* sweep: use longer variable name for clarity in `addToState`
* sweeper: add more docs and debug logs
* sweep: prioritize smaller inputs when adding wallet UTXOs
This commit sorts wallet UTXOs by their values when using them for
sweeping inputs. This way we'd avoid locking large UTXOs when sweeping
inputs and also provide an opportunity to aggregate wallet UTXOs.
* contractcourt+itest: relax anchor sweeping for CPFP purpose
This commit changes from always sweeping anchor for a local force close
to only do so when there is an actual time pressure. After this change,
a forced anchor sweeping will only be attempted when the deadline is
less than 144 blocks.
* docs: update release notes
* itest: update test `testMultiHopHtlcLocalChainClaim` to skip CPFP
Since we now only perform CPFP when both the fee rate is higher and the
deadline is less than 144, we need to update the test to reflect that
Bob will not CPFP the force close tx for the channle Alice->Bob.
* itest: fix `testMultiHopRemoteForceCloseOnChainHtlcTimeout`
* itest: update related tests to reflect anchor sweeping
This commit updates all related tests to reflect the latest anchor
sweeping behavior. Previously, anchor sweeping is always attempted as
CPFP when a force close is broadcast, while now it only happens when the
deadline is less than 144. For non-CPFP purpose sweeping, it will happen
after one block is mined after the force close transaction is confirmed
as the anchor will be resent to the sweeper with a floor fee rate, hence
making it economical to sweep.
* multi: extend InvoiceDB methods with a context argument
This commit adds a context to InvoiceDB's methods. Along this refactor
we also extend InvoiceRegistry methods with contexts where it makes
sense. This change is essential to be able to provide kvdb and sqldb
implementations for InvoiceDB.
* channeldb: restrict invoice tests to only use an InvoiceDB instance
* docs: update release notes for 0.18.0
In this commit, update the start up logic to gracefully handle a
seemingly rare case. In this case, a peer detects local data loss with a
set of active HTLCs. These HTLCs then eventually expire (they may or may
not actually "exist"), causing a force close decision. Before this PR,
this attempt would fail with a fatal error that can impede start up.
To better handle such a scenario, we'll now catch the error when we fail
to force close due to entering the DLP and instead terminate the state
machine at the broadcast state. When a commitment transaction eventually
confirms, we'll play it as normal.
Fixes https://github.com/lightningnetwork/lnd/issues/7984
We pull the information from the sign descriptors and store them in the
resolutions. However, the resolvers created end up duplicating the
resolution data, so we update the sign descs as needed during start up.
This commit changes the name returned from `prepContractResolutions`
from `htlcResolvers` to `resolvers` to avoid confusion as there are
multiple types of resolvers returned.
In case the mempool backend signals that our transaction does not
meet fee requirements when publishing it we will continue to
start up now. The transaction will be rebroadcasted in the
background and a specific log message will be printed to let the
user know that he could increase his mempool size to at least
have this transaction in his own mempool.
Now that we have the new package `lnd/channeldb/models` we can invert the
depenency between `channeldb` and `invoices`.
- Move all the invoice related types and errors to the
`invoices` package.
- Ensure that all the packages dealing with invoices use the types and
interfaces defined in the `invoices` package.
- Implement the InvoiceDB interface (defined in `lnd/invoices`) in
channeldb.
- Add new mock for InterfaceDB.
- `InvoiceRegistery` tests are now in its own subpacakge (they need to
import both invoices & channeldb). This is temporary until we can
decouple them.
Add a new subpackage to `lnd/channeldb` to hold some of the types that
are used in the package itself and in other packages that should not
depend on `channeldb`.
In this commit, we consolidate the _lease specific_ logic for the
success and timeout HTLC resolvers. We do this with the addition of a
new struct which is then composed via struct embedding with the two
existing structs. This fixes a flake in the integration tests by
ensuring the height is set up front, rather than eventually once the
height matches the lock time.
The main idea is that NotifyContractUpdate adds the ContractUpdate to
a map called unmerged. It is populated in Start by shallow-copying the
activeHTLCs map values (htlcSet). The htlcSets underlying maps are not
copied, and so unmerged will just contain pointers to them. This should
be fine since unmerged will not modify them. At the call-sites of
activeHTLCs, it is updated to include the unmerged sets. This happens
with a mutex and should not cause any data race, even though it is
copying the underlying map pointers. No persistence should be
necessary since on restart, activeHTLCs and unmerged will just be
populated again.
This commit was previously split into the following parts to ease
review:
- 2d746f68: replace imports
- 4008f0fd: use ecdsa.Signature
- 849e33d1: remove btcec.S256()
- b8f6ebbd: use v2 library correctly
- fa80bca9: bump go modules
This also changes the chain_watcher and breacharbiter handoff. The
new logic ensures that the channel is only marked as pending closed
when the channel arbitrator has persisted the resolutions and commit
set.
For older nodes, this bucket was never created, so we'll get an error if
we try and query it. In this commit, we catch this error like we do when
a given channel doesn't have the information (but the bucket actually
exists).
Fixes#6155
In this commit, we fix a bug that would cause newly updated nodes to be
unable to start up, if they have an older channel that was closed before
we started to store all the historical state for each channel.
The issue is that we started to write the complete state to disk, but
newer channels don't have it, so when we try to supplement the
resolvers, we run into this error.
Ultimately, we only need this new supplemented information for script
enforcement channels. Ideally we would instead check the channel type
there instead, but it doesn't appear to be available in this context as
is, without further changes.
Fixes https://github.com/lightningnetwork/lnd/issues/6001.
In order to sweep the commitment and HTLC outputs belonging to a
script-enforced leased channel, each resolver must know whether the
additional CLTV clause on the channel initiator applies to them. To do
so, we retrieve the historical channel state stored within the database
and supplement it to the resolvers to provide them with what's needed in
order to sweep the necessary outputs and resolve their respective
contracts.
In this commit, we made the change so that when sweeping anchors for the
commitment transactions, we will be aware of the deadline which is
derived from its HTLC set. It's very likely we will use a much larger
conf target from now on, and save us some sats.
This commit adds a new struct AnchorResolutions which wraps the anchor
resolutions for local/remote/pending remote commitment transactions. It
is then returned from NewAnchorResolutions. Thus the caller knows how to
retrieve a certain anchor resolution.
To allow us to grab all of the information we need for our channel arbs
in a more efficient way on startup, we add an optional tx to our lookup
functions required on start.
For unconfirmed commit tx anchors, supply the sweeper with cpfp info and
a confirmation target fee estimate.
The sweeper will try to pay for the parent commit tx as long as the
current fee estimate exceeds the pre-signed commit tx fee rate.
Extend the fee estimator to take into account parent transactions with
their weights and fees.
Do not try to cpfp parent transactions that have a higher fee rate than
the sweep tx fee rate.
Follow up labelling of external transactions with labels for the
transaction types we create within lnd. Since these labels will live
a life of string matching, a version number and rigid format is added
so that string matching is less painful. We start out with channel ID,
where available, and a transaction "type". External labels, added in a
previous PR, are not updated to this new versioned label because they
are not lnd-initiated transactions. Label matching can check this case,
then check for a version number.
Our current set of reports contain much of the information we will
need to persist contract resolutions. We add a function to create
resolver reports from our exiting set of resolutions.
To allow us to write the outcome of our resolver to disk, we add
optional resolver reports to the CheckPoint function. Variadic params
are used because some checkpoints may have no reports (when the resolver
is not yet complete) and some may have two (in the case of a two stage
resolution).