In this commit, we add a `GraphSession` method to the `ChannelGraph`.
This method provides a caller with access to a `NodeTraverser`. This is
used by pathfinding to create a graph "session" overwhich to perform a
set of queries for a pathfinding attempt. With this refactor, we hide
details such as DB transaction creation and transaction commits from the
caller. So with this, pathfinding does not need to remember to "close
the graph session". With this commit, the `graphsession` package may be
completely removed.
In preparation for having the ChannelGraph directly implement the
`routing.Graph` interface, we rename the `ForEachNodeChannel` method to
`ForEachNodeDirectedChannel` since the ChannelGraph already uses the
`ForEachNodeChannel` name and the new name is more appropriate since the
ChannelGraph currently has a `ForEachNodeDirectedChannelTx` method which
passes the same DirectedChannel type to the given call-back.
All the structs defined in the `channeldb/models` package are graph
related. So once we move all the graph CRUD code to the graph package,
it makes sense to have the schema structs there too. So this just moves
the `models` package over to `graph/db/models`.
In preparation for structs outside of the `routing` package implementing
this interface, export `routingGraph` and rename it to `Graph` so as to
avoid stuttering.
Add ignore condition to additional edges that connect to self. These
edges are already known and avoiding these hints protect the payment
from malformed channel ids which could lead to infinite loop.
Fixes lightningnetwork#6169.
Co-authored-by: lsunsi <lsunsi@pm.me>
This commit was previously split into the following parts to ease
review:
- 2d746f68: replace imports
- 4008f0fd: use ecdsa.Signature
- 849e33d1: remove btcec.S256()
- b8f6ebbd: use v2 library correctly
- fa80bca9: bump go modules
Adds an integrated routing test of probability extrapolation for untried
channels. The larger part of this commit is mock code to simulate the
Lightning Network.
The difference between this test and the existing pathfinding tests, is that
this test focuses on the feedback loop from result interpretation via
mission control updates and probability estimation back to pathfinding.
Improvements like probability extrapolation were previously only
validated by reasoning, while this setup makes it possible to assert the
improvement in a test and guard it for the future.