This commit updates route construction to backfill the fields
required for payment to blinded paths and set amount to forward
and expiry fields to zero for intermediate hops (as is instructed
in the route blinding specification).
We could attempt to do this in the first pass, but that loop
relies on fields like amount to forward and expiry to calculate
each hop backwards, so we keep it simple (stupid) and post
processes the blinded portion, since it's computationally cheap
and more readable.
Having a capacity available is important for liquidity estimation.
* We add a dummy capacity to hop hints. Hop hints specify neither the
capacity nor a maxHTLC size, which is why we assume the channel to
have a high capacity relative to the amount we send.
* We add a capacity to local edges. These channels should always have a
capacity associated with them, even in the neutrino case (a fallback
to maxHTLC is not necessary). This is just for completeness, as the
probability calculation for local channels is done separately.
Extends the pathfinder with a capacity argument for later usage.
In tests, the inserted testCapacity has no effect, but will be used
later to estimate reduced probabilities from it.
This commit refactors the semantics of unified policies to unified
edges. The main changes are the following renamings:
* unifiedPolicies -> nodeEdgeUnifier
* unifiedPolicy -> edgeUnifier
* unifiedPolicyEdge -> unifiedEdge
Comments and shortened variable names are changed to reflect the new
semantics.
We encapsulate the capacity inside a unifiedPolicyEdge for later usage.
The meaning of "policy" has changed now, which will be refactored in the
next commmit.
Add ignore condition to additional edges that connect to self. These
edges are already known and avoiding these hints protect the payment
from malformed channel ids which could lead to infinite loop.
Fixes lightningnetwork#6169.
Co-authored-by: lsunsi <lsunsi@pm.me>
Base the calculation on the actual float64 overflow point rather than an
indirect limit on probability.
This is a preparation for an infinite attempt cost.
Pass htlc amount down to the channel so that we don't need to rely
on minHtlc (and pad it when the channel sets a 0 min htlc). Update
test to just check some sane values since we're no longer relying
on minHtlc amount at all.
We'll let the payment's lifecycle register each shard it's sending with
the ShardTracker, canceling failed shards. This will be the foundation
for correct AMP derivation for each shard we'll send.
This commit reverts cb4cd49dc8 to bring
back the insufficient local balance failure.
Distinguishing betweeen this failure and a regular "no route" failure
prevents meaningless htlcs from being sent out.
With mpp it isn't possible anymore for findPath to determine that there
isn't enough local bandwidth. The full payment amount isn't known at
that point.
In a follow-up, this payment outcome can be reintroduced on a higher
level (payment lifecycle).
We whitelist a set of "expected" errors that can be returned from
RequestRoute, by converting them into a new type noRouteError. For any
other error returned by RequestRoute, we'll now exit immediately.
This commit brings us inline with recent modifications to the spec, that
say we shouldn't pay nodes whose feature vectors signal unknown required
features, and also that we shouldn't route through nodes signaling
unknown required features.
Currently we assert that invoices don't have such features during
decoding, but now that users can specify feature vectors via the rpc
interface, it makes sense to perform this check deeper in call stack.
This will also allow us to remove the check from decoding entirely,
making decodepayreq more useful for debugging.
Also the max hop count check can be removed, because the real bound is
the payload size. By moving the check inside the search loop, we now
also backtrack when we hit the limit.
We move up the check for TLV support, since we will later use it to
determine if we can use dependent features, e.g. TLV records and payment
addresses.
This commit creates a wrapper struct, grouping all parameters that
influence the final hop during route construction. This is a preliminary
step for passing in the receiver's invoice feature bits, which will be
used to select an appropriate payment or payload type.
In this commit, we overwrite the final hop's features with either the
destination features or those loaded from the graph fallback. This
ensures that the same features used in pathfinding will be provided to
route construction.
In an earlier commit, we validated the final hop's transitive feature
dependencies, so we also add validation to non-final nodes.
This commit adds an optional PaymentAddr field to the RestrictParams, so
that we can verify the final hop can support it before doing an
expensive round of pathfindig.
In this commit, we fix a bug that prevents us from sending custom
records to nodes that aren't in the graph. Previously we would simply
fail if we were unable to retrieve the node's features.
To remedy, we add the option of supplying the destination's feature bits
into path finding. If present, we will use them directly without
consulting the graph, resolving the original issue. Instead, we will
only consult the graph as a fallback, which will still fail if the node
doesn't exist since the TLV features won't be populated in the empty
feature vector.
Furthermore, this also permits us to provide "virtual features" into the
pathfinding logic, where we make assumptions about what the receiver
supports even if the feature vector isn't actually taken from an
invoice. This can useful in cases like keysend, where we don't have an
invoice, but we can still attempt the payment if we assume the receiver
supports TLV.