This commit squashes the below operations for a net result where
we have an expanded capability of assessing pending updates. This
is made possible by packing the components into Duals in the prior
commits. We squash the operations to simplify review.
htlcswitch+lnwallet: rename PendingLocalUpdateCount
lnwallet: complete pending update queries API for LightningChannel
lnwallet+htlcswitch: consolidate NumPendingUpdates using ChannelParty
This commit makes the observation that we can cleanly define the
NumPendingUpdates function using a single expression by taking
advantage of the relevant fields being properly packed into Duals.
This commit breaks the ChannelConstraints structure into two
sub-structures that reflect the fundamental differences in how
these parameters are used. On its face it may not seem necessary,
however the distinction introduced here is relevant for how we
will be implementing the Dynamic Commitments proposal.
With this PR we might call the stop method even when the start
method of a subsystem did not successfully finish therefore we
need to make sure we guard the stop methods for potential panics
if some variables are not initialized in the contructors of the
subsystems.
This commit expands the definition of the dust limit to take into
account commitment fees as well as dust HTLCs. The dust limit is now
known as a fee exposure threshold. Dust HTLCs are fees anyways so it
makes sense to account for commitment fees as well. The link has
been modified slightly to calculate dust. In the future, the switch
dust calculations can be removed.
If a blinded path payload contains a signal that the following hop on
the path is a dummy hop, then we iteratively peel the dummy hops until
the final payload is reached.
We've covered all the logic for building a blinded path to ourselves and
putting that into an invoice - so now we start preparing to actually be
able to recognise the incoming payment as one from a blinded path we
created.
The incoming update_add_htlc will have an `encrypted_recipient_data`
blob for us that we would have put in the original invoice. From this we
extract the PathID which we wrote. We consider this the payment address
and we use this to derive the associated invoice location.
Blinded path payments will not include MPP records, so the payment
address and total payment amount must be gleaned from the pathID and new
totalAmtMsat onion field respectively.
This commit only covers the final hop payload of a hop in a blinded
path. Dummy hops will be handled in the following commit.
We further break up the extracTLVPayload into more modular pieces. The
pieces are structured in such a way as to prepare for extracTLVPayload
being called in a recursive manner from within
`deriveBlindedRouteForwardingInfo` when we add the logic for handling
dummy hops in a later commit. With this refactor, we completey remove
the BlindingKit's DecryptAndValidateFwdInfo method.
In this refactor commit, we extract all the steps from extractTLVPayload
that have to do with parsing the payload from the sender and verifying
the presence of various fields from the sender.
In preparation for calling the TLV payload parsing logic recursively for
when we need to peel dummy hops from an onion, this commit creates a new
extractTLVPayload function. This is a pure refactor.
For the final hop in a blinded route, the SCID and RelayInfo fields will
_not_ be set. So these fields need to be converted to optional records.
The existing BlindedRouteData constructor is also renamed to
`NewNonFinalBlindedRouteData` in preparation for a
`NewFinalBlindedRouteData` constructor which will be used to construct
the blinded data for the final hop which will contain a much smaller set
of data. The SCID and RelayInfo parameters of the constructor are left
as non-pointers in order to force the caller to set them in the case
that the constructor is called for non-final nodes. The other option
would be to create a single constructor where all parameters are
optional but I think this makes it easier for the caller to make a
mistake.
Create our error encrypter with a wrapped type if we have a blinding
point present. Doing this in the iterator allows us to track this
information when we have both pieces of information available to us,
compared to trying to handle this later down the line:
- Downstream link on failure: we know that we've set a blinding point
for out outgoing HTLC, but not whether we're introduction or not
- Upstream link on failure: once the failure packet has been sent
through the switch, we no longer know whether we were the introduction
point (without looking it up / examining our payload again /
propagating this information through the switch).
Introduce two wrapper types for our existing SphinxErrorEncrypter
that are used to represent error encrypters where we're a part of a
blinded route. These encrypters are functionally the same as a sphinx
encrypter, and are just used as "markers" so that we know that we
need to handle our error differently due to our different role.
We need to persist this information to account for restart cases where
we've resovled the outgoing HTLC, then restart and need to handle the
error for the incoming link. Specifically, this is relevant for:
- On chain resolution messages received after restart
- Forwarding packages that are re-forwarded after restart
This is also generally helpful, because we can store this information
in one place (the circuit) rather than trying to reconstruct it in
various places when forwarding the failure back over the switch.
We need to know what role we're playing to be able to handle errors
correctly, but the information that we need for this is held by our
iterator:
- Whether we had a blinding point in update add (blinding kit)
- Whether we had a blinding point in payload
As we're now going to use the route role return value even when our
err!=nil, we rename the error to signal that we're using less
canonical golang here.
An alternative to this approach is to attach a RouteRole to our
ErrInvalidPayload. The downside of that approach is:
- Propagate context through parsing (whether we had updateAddHtlc)
- Clumsy handling for errors that are not of type ErrInvalidPayload
When handling blinded errors, we need to know whether there was a
blinding key in our payload when we successfully parsed our payload
but then found an invalid set of fields. The combination of
parsing and validation in NewPayloadFromReader means that we don't know
whether a blinding point was available to us by the time the error is
returned.
This commit splits parsing and validation into two functions so that
we can take a look at what we actually pulled of the payload in between
parsing and TLV validation.
This commit moves all our validation related to the presence of fields
into ValidateParsedPayloadTypes so that we can handle them in a single
place. We draw the distinction between:
- Validation of the payload (and the context within it's being parsed,
final hop / blinded hop etc)
- Processing and validation of encrypted data, where we perform
additional cryptographic operations and validate that the fields
contained in the blob are valid.
This helps draw the line more clearly between the two validation types,
rather than splitting some payload-releated blinded hop processing
into the encrypted data processing part. The downside of this approach
(vs doing the blinded path payload check _after_ payload validation)
is that we have to pass additional context into payload validation
(ie, whether we got a blinding point in our UpdateAddHtlc - as we
already do for isFinalHop).
This commit adds handling for malformed HTLC errors related to blinded
paths. We expect to receive these errors _within_ a blinded path,
because all non-introduction nodes are instructed to return malformed
errors for failures.
Note that we may actually switch back to a malformed error later on if
we too are a relaying node in the route, but we handle that case the
incoming link.
This commit moves `DetermineFeePerKw` into the `Estimate` method on
`FeePreference`. A few callsites previously calling `DetermineFeePerKw`
without the max fee rate is now also temporarily fixed by forcing them
to use `Estimate` with the default sweeper max fee rate.
Reject any HTLCs that use us as an introduction point in a blinded
route if we have disabled route blinding. We have to do this after
we've processed the payload, because we only know we're an introduction
point once we've processed the payload itself.
If we received a payload with a encrypted data point set, our forwarding
information should be set from the information in our encrypted blob.
This behavior is the same for introduction and relying nodes in a
blinded route.
To separate blinded route parsing from payload parsing, we need to
return the parsed types map so that we can properly validate blinded
data payloads against what we saw in the onion.