Add ignore condition to additional edges that connect to self. These
edges are already known and avoiding these hints protect the payment
from malformed channel ids which could lead to infinite loop.
Fixes lightningnetwork#6169.
Co-authored-by: lsunsi <lsunsi@pm.me>
This commit was previously split into the following parts to ease
review:
- 2d746f68: replace imports
- 4008f0fd: use ecdsa.Signature
- 849e33d1: remove btcec.S256()
- b8f6ebbd: use v2 library correctly
- fa80bca9: bump go modules
In this commit, we thread through the necessary state to allow users to
set a max shard amount. If this value is set, then this'll effectively
serve as a ceiling for all our split attempts. If we need to split,
we'll first try to use `paymentAmt/2`, if that's bigger than
`MaxShardAmt, then we'll use the latter instead.
Ideally in the future we have a dynamic way to automatically set both
the `MaxShardAmt` as well as `MaxParts` for users. Until then exposing
these two new fields will allow us to experiment with setting them
automatically using the RPC interface, and also give users a bit more
control over how we attempt to route payments, akin to coin control for
on-chain payments.
Fixes#4730
This commit reverts cb4cd49dc8 to bring
back the insufficient local balance failure.
Distinguishing betweeen this failure and a regular "no route" failure
prevents meaningless htlcs from being sent out.
Modifies the payment session to launch additional pathfinding attempts
for lower amounts. If a single shot payment isn't possible, the goal is
to try to complete the payment using multiple htlcs. In previous
commits, the payment lifecycle has been prepared to deal with
partial-amount routes returned from the payment session. It will query
for additional shards if needed.
Additionally a new rpc payment parameter is added that controls the
maximum number of shards that will be used for the payment.
Adds an integrated routing test of probability extrapolation for untried
channels. The larger part of this commit is mock code to simulate the
Lightning Network.
The difference between this test and the existing pathfinding tests, is that
this test focuses on the feedback loop from result interpretation via
mission control updates and probability estimation back to pathfinding.
Improvements like probability extrapolation were previously only
validated by reasoning, while this setup makes it possible to assert the
improvement in a test and guard it for the future.