This commit was previously split into the following parts to ease
review:
- 2d746f68: replace imports
- 4008f0fd: use ecdsa.Signature
- 849e33d1: remove btcec.S256()
- b8f6ebbd: use v2 library correctly
- fa80bca9: bump go modules
In this commit, we add a new ChannelType field as a new TLV record to
the OpenChannel message. During this change, we make a few tweaks to the
generic TLV encode/decode methods for the ExtraOpaqueData struct to have
it work on the level of tlv.RecordProducer instead of tlv.Record, as
this reduces line noise a bit.
We also partially undo existing logic that would attempt to "prepend"
any new TLV records to the end of the ExtraOpaqueData if one was already
present within the struct. This is based on the assumption that if we've
read a message from disk to order to re-send/transmit it, then the
ExtraOpaqueData is fully populated so we'll write that as is. Otherwise,
a message is being encoded for the first time, and we expect all fields
that are known TLV fields to be specified within the struct itself.
This change required the unit tests to be modified slightly, as we'll
always encode a fresh set of TLV records if none was already specified
within the struct.
This commit changes the WriteElement and WriteElements methods to take a
write buffer instead of io.Writer. The corresponding Encode methods are
changed to use the write buffer.
Removes the MaxPayloadLength function from the Message interface
and checks that each message payload is not greater than MaxMsgBody.
Since all messages are now allowed to be 65535 bytes in size, the
MaxPayloadLength is no longer needed.
In this commit, we convert the delivery address in the open and accept
channel methods to be a TLV type. This works as an "empty" delivery
address is encoded using a two zero bytes (uint16 length zero), and a
tlv type of 0 is encoded in the same manner (byte for type, byte for
zero length). This change allows us to easily extend these messages in
the future, in a uniform manner.
When decoding the message we snip the bytes from the read TLV data.
Similarly, when encoding we concatenate the TLV record for the shutdown
script with the rest of the TLV data.
This commit adds the feature bit and additional fields
required in `open_channel` and `accept_channel` wire
messages for `option_upfront_shutdown_script`.
In this commit, we export the ReadElements and WriteElements functions.
We do this as exporting these functions makes it possible for outside
packages to define serializations which use the BOLT 1.0 wire format.
In this commit, we begin implementing the latest spec change to reduce
the attack surface on online channels. In this commit, we introduce a
distinct HTLC base point which will be used to sign the second-level
HTLC transactions for each active HLTC on the commitment transaction of
the remote node. With this, we allow the commitment key to remain
offline, as it isn’t needed in routine channel updates, unless we need
to go to chain.
In this commit we add a new type to the lnwire package: FundingFlag.
This type will serve as an enum to describe the possible flags that can
be used within the ChannelFlags field in the OpenChannel struct.
We also define the first assigned flag: FFAnnounceChannel, which
indicates if the initiator of the funding flow wishes to announce the
channel to the greater network.
This commit adds the new set of single funder messages from the
specification. As a result, after this commit and a follow up, all of
our messages will directly line up with those that are detailed within
the specification.
The new set of funding messages are very similar to our prior ones,
aside from the main difference of the addition of several channel level
constraints that give nodes control over their exposure, throughput,
and other values.