t *testing.T, checkStartStop func(func()) bool) { ctx := createNurseryTestContext(t, checkStartStop) outgoingRes := incubateTestOutput(t, ctx.nursery, true) ctx.restart() // Notify arrival of block where HTLC CLTV expires. ctx.notifyEpoch(125) // This should trigger nursery to publish the timeout tx. ctx.receiveTx() if ctx.restart() { // Restart should retrigger broadcast of timeout tx. ctx.receiveTx() } // Confirm the timeout tx. This should promote the HTLC to KNDR state. timeoutTxHash := outgoingRes.SignedTimeoutTx.TxHash() if err := ctx.notifier.ConfirmTx(&timeoutTxHash, 126); err != nil { t.Fatal(err) } // Wait for output to be promoted in store to KNDR. select { case <-ctx.store.cribToKinderChan: case <-time.After(defaultTestTimeout): t.Fatalf("output not promoted to KNDR") } ctx.restart() // Notify arrival of block where second level HTLC unlocks. ctx.notifyEpoch(128) // Check final sweep into wallet. testSweepHtlc(t, ctx) ctx.finish() } func TestNurseryOutgoingHtlcSuccessOnRemote(t *testing.T) { testRestartLoop(t, testNurseryOutgoingHtlcSuccessOnRemote) } func testNurseryOutgoingHtlcSuccessOnRemote(t *testing.T, checkStartStop func(func()) bool) { ctx := createNurseryTestContext(t, checkStartStop) outgoingRes := incubateTestOutput(t, ctx.nursery, false) ctx.restart() // Notify confirmation of the commitment tx. Is only listened to when // resolving remote commitment tx. // // TODO(joostjager): This is probably not correct? err := ctx.notifier.ConfirmTx(&outgoingRes.ClaimOutpoint.Hash, 124) if err != nil { t.Fatal(err) } // Wait for output to be promoted from PSCL to KNDR. select { case <-ctx.store.preschoolToKinderChan: case <-time.After(defaultTestTimeout): t.Fatalf("output not promoted to KNDR") } ctx.restart() // Notify arrival of block where HTLC CLTV expires. ctx.notifyEpoch(125) // Check final sweep into wallet. testSweepHtlc(t, ctx) ctx.finish() } func testSweepHtlc(t *testing.T, ctx *nurseryTestContext) { testSweep(t, ctx, func() { // Verify stage in nursery report. HTLCs should now both still // be in stage two. assertNurseryReport(t, ctx.nursery, 1, 2, 10000) }) } func testSweep(t *testing.T, ctx *nurseryTestContext, afterPublishAssert func()) { // Wait for nursery to publish the sweep tx. ctx.sweeper.expectSweep() if ctx.restart() { // Nursery reoffers its input after a restart. ctx.sweeper.expectSweep() } afterPublishAssert() // Confirm the sweep tx. ctx.sweeper.sweepAll() // Wait for output to be promoted in store to GRAD. select { case <-ctx.store.graduateKinderChan: case <-time.After(defaultTestTimeout): pprof.Lookup("goroutine").WriteTo(os.Stdout, 1) t.Fatalf("output not graduated") } ctx.restart() // As there only was one output to graduate, we expect the channel to be // closed and no report available anymore. assertNurseryReportUnavailable(t, ctx.nursery) } type nurseryStoreInterceptor struct { ns NurseryStorer // TODO(joostjager): put more useful info through these channels. cribToKinderChan chan struct{} cribToRemoteSpendChan chan struct{} graduateKinderChan chan struct{} preschoolToKinderChan chan struct{} } func newNurseryStoreInterceptor(ns NurseryStorer) *nurseryStoreInterceptor { return &nurseryStoreInterceptor{ ns: ns, cribToKinderChan: make(chan struct{}), cribToRemoteSpendChan: make(chan struct{}), graduateKinderChan: make(chan struct{}), preschoolToKinderChan: make(chan struct{}), } } func (i *nurseryStoreInterceptor) Incubate(kidOutputs []kidOutput, babyOutputs []babyOutput) error { return i.ns.Incubate(kidOutputs, babyOutputs) } func (i *nurseryStoreInterceptor) CribToKinder(babyOutput *babyOutput) error { err := i.ns.CribToKinder(babyOutput) i.cribToKinderChan <- struct{}{} return err } func (i *nurseryStoreInterceptor) PreschoolToKinder(kidOutput *kidOutput, lastGradHeight uint32) error { err := i.ns.PreschoolToKinder(kidOutput, lastGradHeight) i.preschoolToKinderChan <- struct{}{} return err } func (i *nurseryStoreInterceptor) GraduateKinder(height uint32, kid *kidOutput) error { err := i.ns.GraduateKinder(height, kid) i.graduateKinderChan <- struct{}{} return err } func (i *nurseryStoreInterceptor) FetchPreschools() ([]kidOutput, error) { return i.ns.FetchPreschools() } func (i *nurseryStoreInterceptor) FetchClass(height uint32) ( []kidOutput, []babyOutput, error) { return i.ns.FetchClass(height) } func (i *nurseryStoreInterceptor) HeightsBelowOrEqual(height uint32) ( []uint32, error) { return i.ns.HeightsBelowOrEqual(height) } func (i *nurseryStoreInterceptor) ForChanOutputs(chanPoint *wire.OutPoint, callback func([]byte, []byte) error, reset func()) error { return i.ns.ForChanOutputs(chanPoint, callback, reset) } func (i *nurseryStoreInterceptor) ListChannels() ([]wire.OutPoint, error) { return i.ns.ListChannels() } func (i *nurseryStoreInterceptor) IsMatureChannel(chanPoint *wire.OutPoint) ( bool, error) { return i.ns.IsMatureChannel(chanPoint) } func (i *nurseryStoreInterceptor) RemoveChannel(chanPoint *wire.OutPoint) error { return i.ns.RemoveChannel(chanPoint) } type mockSweeperFull struct { lock sync.Mutex resultChans map[wire.OutPoint]chan sweep.Result t *testing.T sweepChan chan input.Input } func newMockSweeperFull(t *testing.T) *mockSweeperFull { return &mockSweeperFull{ resultChans: make(map[wire.OutPoint]chan sweep.Result), sweepChan: make(chan input.Input, 1), t: t, } } func (s *mockSweeperFull) sweepInput(input input.Input, _ sweep.Params) (chan sweep.Result, error) { log.Debugf("mockSweeper sweepInput called for %v", *input.OutPoint()) select { case s.sweepChan <- input: case <-time.After(defaultTestTimeout): s.t.Fatal("signal result timeout") } s.lock.Lock() defer s.lock.Unlock() c := make(chan sweep.Result, 1) s.resultChans[*input.OutPoint()] = c return c, nil } func (s *mockSweeperFull) expectSweep() { s.t.Helper() select { case <-s.sweepChan: case <-time.After(defaultTestTimeout): s.t.Fatal("signal result timeout") } } func (s *mockSweeperFull) sweepAll() { s.t.Helper() s.lock.Lock() currentChans := s.resultChans s.resultChans = make(map[wire.OutPoint]chan sweep.Result) s.lock.Unlock() for o, c := range currentChans { log.Debugf("mockSweeper signal swept for %v", o) select { case c <- sweep.Result{}: case <-time.After(defaultTestTimeout): s.t.Fatal("signal result timeout") } } }