This commit renames the previous MissionControl to MissionController and
the previous MissionController interface to MissionControlQuerier. This
is done because soon the (new) MissionController will back multiple
namespaced MissionControl instances. For now, it just houses a single
MissionControl in the default namespace.
This commit also replaces the MissionControl's `now` function with a
`clock.Clock`.
We make the capacity factor configurable via an lnd.conf routerrpc
apriori parameter. The capacity factor trades off increased success
probability with a reduced set of channel candidates, which may lead to
increased fees. To let users choose whether the factor is active or not,
we add a config setting where a capacity fraction of 1.0 disables the
factor. We limit the capacity fraction to values between 0.75 and 1.0.
Lower values may discard too many channels.
We use a more general `Estimator` interface for probability estimation
in missioncontrol.
The estimator is created outside of `NewMissionControl`, passed in as a
`MissionControlConfig` field, to facilitate usage of externally supplied
estimators.
* we rename the current probability estimator to be the "apriori"
probability estimator to distinguish from a different implementation
later
* the AprioriEstimator is exported to later be able to type switch
* getLocalPairProbability -> LocalPairProbabiltiy (later part of an
exported interface)
* getPairProbability -> getPairProbabiltiy (later part of an exported
interface)
We multiply the apriori probability with a factor to take capacity into
account:
P *= 1 - 1 / [1 + exp(-(amount - cutoff)/smearing)]
The factor is a function value between 1 (small amount) and 0 (high
amount). The zero limit may not be reached exactly depending on the
smearing and cutoff combination. The function is a logistic function
mirrored about the y-axis. The cutoff determines the amount at which a
significant reduction in probability takes place and the smearing
parameter defines how smooth the transition from 1 to 0 is. Both, the
cutoff and smearing parameters are defined in terms of fixed fractions
of the capacity.
Extends the pathfinder with a capacity argument for later usage.
In tests, the inserted testCapacity has no effect, but will be used
later to estimate reduced probabilities from it.
This commit changes missioncontrol's store update from per payment to
every second. Updating the missioncontrol store on every payment caused
gradual slowdown when using etcd.
We also completely eliminate the use of the cursor, further reducing
the performance bottleneck.
We are going to use the config struct to allow getting and setting
of the mission control config in the commits that follow. Self node
is not something we want to change, so we move it out for better
separation.
* mod: bump btcwallet version to accept db timeout
* btcwallet: add DBTimeOut in config
* kvdb: add database timeout option for bbolt
This commit adds a DBTimeout option in bbolt config. The relevant
functions walletdb.Open/Create are updated to use this config. In
addition, the bolt compacter also applies the new timeout option.
* channeldb: add DBTimeout in db options
This commit adds the DBTimeout option for channeldb. A new unit
test file is created to test the default options. In addition,
the params used in kvdb.Create inside channeldb_test is updated
with a DefaultDBTimeout value.
* contractcourt+routing: use DBTimeout in kvdb
This commit touches multiple test files in contractcourt and routing.
The call of function kvdb.Create and kvdb.Open are now updated with
the new param DBTimeout, using the default value kvdb.DefaultDBTimeout.
* lncfg: add DBTimeout option in db config
The DBTimeout option is added to db config. A new unit test is
added to check the default DB config is created as expected.
* migration: add DBTimeout param in kvdb.Create/kvdb.Open
* keychain: update tests to use DBTimeout param
* htlcswitch+chainreg: add DBTimeout option
* macaroons: support DBTimeout config in creation
This commit adds the DBTimeout during the creation of macaroons.db.
The usage of kvdb.Create and kvdb.Open in its tests are updated with
a timeout value using kvdb.DefaultDBTimeout.
* walletunlocker: add dbTimeout option in UnlockerService
This commit adds a new param, dbTimeout, during the creation of
UnlockerService. This param is then passed to wallet.NewLoader
inside various service calls, specifying a timeout value to be
used when opening the bbolt. In addition, the macaroonService
is also called with this dbTimeout param.
* watchtower/wtdb: add dbTimeout param during creation
This commit adds the dbTimeout param for the creation of both
watchtower.db and wtclient.db.
* multi: add db timeout param for walletdb.Create
This commit adds the db timeout param for the function call
walletdb.Create. It touches only the test files found in chainntnfs,
lnwallet, and routing.
* lnd: pass DBTimeout config to relevant services
This commit enables lnd to pass the DBTimeout config to the following
services/config/functions,
- chainControlConfig
- walletunlocker
- wallet.NewLoader
- macaroons
- watchtower
In addition, the usage of wallet.Create is updated too.
* sample-config: add dbtimeout option
Previously we only penalized the outgoing connections of a failing node.
This turned out not to be sufficient, because the next route sometimes
went into the same failing node again to try a different outgoing
connection that wasn't yet known to mission control and therefore not
penalized before.
Previously we used the a priori probability also for our own untried
channels. This led to local channels that had seen a success already
being prioritized over untried local channels. In some cases, depending
on the configured payment attempt cost, this could lead to the payment
taking a two hop route while a direct payment was also possible.
This commit changes mission control to partially base the estimated
probability for untried connections on historical results obtained in
previous payment attempts. This incentivizes routing nodes to keep all
of their channels in good shape.
Probability estimates are amount dependent. Previously we assumed an
amount, but that starts to make less sense when we make probability more
dependent on amounts in the future.
This commit modifies the interpretation of node-level failures.
Previously only the failing node was marked. With this commit, also the
incoming and outgoing connections involved in the route are marked as
failed.
The change prepares for the removal of node-level failures in mission
control probability estimation.
This commit modifies paymentLifecycle so that it not only feeds
failures into mission control, but successes as well.
This allows for more accurate probability estimates. Previously,
the success probability for a successful pair and a pair with
no history was equal. There was no force that pushed towards
previously successful routes.
In this commit, we extend the path finding to be able to recognize when
a node needs the new TLV format, or the legacy format based on the
feature bits they expose. We also extend the `LightningPayment` struct
to allow the caller to specify an arbitrary set of TLV records which can
be used for a number of use-cases including various variants of
spontaneous payments.
Previously mission control tracked failures on a per node, per channel basis.
This commit changes this to tracking on the level of directed node pairs. The goal
of moving to this coarser-grained level is to reduce the number of required
payment attempts without compromising payment reliability.
If nodes return a channel policy related failure, they may get a second
chance. Our graph may not be up to date. Previously this logic was
contained in the payment session.
This commit moves that into global mission control and thereby removes
the last mission control state that was kept on the payment level.
Because mission control is not aware of the relation between payment
attempts and payments, the second chance logic is no longer based
tracking second chances given per payment.
Instead a time based approach is used. If a node reports a policy
failure that prevents forwarding to its peer, it will get a second
chance. But it will get it only if the previous second chance was
long enough ago.
Also those second chances are no longer dependent on whether an
associated channel update is valid. It will get the second chance
regardless, to prevent creating a dependency between mission control and
the graph. This would interfer with (future) replay of history, because
the graph may not be the same anymore at that point.
This commit exposes the three main parameters that influence mission
control and path finding to the user as command line or config file
flags. It allows for fine-tuning for optimal results.
Previously every payment had its own local mission control state which
was in effect only for that payment. In this commit most of the local
state is removed and payments all tap into the global mission control
probability estimator.
Furthermore the decay time of pruned edges and nodes is extended, so
that observations about the network can better benefit future payment
processes.
Last, the probability function is transformed from a binary output to a
gradual curve, allowing for a better trade off between candidate routes.