This commit removes the logic where we remove an input when it's been
published more than 10 times. This is needed as in our future fee
bumper, we might start with a low fee and rebroadcast the same input for
hundred of blocks.
This commit adds a new interface `FeePreference` which makes it easier
to write unit tests and allows more customized implementation in
following commits.
Since we have two other examples of XArbitrator, we rename
BreachArbiter to BreachArbitrator to keep things consistent.
The aim is to reduce the amount of lore you need to know to
intuit where things are or what they do.
We should not fail to start the node if a republish attempt failed for a
channel's closing tx. Instead, we log an error to continue the startup
and let other channels continue their operations.
* sweep: use longer variable name for clarity in `addToState`
* sweeper: add more docs and debug logs
* sweep: prioritize smaller inputs when adding wallet UTXOs
This commit sorts wallet UTXOs by their values when using them for
sweeping inputs. This way we'd avoid locking large UTXOs when sweeping
inputs and also provide an opportunity to aggregate wallet UTXOs.
* contractcourt+itest: relax anchor sweeping for CPFP purpose
This commit changes from always sweeping anchor for a local force close
to only do so when there is an actual time pressure. After this change,
a forced anchor sweeping will only be attempted when the deadline is
less than 144 blocks.
* docs: update release notes
* itest: update test `testMultiHopHtlcLocalChainClaim` to skip CPFP
Since we now only perform CPFP when both the fee rate is higher and the
deadline is less than 144, we need to update the test to reflect that
Bob will not CPFP the force close tx for the channle Alice->Bob.
* itest: fix `testMultiHopRemoteForceCloseOnChainHtlcTimeout`
* itest: update related tests to reflect anchor sweeping
This commit updates all related tests to reflect the latest anchor
sweeping behavior. Previously, anchor sweeping is always attempted as
CPFP when a force close is broadcast, while now it only happens when the
deadline is less than 144. For non-CPFP purpose sweeping, it will happen
after one block is mined after the force close transaction is confirmed
as the anchor will be resent to the sweeper with a floor fee rate, hence
making it economical to sweep.
* multi: extend InvoiceDB methods with a context argument
This commit adds a context to InvoiceDB's methods. Along this refactor
we also extend InvoiceRegistry methods with contexts where it makes
sense. This change is essential to be able to provide kvdb and sqldb
implementations for InvoiceDB.
* channeldb: restrict invoice tests to only use an InvoiceDB instance
* docs: update release notes for 0.18.0
In this commit, we modify the incoming contest resolver to use a
concurrent queue. This is meant to ensure that the invoice registry
subscription loop never blocks. This change is meant to be minimal and
implements option `5` as outlined here:
https://github.com/lightningnetwork/lnd/issues/8023.
With this change, the inner loop of the subscription dispatch method in
the invoice registry will no longer block, as the concurrent queue uses
a fixed buffer of a queue, then overflows into another queue when that
gets full.
Fixes https://github.com/lightningnetwork/lnd/issues/7917
In this commit, update the start up logic to gracefully handle a
seemingly rare case. In this case, a peer detects local data loss with a
set of active HTLCs. These HTLCs then eventually expire (they may or may
not actually "exist"), causing a force close decision. Before this PR,
this attempt would fail with a fatal error that can impede start up.
To better handle such a scenario, we'll now catch the error when we fail
to force close due to entering the DLP and instead terminate the state
machine at the broadcast state. When a commitment transaction eventually
confirms, we'll play it as normal.
Fixes https://github.com/lightningnetwork/lnd/issues/7984
When the numTweaks is zero, we should return a nil instead of
initializing an empty map as we'd get the following error,
```
Diff:
--- Expected
+++ Actual
@@ -11007,4 +11007,3 @@
},
- BreachedHtlcTweaks: (contractcourt.htlcTapTweaks) {
- },
+ BreachedHtlcTweaks: (contractcourt.htlcTapTweaks) <nil>,
```
In this commit, we update the channel state machine to use the new
ScriptDescriptor interface. This fixes some subtle issues with the
existing commits, as for p2wsh we always sign the same witness script,
but for p2tr, the witness script differs depending on which branch is
taken.
With the new abstractions, we can treat p2wsh and p2tr as the same
mostly, right up until we need to obtain a control block or a tap tweak.
All tests have been updated accordingly.
In this commit, we update the breach arb to support taproot channels. We
utilize the new taproot briefcase space to store both control blocks,
and also the first+second level scripts for the set of HTLCs.
We pull the information from the sign descriptors and store them in the
resolutions. However, the resolvers created end up duplicating the
resolution data, so we update the sign descs as needed during start up.
In this commit, we add a new taproot specific briefcase to store the
control block and tap tweaks for all taproot outputs. We chose this
route as many of the existing fields are serialized in line, so we
aren't able to serialize this new taproot specific information in the
existing briefcase.
In this commit, we update the chain watcher to be able to generate the
correct pkScript so it can register for confirmation and spend
notifications for taproot channels.
In this commit, we add a new NewCommitState struct. This preps us for
the future change wherein a partial signature is also added to the mix.
All related tests and type signatures have also been updated
accordingly.
In this commit, we extract the musig2 session management into a new
module. This allows us to re-use the session logic elsewhere in unit
tests so we don't need to instantiate the entire wallet.
This commit changes the name returned from `prepContractResolutions`
from `htlcResolvers` to `resolvers` to avoid confusion as there are
multiple types of resolvers returned.
Add a test where the channel arbitrator starts up correctly
when a prior unilateral close of a channel did not broadcast
for specific reasons.
Also add a test which ensures that when a crib output is
rejected by the bitcoin backend the startup works correctly
for specific errors.
In case the mempool backend signals that our transaction does not
meet fee requirements when publishing it we will continue to
start up now. The transaction will be rebroadcasted in the
background and a specific log message will be printed to let the
user know that he could increase his mempool size to at least
have this transaction in his own mempool.