package routing import ( "errors" "fmt" "sync" "time" "github.com/btcsuite/btcd/btcutil" "github.com/lightningnetwork/lnd/channeldb" "github.com/lightningnetwork/lnd/fn" "github.com/lightningnetwork/lnd/kvdb" "github.com/lightningnetwork/lnd/lnwire" "github.com/lightningnetwork/lnd/routing/route" ) const ( // DefaultPenaltyHalfLife is the default half-life duration. The // half-life duration defines after how much time a penalized node or // channel is back at 50% probability. DefaultPenaltyHalfLife = time.Hour // minSecondChanceInterval is the minimum time required between // second-chance failures. // // If nodes return a channel policy related failure, they may get a // second chance to forward the payment. It could be that the channel // policy that we are aware of is not up to date. This is especially // important in case of mobile apps that are mostly offline. // // However, we don't want to give nodes the option to endlessly return // new channel updates so that we are kept busy trying to route through // that node until the payment loop times out. // // Therefore we only grant a second chance to a node if the previous // second chance is sufficiently long ago. This is what // minSecondChanceInterval defines. If a second policy failure comes in // within that interval, we will apply a penalty. // // Second chances granted are tracked on the level of node pairs. This // means that if a node has multiple channels to the same peer, they // will only get a single second chance to route to that peer again. // Nodes forward non-strict, so it isn't necessary to apply a less // restrictive channel level tracking scheme here. minSecondChanceInterval = time.Minute // DefaultMaxMcHistory is the default maximum history size. DefaultMaxMcHistory = 1000 // DefaultMcFlushInterval is the default interval we use to flush MC state // to the database. DefaultMcFlushInterval = time.Second // prevSuccessProbability is the assumed probability for node pairs that // successfully relayed the previous attempt. prevSuccessProbability = 0.95 // DefaultAprioriWeight is the default a priori weight. See // MissionControlConfig for further explanation. DefaultAprioriWeight = 0.5 // DefaultMinFailureRelaxInterval is the default minimum time that must // have passed since the previously recorded failure before the failure // amount may be raised. DefaultMinFailureRelaxInterval = time.Minute // DefaultFeeEstimationTimeout is the default value for // FeeEstimationTimeout. It defines the maximum duration that the // probing fee estimation is allowed to take. DefaultFeeEstimationTimeout = time.Minute ) var ( // ErrInvalidMcHistory is returned if we get a negative mission control // history count. ErrInvalidMcHistory = errors.New("mission control history must be " + ">= 0") // ErrInvalidFailureInterval is returned if we get an invalid failure // interval. ErrInvalidFailureInterval = errors.New("failure interval must be >= 0") ) // NodeResults contains previous results from a node to its peers. type NodeResults map[route.Vertex]TimedPairResult // MissionControl contains state which summarizes the past attempts of HTLC // routing by external callers when sending payments throughout the network. It // acts as a shared memory during routing attempts with the goal to optimize the // payment attempt success rate. // // Failed payment attempts are reported to mission control. These reports are // used to track the time of the last node or channel level failure. The time // since the last failure is used to estimate a success probability that is fed // into the path finding process for subsequent payment attempts. type MissionControl struct { // state is the internal mission control state that is input for // probability estimation. state *missionControlState // now is expected to return the current time. It is supplied as an // external function to enable deterministic unit tests. now func() time.Time // selfNode is our pubkey. selfNode route.Vertex store *missionControlStore // estimator is the probability estimator that is used with the payment // results that mission control collects. estimator Estimator // onConfigUpdate is a function that is called whenever the // mission control state is updated. onConfigUpdate fn.Option[func(cfg *MissionControlConfig)] sync.Mutex // TODO(roasbeef): further counters, if vertex continually unavailable, // add to another generation // TODO(roasbeef): also add favorable metrics for nodes } // MissionControlConfig defines parameters that control mission control // behaviour. type MissionControlConfig struct { // Estimator gives probability estimates for node pairs. Estimator Estimator // OnConfigUpdate is function that is called whenever the // mission control state is updated. OnConfigUpdate fn.Option[func(cfg *MissionControlConfig)] // MaxMcHistory defines the maximum number of payment results that are // held on disk. MaxMcHistory int // McFlushInterval defines the ticker interval when we flush the // accumulated state to the DB. McFlushInterval time.Duration // MinFailureRelaxInterval is the minimum time that must have passed // since the previously recorded failure before the failure amount may // be raised. MinFailureRelaxInterval time.Duration } func (c *MissionControlConfig) validate() error { if c.MaxMcHistory < 0 { return ErrInvalidMcHistory } if c.MinFailureRelaxInterval < 0 { return ErrInvalidFailureInterval } return nil } // String returns a string representation of a mission control config. func (c *MissionControlConfig) String() string { return fmt.Sprintf("maximum history: %v, minimum failure relax "+ "interval: %v", c.MaxMcHistory, c.MinFailureRelaxInterval) } // TimedPairResult describes a timestamped pair result. type TimedPairResult struct { // FailTime is the time of the last failure. FailTime time.Time // FailAmt is the amount of the last failure. This amount may be pushed // up if a later success is higher than the last failed amount. FailAmt lnwire.MilliSatoshi // SuccessTime is the time of the last success. SuccessTime time.Time // SuccessAmt is the highest amount that successfully forwarded. This // isn't necessarily the last success amount. The value of this field // may also be pushed down if a later failure is lower than the highest // success amount. Because of this, SuccessAmt may not match // SuccessTime. SuccessAmt lnwire.MilliSatoshi } // MissionControlSnapshot contains a snapshot of the current state of mission // control. type MissionControlSnapshot struct { // Pairs is a list of channels for which specific information is // logged. Pairs []MissionControlPairSnapshot } // MissionControlPairSnapshot contains a snapshot of the current node pair // state in mission control. type MissionControlPairSnapshot struct { // Pair is the node pair of which the state is described. Pair DirectedNodePair // TimedPairResult contains the data for this pair. TimedPairResult } // paymentResult is the information that becomes available when a payment // attempt completes. type paymentResult struct { id uint64 timeFwd, timeReply time.Time route *route.Route success bool failureSourceIdx *int failure lnwire.FailureMessage } // NewMissionControl returns a new instance of missionControl. func NewMissionControl(db kvdb.Backend, self route.Vertex, cfg *MissionControlConfig) (*MissionControl, error) { log.Debugf("Instantiating mission control with config: %v, %v", cfg, cfg.Estimator) if err := cfg.validate(); err != nil { return nil, err } store, err := newMissionControlStore( db, cfg.MaxMcHistory, cfg.McFlushInterval, ) if err != nil { return nil, err } mc := &MissionControl{ state: newMissionControlState( cfg.MinFailureRelaxInterval, ), now: time.Now, selfNode: self, store: store, estimator: cfg.Estimator, onConfigUpdate: cfg.OnConfigUpdate, } if err := mc.init(); err != nil { return nil, err } return mc, nil } // RunStoreTicker runs the mission control store's ticker. func (m *MissionControl) RunStoreTicker() { m.store.run() } // StopStoreTicker stops the mission control store's ticker. func (m *MissionControl) StopStoreTicker() { log.Debug("Stopping mission control store ticker") defer log.Debug("Mission control store ticker stopped") m.store.stop() } // init initializes mission control with historical data. func (m *MissionControl) init() error { log.Debugf("Mission control state reconstruction started") start := time.Now() results, err := m.store.fetchAll() if err != nil { return err } for _, result := range results { m.applyPaymentResult(result) } log.Debugf("Mission control state reconstruction finished: "+ "n=%v, time=%v", len(results), time.Since(start)) return nil } // GetConfig returns the config that mission control is currently configured // with. All fields are copied by value, so we do not need to worry about // mutation. func (m *MissionControl) GetConfig() *MissionControlConfig { m.Lock() defer m.Unlock() return &MissionControlConfig{ Estimator: m.estimator, MaxMcHistory: m.store.maxRecords, McFlushInterval: m.store.flushInterval, MinFailureRelaxInterval: m.state.minFailureRelaxInterval, } } // SetConfig validates the config provided and updates mission control's config // if it is valid. func (m *MissionControl) SetConfig(cfg *MissionControlConfig) error { if cfg == nil { return errors.New("nil mission control config") } if err := cfg.validate(); err != nil { return err } m.Lock() defer m.Unlock() log.Infof("Active mission control cfg: %v, estimator: %v", cfg, cfg.Estimator) m.store.maxRecords = cfg.MaxMcHistory m.state.minFailureRelaxInterval = cfg.MinFailureRelaxInterval m.estimator = cfg.Estimator // Execute the callback function if it is set. m.onConfigUpdate.WhenSome(func(f func(cfg *MissionControlConfig)) { f(cfg) }) return nil } // ResetHistory resets the history of MissionControl returning it to a state as // if no payment attempts have been made. func (m *MissionControl) ResetHistory() error { m.Lock() defer m.Unlock() if err := m.store.clear(); err != nil { return err } m.state.resetHistory() log.Debugf("Mission control history cleared") return nil } // GetProbability is expected to return the success probability of a payment // from fromNode along edge. func (m *MissionControl) GetProbability(fromNode, toNode route.Vertex, amt lnwire.MilliSatoshi, capacity btcutil.Amount) float64 { m.Lock() defer m.Unlock() now := m.now() results, _ := m.state.getLastPairResult(fromNode) // Use a distinct probability estimation function for local channels. if fromNode == m.selfNode { return m.estimator.LocalPairProbability(now, results, toNode) } return m.estimator.PairProbability( now, results, toNode, amt, capacity, ) } // GetHistorySnapshot takes a snapshot from the current mission control state // and actual probability estimates. func (m *MissionControl) GetHistorySnapshot() *MissionControlSnapshot { m.Lock() defer m.Unlock() log.Debugf("Requesting history snapshot from mission control") return m.state.getSnapshot() } // ImportHistory imports the set of mission control results provided to our // in-memory state. These results are not persisted, so will not survive // restarts. func (m *MissionControl) ImportHistory(history *MissionControlSnapshot, force bool) error { if history == nil { return errors.New("cannot import nil history") } m.Lock() defer m.Unlock() log.Infof("Importing history snapshot with %v pairs to mission control", len(history.Pairs)) imported := m.state.importSnapshot(history, force) log.Infof("Imported %v results to mission control", imported) return nil } // GetPairHistorySnapshot returns the stored history for a given node pair. func (m *MissionControl) GetPairHistorySnapshot( fromNode, toNode route.Vertex) TimedPairResult { m.Lock() defer m.Unlock() results, ok := m.state.getLastPairResult(fromNode) if !ok { return TimedPairResult{} } result, ok := results[toNode] if !ok { return TimedPairResult{} } return result } // ReportPaymentFail reports a failed payment to mission control as input for // future probability estimates. The failureSourceIdx argument indicates the // failure source. If it is nil, the failure source is unknown. This function // returns a reason if this failure is a final failure. In that case no further // payment attempts need to be made. func (m *MissionControl) ReportPaymentFail(paymentID uint64, rt *route.Route, failureSourceIdx *int, failure lnwire.FailureMessage) ( *channeldb.FailureReason, error) { timestamp := m.now() result := &paymentResult{ success: false, timeFwd: timestamp, timeReply: timestamp, id: paymentID, failureSourceIdx: failureSourceIdx, failure: failure, route: rt, } return m.processPaymentResult(result) } // ReportPaymentSuccess reports a successful payment to mission control as input // for future probability estimates. func (m *MissionControl) ReportPaymentSuccess(paymentID uint64, rt *route.Route) error { timestamp := m.now() result := &paymentResult{ timeFwd: timestamp, timeReply: timestamp, id: paymentID, success: true, route: rt, } _, err := m.processPaymentResult(result) return err } // processPaymentResult stores a payment result in the mission control store and // updates mission control's in-memory state. func (m *MissionControl) processPaymentResult(result *paymentResult) ( *channeldb.FailureReason, error) { // Store complete result in database. m.store.AddResult(result) m.Lock() defer m.Unlock() // Apply result to update mission control state. reason := m.applyPaymentResult(result) return reason, nil } // applyPaymentResult applies a payment result as input for future probability // estimates. It returns a bool indicating whether this error is a final error // and no further payment attempts need to be made. func (m *MissionControl) applyPaymentResult( result *paymentResult) *channeldb.FailureReason { // Interpret result. i := interpretResult( result.route, result.success, result.failureSourceIdx, result.failure, ) if i.policyFailure != nil { if m.state.requestSecondChance( result.timeReply, i.policyFailure.From, i.policyFailure.To, ) { return nil } } // If there is a node-level failure, record a failure for every tried // connection of that node. A node-level failure can be considered as a // failure that would have occurred with any of the node's channels. // // Ideally we'd also record the failure for the untried connections of // the node. Unfortunately this would require access to the graph and // adding this dependency and db calls does not outweigh the benefits. // // Untried connections will fall back to the node probability. After the // call to setAllPairResult below, the node probability will be equal to // the probability of the tried channels except that the a priori // probability is mixed in too. This effect is controlled by the // aprioriWeight parameter. If that parameter isn't set to an extreme // and there are a few known connections, there shouldn't be much of a // difference. The largest difference occurs when aprioriWeight is 1. In // that case, a node-level failure would not be applied to untried // channels. if i.nodeFailure != nil { log.Debugf("Reporting node failure to Mission Control: "+ "node=%v", *i.nodeFailure) m.state.setAllFail(*i.nodeFailure, result.timeReply) } for pair, pairResult := range i.pairResults { pairResult := pairResult if pairResult.success { log.Debugf("Reporting pair success to Mission "+ "Control: pair=%v, amt=%v", pair, pairResult.amt) } else { log.Debugf("Reporting pair failure to Mission "+ "Control: pair=%v, amt=%v", pair, pairResult.amt) } m.state.setLastPairResult( pair.From, pair.To, result.timeReply, &pairResult, false, ) } return i.finalFailureReason }