lntemp+itest: refactor testSignPsbt

This commit is contained in:
yyforyongyu 2022-08-11 13:07:33 +08:00
parent 8a04127659
commit d78af3cec6
No known key found for this signature in database
GPG Key ID: 9BCD95C4FF296868
5 changed files with 187 additions and 240 deletions

View File

@ -198,7 +198,7 @@ func (h *HarnessRPC) ImportAccount(
defer cancel()
resp, err := h.WalletKit.ImportAccount(ctxt, req)
require.NoErrorf(h, err, "failed to import account")
h.NoError(err, "ImportAccount")
return resp
}

View File

@ -287,6 +287,10 @@ var allTestCasesTemp = []*lntemp.TestCase{
Name: "psbt channel funding single step",
TestFunc: testPsbtChanFundingSingleStep,
},
{
Name: "sign psbt",
TestFunc: testSignPsbt,
},
{
Name: "resolution handoff",
TestFunc: testResHandoff,

View File

@ -576,49 +576,38 @@ func testPsbtChanFundingSingleStep(ht *lntemp.HarnessTest) {
}
// testSignPsbt tests that the SignPsbt RPC works correctly.
func testSignPsbt(net *lntest.NetworkHarness, t *harnessTest) {
runSignPsbtSegWitV0P2WKH(t, net, net.Alice)
runSignPsbtSegWitV0NP2WKH(t, net, net.Alice)
runSignPsbtSegWitV1KeySpendBip86(t, net, net.Alice)
runSignPsbtSegWitV1KeySpendRootHash(t, net, net.Alice)
runSignPsbtSegWitV1ScriptSpend(t, net, net.Alice)
func testSignPsbt(ht *lntemp.HarnessTest) {
runSignPsbtSegWitV0P2WKH(ht, ht.Alice)
runSignPsbtSegWitV0NP2WKH(ht, ht.Alice)
runSignPsbtSegWitV1KeySpendBip86(ht, ht.Alice)
runSignPsbtSegWitV1KeySpendRootHash(ht, ht.Alice)
runSignPsbtSegWitV1ScriptSpend(ht, ht.Alice)
// The above tests all make sure we can sign for keys that aren't in the
// wallet. But we also want to make sure we can fund and then sign PSBTs
// from our wallet.
runFundAndSignPsbt(t, net, net.Alice)
// The above tests all make sure we can sign for keys that aren't in
// the wallet. But we also want to make sure we can fund and then sign
// PSBTs from our wallet.
runFundAndSignPsbt(ht, ht.Alice)
}
// runSignPsbtSegWitV0P2WKH tests that the SignPsbt RPC works correctly for a
// SegWit v0 p2wkh input.
func runSignPsbtSegWitV0P2WKH(t *harnessTest, net *lntest.NetworkHarness,
alice *lntest.HarnessNode) {
// Everything we do here should be done within a second or two, so we
// can just keep a single timeout context around for all calls.
ctxb := context.Background()
ctxt, cancel := context.WithTimeout(ctxb, defaultTimeout)
defer cancel()
func runSignPsbtSegWitV0P2WKH(ht *lntemp.HarnessTest, alice *node.HarnessNode) {
// We test that we can sign a PSBT that spends funds from an input that
// the wallet doesn't know about. To set up that test case, we first
// derive an address manually that the wallet won't be watching on
// chain. We can do that by exporting the account xpub of lnd's main
// account.
accounts, err := alice.WalletKitClient.ListAccounts(
ctxt, &walletrpc.ListAccountsRequest{},
)
require.NoError(t.t, err)
require.NotEmpty(t.t, accounts.Accounts)
accounts := alice.RPC.ListAccounts(&walletrpc.ListAccountsRequest{})
require.NotEmpty(ht, accounts.Accounts)
// We also need to parse the accounts, so we have easy access to the
// parsed derivation paths.
parsedAccounts, err := walletrpc.AccountsToWatchOnly(accounts.Accounts)
require.NoError(t.t, err)
require.NoError(ht, err)
account := parsedAccounts[0]
xpub, err := hdkeychain.NewKeyFromString(account.Xpub)
require.NoError(t.t, err)
require.NoError(ht, err)
const (
changeIndex = 1
@ -634,27 +623,27 @@ func runSignPsbtSegWitV0P2WKH(t *harnessTest, net *lntest.NetworkHarness,
// Let's simulate a change address.
change, err := xpub.DeriveNonStandard(changeIndex) // nolint:staticcheck
require.NoError(t.t, err)
require.NoError(ht, err)
// At an index that we are certainly not watching in the wallet.
addrKey, err := change.DeriveNonStandard(addrIndex) // nolint:staticcheck
require.NoError(t.t, err)
require.NoError(ht, err)
addrPubKey, err := addrKey.ECPubKey()
require.NoError(t.t, err)
require.NoError(ht, err)
pubKeyHash := btcutil.Hash160(addrPubKey.SerializeCompressed())
witnessAddr, err := btcutil.NewAddressWitnessPubKeyHash(
pubKeyHash, harnessNetParams,
)
require.NoError(t.t, err)
require.NoError(ht, err)
pkScript, err := txscript.PayToAddrScript(witnessAddr)
require.NoError(t.t, err)
require.NoError(ht, err)
// Send some funds to the output and then try to get a signature through
// the SignPsbt RPC to spend that output again.
assertPsbtSpend(
ctxt, t, net, alice, pkScript,
ht, alice, pkScript,
func(packet *psbt.Packet) {
in := &packet.Inputs[0]
in.Bip32Derivation = []*psbt.Bip32Derivation{{
@ -664,16 +653,16 @@ func runSignPsbtSegWitV0P2WKH(t *harnessTest, net *lntest.NetworkHarness,
in.SighashType = txscript.SigHashAll
},
func(packet *psbt.Packet) {
require.Len(t.t, packet.Inputs, 1)
require.Len(t.t, packet.Inputs[0].PartialSigs, 1)
require.Len(ht, packet.Inputs, 1)
require.Len(ht, packet.Inputs[0].PartialSigs, 1)
partialSig := packet.Inputs[0].PartialSigs[0]
require.Equal(
t.t, partialSig.PubKey,
ht, partialSig.PubKey,
addrPubKey.SerializeCompressed(),
)
require.Greater(
t.t, len(partialSig.Signature), ecdsa.MinSigLen,
ht, len(partialSig.Signature), ecdsa.MinSigLen,
)
},
)
@ -681,34 +670,23 @@ func runSignPsbtSegWitV0P2WKH(t *harnessTest, net *lntest.NetworkHarness,
// runSignPsbtSegWitV0NP2WKH tests that the SignPsbt RPC works correctly for a
// SegWit v0 np2wkh input.
func runSignPsbtSegWitV0NP2WKH(t *harnessTest, net *lntest.NetworkHarness,
alice *lntest.HarnessNode) {
// Everything we do here should be done within a second or two, so we
// can just keep a single timeout context around for all calls.
ctxb := context.Background()
ctxt, cancel := context.WithTimeout(ctxb, defaultTimeout)
defer cancel()
func runSignPsbtSegWitV0NP2WKH(ht *lntemp.HarnessTest, alice *node.HarnessNode) {
// We test that we can sign a PSBT that spends funds from an input that
// the wallet doesn't know about. To set up that test case, we first
// derive an address manually that the wallet won't be watching on
// chain. We can do that by exporting the account xpub of lnd's main
// account.
accounts, err := alice.WalletKitClient.ListAccounts(
ctxt, &walletrpc.ListAccountsRequest{},
)
require.NoError(t.t, err)
require.NotEmpty(t.t, accounts.Accounts)
accounts := alice.RPC.ListAccounts(&walletrpc.ListAccountsRequest{})
require.NotEmpty(ht, accounts.Accounts)
// We also need to parse the accounts, so we have easy access to the
// parsed derivation paths.
parsedAccounts, err := walletrpc.AccountsToWatchOnly(accounts.Accounts)
require.NoError(t.t, err)
require.NoError(ht, err)
account := parsedAccounts[0]
xpub, err := hdkeychain.NewKeyFromString(account.Xpub)
require.NoError(t.t, err)
require.NoError(ht, err)
const (
changeIndex = 1
@ -724,34 +702,34 @@ func runSignPsbtSegWitV0NP2WKH(t *harnessTest, net *lntest.NetworkHarness,
// Let's simulate a change address.
change, err := xpub.DeriveNonStandard(changeIndex) // nolint:staticcheck
require.NoError(t.t, err)
require.NoError(ht, err)
// At an index that we are certainly not watching in the wallet.
addrKey, err := change.DeriveNonStandard(addrIndex) // nolint:staticcheck
require.NoError(t.t, err)
require.NoError(ht, err)
addrPubKey, err := addrKey.ECPubKey()
require.NoError(t.t, err)
require.NoError(ht, err)
pubKeyHash := btcutil.Hash160(addrPubKey.SerializeCompressed())
witnessAddr, err := btcutil.NewAddressWitnessPubKeyHash(
pubKeyHash, harnessNetParams,
)
require.NoError(t.t, err)
require.NoError(ht, err)
witnessProgram, err := txscript.PayToAddrScript(witnessAddr)
require.NoError(t.t, err)
require.NoError(ht, err)
np2wkhAddr, err := btcutil.NewAddressScriptHash(
witnessProgram, harnessNetParams,
)
require.NoError(t.t, err)
require.NoError(ht, err)
pkScript, err := txscript.PayToAddrScript(np2wkhAddr)
require.NoError(t.t, err)
require.NoError(ht, err)
// Send some funds to the output and then try to get a signature through
// the SignPsbt RPC to spend that output again.
assertPsbtSpend(
ctxt, t, net, alice, pkScript,
ht, alice, pkScript,
func(packet *psbt.Packet) {
in := &packet.Inputs[0]
in.RedeemScript = witnessProgram
@ -762,16 +740,16 @@ func runSignPsbtSegWitV0NP2WKH(t *harnessTest, net *lntest.NetworkHarness,
in.SighashType = txscript.SigHashAll
},
func(packet *psbt.Packet) {
require.Len(t.t, packet.Inputs, 1)
require.Len(t.t, packet.Inputs[0].PartialSigs, 1)
require.Len(ht, packet.Inputs, 1)
require.Len(ht, packet.Inputs[0].PartialSigs, 1)
partialSig := packet.Inputs[0].PartialSigs[0]
require.Equal(
t.t, partialSig.PubKey,
ht, partialSig.PubKey,
addrPubKey.SerializeCompressed(),
)
require.Greater(
t.t, len(partialSig.Signature), ecdsa.MinSigLen,
ht, len(partialSig.Signature), ecdsa.MinSigLen,
)
},
)
@ -779,19 +757,11 @@ func runSignPsbtSegWitV0NP2WKH(t *harnessTest, net *lntest.NetworkHarness,
// runSignPsbtSegWitV1KeySpendBip86 tests that the SignPsbt RPC works correctly
// for a SegWit v1 p2tr key spend BIP-0086 input.
func runSignPsbtSegWitV1KeySpendBip86(t *harnessTest, net *lntest.NetworkHarness,
alice *lntest.HarnessNode) {
// Everything we do here should be done within a second or two, so we
// can just keep a single timeout context around for all calls.
ctxb := context.Background()
ctxt, cancel := context.WithTimeout(ctxb, defaultTimeout)
defer cancel()
func runSignPsbtSegWitV1KeySpendBip86(ht *lntemp.HarnessTest,
alice *node.HarnessNode) {
// Derive a key we can use for signing.
keyDesc, internalKey, fullDerivationPath := deriveInternalKey(
ctxt, t, alice,
)
keyDesc, internalKey, fullDerivationPath := deriveInternalKey(ht, alice)
// Our taproot key is a BIP0086 key spend only construction that just
// commits to the internal key and no root hash.
@ -799,14 +769,14 @@ func runSignPsbtSegWitV1KeySpendBip86(t *harnessTest, net *lntest.NetworkHarness
tapScriptAddr, err := btcutil.NewAddressTaproot(
schnorr.SerializePubKey(taprootKey), harnessNetParams,
)
require.NoError(t.t, err)
require.NoError(ht, err)
p2trPkScript, err := txscript.PayToAddrScript(tapScriptAddr)
require.NoError(t.t, err)
require.NoError(ht, err)
// Send some funds to the output and then try to get a signature through
// the SignPsbt RPC to spend that output again.
assertPsbtSpend(
ctxt, t, net, alice, p2trPkScript,
ht, alice, p2trPkScript,
func(packet *psbt.Packet) {
in := &packet.Inputs[0]
in.Bip32Derivation = []*psbt.Bip32Derivation{{
@ -820,9 +790,9 @@ func runSignPsbtSegWitV1KeySpendBip86(t *harnessTest, net *lntest.NetworkHarness
in.SighashType = txscript.SigHashDefault
},
func(packet *psbt.Packet) {
require.Len(t.t, packet.Inputs, 1)
require.Len(ht, packet.Inputs, 1)
require.Len(
t.t, packet.Inputs[0].TaprootKeySpendSig, 64,
ht, packet.Inputs[0].TaprootKeySpendSig, 64,
)
},
)
@ -831,37 +801,29 @@ func runSignPsbtSegWitV1KeySpendBip86(t *harnessTest, net *lntest.NetworkHarness
// runSignPsbtSegWitV1KeySpendRootHash tests that the SignPsbt RPC works
// correctly for a SegWit v1 p2tr key spend that also commits to a script tree
// root hash.
func runSignPsbtSegWitV1KeySpendRootHash(t *harnessTest,
net *lntest.NetworkHarness, alice *lntest.HarnessNode) {
// Everything we do here should be done within a second or two, so we
// can just keep a single timeout context around for all calls.
ctxb := context.Background()
ctxt, cancel := context.WithTimeout(ctxb, defaultTimeout)
defer cancel()
func runSignPsbtSegWitV1KeySpendRootHash(ht *lntemp.HarnessTest,
alice *node.HarnessNode) {
// Derive a key we can use for signing.
keyDesc, internalKey, fullDerivationPath := deriveInternalKey(
ctxt, t, alice,
)
keyDesc, internalKey, fullDerivationPath := deriveInternalKey(ht, alice)
// Let's create a taproot script output now. This is a hash lock with a
// simple preimage of "foobar".
leaf1 := testScriptHashLock(t.t, []byte("foobar"))
leaf1 := testScriptHashLock(ht.T, []byte("foobar"))
rootHash := leaf1.TapHash()
taprootKey := txscript.ComputeTaprootOutputKey(internalKey, rootHash[:])
tapScriptAddr, err := btcutil.NewAddressTaproot(
schnorr.SerializePubKey(taprootKey), harnessNetParams,
)
require.NoError(t.t, err)
require.NoError(ht, err)
p2trPkScript, err := txscript.PayToAddrScript(tapScriptAddr)
require.NoError(t.t, err)
require.NoError(ht, err)
// Send some funds to the output and then try to get a signature through
// the SignPsbt RPC to spend that output again.
assertPsbtSpend(
ctxt, t, net, alice, p2trPkScript,
ht, alice, p2trPkScript,
func(packet *psbt.Packet) {
in := &packet.Inputs[0]
in.Bip32Derivation = []*psbt.Bip32Derivation{{
@ -876,9 +838,9 @@ func runSignPsbtSegWitV1KeySpendRootHash(t *harnessTest,
in.SighashType = txscript.SigHashDefault
},
func(packet *psbt.Packet) {
require.Len(t.t, packet.Inputs, 1)
require.Len(ht, packet.Inputs, 1)
require.Len(
t.t, packet.Inputs[0].TaprootKeySpendSig, 64,
ht, packet.Inputs[0].TaprootKeySpendSig, 64,
)
},
)
@ -886,43 +848,35 @@ func runSignPsbtSegWitV1KeySpendRootHash(t *harnessTest,
// runSignPsbtSegWitV1ScriptSpend tests that the SignPsbt RPC works correctly
// for a SegWit v1 p2tr script spend.
func runSignPsbtSegWitV1ScriptSpend(t *harnessTest,
net *lntest.NetworkHarness, alice *lntest.HarnessNode) {
// Everything we do here should be done within a second or two, so we
// can just keep a single timeout context around for all calls.
ctxb := context.Background()
ctxt, cancel := context.WithTimeout(ctxb, defaultTimeout)
defer cancel()
func runSignPsbtSegWitV1ScriptSpend(ht *lntemp.HarnessTest,
alice *node.HarnessNode) {
// Derive a key we can use for signing.
keyDesc, internalKey, fullDerivationPath := deriveInternalKey(
ctxt, t, alice,
)
keyDesc, internalKey, fullDerivationPath := deriveInternalKey(ht, alice)
// Let's create a taproot script output now. This is a hash lock with a
// simple preimage of "foobar".
leaf1 := testScriptSchnorrSig(t.t, internalKey)
leaf1 := testScriptSchnorrSig(ht.T, internalKey)
rootHash := leaf1.TapHash()
taprootKey := txscript.ComputeTaprootOutputKey(internalKey, rootHash[:])
tapScriptAddr, err := btcutil.NewAddressTaproot(
schnorr.SerializePubKey(taprootKey), harnessNetParams,
)
require.NoError(t.t, err)
require.NoError(ht, err)
p2trPkScript, err := txscript.PayToAddrScript(tapScriptAddr)
require.NoError(t.t, err)
require.NoError(ht, err)
// We need to assemble the control block to be able to spend through the
// script path.
tapscript := input.TapscriptPartialReveal(internalKey, leaf1, nil)
controlBlockBytes, err := tapscript.ControlBlock.ToBytes()
require.NoError(t.t, err)
require.NoError(ht, err)
// Send some funds to the output and then try to get a signature through
// the SignPsbt RPC to spend that output again.
assertPsbtSpend(
ctxt, t, net, alice, p2trPkScript,
ht, alice, p2trPkScript,
func(packet *psbt.Packet) {
in := &packet.Inputs[0]
in.Bip32Derivation = []*psbt.Bip32Derivation{{
@ -942,32 +896,27 @@ func runSignPsbtSegWitV1ScriptSpend(t *harnessTest,
}}
},
func(packet *psbt.Packet) {
require.Len(t.t, packet.Inputs, 1)
require.Len(ht, packet.Inputs, 1)
require.Len(
t.t, packet.Inputs[0].TaprootScriptSpendSig, 1,
ht, packet.Inputs[0].TaprootScriptSpendSig, 1,
)
scriptSpendSig := packet.Inputs[0].TaprootScriptSpendSig[0]
require.Len(t.t, scriptSpendSig.Signature, 64)
require.Len(ht, scriptSpendSig.Signature, 64)
},
)
}
// runFundAndSignPsbt makes sure we can sign PSBTs that were funded by our
// internal wallet.
func runFundAndSignPsbt(t *harnessTest, net *lntest.NetworkHarness,
alice *lntest.HarnessNode) {
ctxb := context.Background()
ctxt, cancel := context.WithTimeout(ctxb, defaultTimeout)
defer cancel()
func runFundAndSignPsbt(ht *lntemp.HarnessTest, alice *node.HarnessNode) {
alice.AddToLogf("================ runFundAndSignPsbt ===============")
// We'll be using a "main" address where we send the funds to and from
// several times.
mainAddrResp, err := alice.NewAddress(ctxt, &lnrpc.NewAddressRequest{
mainAddrResp := alice.RPC.NewAddress(&lnrpc.NewAddressRequest{
Type: lnrpc.AddressType_WITNESS_PUBKEY_HASH,
})
require.NoError(t.t, err)
fundOutputs := map[string]uint64{
mainAddrResp.Address: 999000,
@ -979,42 +928,40 @@ func runFundAndSignPsbt(t *harnessTest, net *lntest.NetworkHarness,
}
for _, addrType := range spendAddrTypes {
ctxt, cancel := context.WithTimeout(ctxb, defaultTimeout)
ht.Logf("testing with address type %s", addrType)
// First, spend all the coins in the wallet to an address of the
// given type so that UTXO will be picked when funding a PSBT.
sendAllCoinsToAddrType(ctxt, t, net, alice, addrType)
// First, spend all the coins in the wallet to an address of
// the given type so that UTXO will be picked when funding a
// PSBT.
sendAllCoinsToAddrType(ht, alice, addrType)
// Let's fund a PSBT now where we want to send a few sats to our
// main address.
assertPsbtFundSignSpend(ctxt, t, net, alice, fundOutputs, false)
// Let's fund a PSBT now where we want to send a few sats to
// our main address.
assertPsbtFundSignSpend(ht, alice, fundOutputs, false)
// Send all coins back to a single address once again.
sendAllCoinsToAddrType(ctxt, t, net, alice, addrType)
sendAllCoinsToAddrType(ht, alice, addrType)
// And now make sure the alternate way of signing a PSBT, which
// is calling FinalizePsbt directly, also works for this address
// type.
assertPsbtFundSignSpend(ctxt, t, net, alice, fundOutputs, true)
cancel()
// is calling FinalizePsbt directly, also works for this
// address type.
assertPsbtFundSignSpend(ht, alice, fundOutputs, true)
}
}
// assertPsbtSpend creates an output with the given pkScript on chain and then
// attempts to create a sweep transaction that is signed using the SignPsbt RPC
// that spends that output again.
func assertPsbtSpend(ctx context.Context, t *harnessTest,
net *lntest.NetworkHarness, alice *lntest.HarnessNode, pkScript []byte,
decorateUnsigned func(*psbt.Packet), verifySigned func(*psbt.Packet)) {
func assertPsbtSpend(ht *lntemp.HarnessTest, alice *node.HarnessNode,
pkScript []byte, decorateUnsigned func(*psbt.Packet),
verifySigned func(*psbt.Packet)) {
// Let's send some coins to that address now.
utxo := &wire.TxOut{
Value: 600_000,
PkScript: pkScript,
}
resp, err := alice.WalletKitClient.SendOutputs(
ctx, &walletrpc.SendOutputsRequest{
req := &walletrpc.SendOutputsRequest{
Outputs: []*signrpc.TxOut{{
Value: utxo.Value,
PkScript: utxo.PkScript,
@ -1022,13 +969,12 @@ func assertPsbtSpend(ctx context.Context, t *harnessTest,
MinConfs: 0,
SpendUnconfirmed: true,
SatPerKw: 2500,
},
)
require.NoError(t.t, err)
}
resp := alice.RPC.SendOutputs(req)
prevTx := wire.NewMsgTx(2)
err = prevTx.Deserialize(bytes.NewReader(resp.RawTx))
require.NoError(t.t, err)
err := prevTx.Deserialize(bytes.NewReader(resp.RawTx))
require.NoError(ht, err)
prevOut := -1
for idx, txOut := range prevTx.TxOut {
@ -1036,7 +982,7 @@ func assertPsbtSpend(ctx context.Context, t *harnessTest,
prevOut = idx
}
}
require.Greater(t.t, prevOut, -1)
require.Greater(ht, prevOut, -1)
// Okay, we have everything we need to create a PSBT now.
pendingTx := &wire.MsgTx{
@ -1054,7 +1000,7 @@ func assertPsbtSpend(ctx context.Context, t *harnessTest,
}},
}
packet, err := psbt.NewFromUnsignedTx(pendingTx)
require.NoError(t.t, err)
require.NoError(ht, err)
// Now let's add the meta information that we need for signing.
packet.Inputs[0].WitnessUtxo = utxo
@ -1064,20 +1010,16 @@ func assertPsbtSpend(ctx context.Context, t *harnessTest,
// That's it, we should be able to sign the PSBT now.
var buf bytes.Buffer
err = packet.Serialize(&buf)
require.NoError(t.t, err)
require.NoError(ht, err)
signResp, err := alice.WalletKitClient.SignPsbt(
ctx, &walletrpc.SignPsbtRequest{
FundedPsbt: buf.Bytes(),
},
)
require.NoError(t.t, err)
signReq := &walletrpc.SignPsbtRequest{FundedPsbt: buf.Bytes()}
signResp := alice.RPC.SignPsbt(signReq)
// Let's make sure we have a partial signature.
signedPacket, err := psbt.NewFromRawBytes(
bytes.NewReader(signResp.SignedPsbt), false,
)
require.NoError(t.t, err)
require.NoError(ht, err)
// Allow the caller to also verify (and potentially move) some of the
// returned fields.
@ -1085,54 +1027,44 @@ func assertPsbtSpend(ctx context.Context, t *harnessTest,
// We should be able to finalize the PSBT and extract the final TX now.
err = psbt.MaybeFinalizeAll(signedPacket)
require.NoError(t.t, err)
require.NoError(ht, err)
finalTx, err := psbt.Extract(signedPacket)
require.NoError(t.t, err)
require.NoError(ht, err)
// Make sure we can also sign a second time. This makes sure any key
// tweaking that happened for the signing didn't affect any keys in the
// cache.
signResp2, err := alice.WalletKitClient.SignPsbt(
ctx, &walletrpc.SignPsbtRequest{
FundedPsbt: buf.Bytes(),
},
)
require.NoError(t.t, err)
r := &walletrpc.SignPsbtRequest{FundedPsbt: buf.Bytes()}
signResp2 := alice.RPC.SignPsbt(r)
signedPacket2, err := psbt.NewFromRawBytes(
bytes.NewReader(signResp2.SignedPsbt), false,
)
require.NoError(t.t, err)
require.NoError(ht, err)
verifySigned(signedPacket2)
buf.Reset()
err = finalTx.Serialize(&buf)
require.NoError(t.t, err)
require.NoError(ht, err)
// Publish the second transaction and then mine both of them.
_, err = alice.WalletKitClient.PublishTransaction(
ctx, &walletrpc.Transaction{
TxHex: buf.Bytes(),
},
)
require.NoError(t.t, err)
txReq := &walletrpc.Transaction{TxHex: buf.Bytes()}
alice.RPC.PublishTransaction(txReq)
// Mine one block which should contain two transactions.
block := mineBlocks(t, net, 1, 2)[0]
block := ht.MineBlocksAndAssertNumTxes(1, 2)[0]
firstTxHash := prevTx.TxHash()
secondTxHash := finalTx.TxHash()
assertTxInBlock(t, block, &firstTxHash)
assertTxInBlock(t, block, &secondTxHash)
ht.Miner.AssertTxInBlock(block, &firstTxHash)
ht.Miner.AssertTxInBlock(block, &secondTxHash)
}
// assertPsbtFundSignSpend funds a PSBT from the internal wallet and then
// attempts to sign it by using the SignPsbt or FinalizePsbt method.
func assertPsbtFundSignSpend(ctx context.Context, t *harnessTest,
net *lntest.NetworkHarness, alice *lntest.HarnessNode,
func assertPsbtFundSignSpend(ht *lntemp.HarnessTest, alice *node.HarnessNode,
fundOutputs map[string]uint64, useFinalize bool) {
fundResp, err := alice.WalletKitClient.FundPsbt(
ctx, &walletrpc.FundPsbtRequest{
fundResp := alice.RPC.FundPsbt(&walletrpc.FundPsbtRequest{
Template: &walletrpc.FundPsbtRequest_Raw{
Raw: &walletrpc.TxTemplate{
Outputs: fundOutputs,
@ -1144,28 +1076,23 @@ func assertPsbtFundSignSpend(ctx context.Context, t *harnessTest,
MinConfs: 1,
},
)
require.NoError(t.t, err)
require.GreaterOrEqual(
t.t, fundResp.ChangeOutputIndex, int32(-1),
)
require.GreaterOrEqual(ht, fundResp.ChangeOutputIndex, int32(-1))
var signedPsbt []byte
if useFinalize {
finalizeResp, err := alice.WalletKitClient.FinalizePsbt(
ctx, &walletrpc.FinalizePsbtRequest{
finalizeResp := alice.RPC.FinalizePsbt(
&walletrpc.FinalizePsbtRequest{
FundedPsbt: fundResp.FundedPsbt,
},
)
require.NoError(t.t, err)
signedPsbt = finalizeResp.SignedPsbt
} else {
signResp, err := alice.WalletKitClient.SignPsbt(
ctx, &walletrpc.SignPsbtRequest{
signResp := alice.RPC.SignPsbt(
&walletrpc.SignPsbtRequest{
FundedPsbt: fundResp.FundedPsbt,
},
)
require.NoError(t.t, err)
signedPsbt = signResp.SignedPsbt
}
@ -1174,37 +1101,34 @@ func assertPsbtFundSignSpend(ctx context.Context, t *harnessTest,
signedPacket, err := psbt.NewFromRawBytes(
bytes.NewReader(signedPsbt), false,
)
require.NoError(t.t, err)
require.NoError(ht, err)
// We should be able to finalize the PSBT and extract the final
// TX now.
err = psbt.MaybeFinalizeAll(signedPacket)
require.NoError(t.t, err)
require.NoError(ht, err)
finalTx, err := psbt.Extract(signedPacket)
require.NoError(t.t, err)
require.NoError(ht, err)
var buf bytes.Buffer
err = finalTx.Serialize(&buf)
require.NoError(t.t, err)
require.NoError(ht, err)
// Publish the second transaction and then mine both of them.
_, err = alice.WalletKitClient.PublishTransaction(
ctx, &walletrpc.Transaction{
alice.RPC.PublishTransaction(&walletrpc.Transaction{
TxHex: buf.Bytes(),
},
)
require.NoError(t.t, err)
})
// Mine one block which should contain two transactions.
block := mineBlocks(t, net, 1, 1)[0]
// Mine one block which should contain one transaction.
block := ht.MineBlocksAndAssertNumTxes(1, 1)[0]
finalTxHash := finalTx.TxHash()
assertTxInBlock(t, block, &finalTxHash)
ht.Miner.AssertTxInBlock(block, &finalTxHash)
}
// deriveInternalKey derives a signing key and returns its descriptor, full
// derivation path and parsed public key.
func deriveInternalKey(ctx context.Context, t *harnessTest,
func deriveInternalKeyOld(ctx context.Context, t *harnessTest,
alice *lntest.HarnessNode) (*signrpc.KeyDescriptor, *btcec.PublicKey,
[]uint32) {
@ -1230,6 +1154,32 @@ func deriveInternalKey(ctx context.Context, t *harnessTest,
return keyDesc, parsedPubKey, fullDerivationPath
}
// deriveInternalKey derives a signing key and returns its descriptor, full
// derivation path and parsed public key.
func deriveInternalKey(ht *lntemp.HarnessTest,
alice *node.HarnessNode) (*signrpc.KeyDescriptor, *btcec.PublicKey,
[]uint32) {
// For the next step, we need a public key. Let's use a special family
// for this.
req := &walletrpc.KeyReq{KeyFamily: testTaprootKeyFamily}
keyDesc := alice.RPC.DeriveNextKey(req)
// The DeriveNextKey returns a key from the internal 1017 scope.
fullDerivationPath := []uint32{
hdkeychain.HardenedKeyStart + keychain.BIP0043Purpose,
hdkeychain.HardenedKeyStart + harnessNetParams.HDCoinType,
hdkeychain.HardenedKeyStart + uint32(keyDesc.KeyLoc.KeyFamily),
0,
uint32(keyDesc.KeyLoc.KeyIndex),
}
parsedPubKey, err := btcec.ParsePubKey(keyDesc.RawKeyBytes)
require.NoError(ht, err)
return keyDesc, parsedPubKey, fullDerivationPath
}
// openChannelPsbt attempts to open a channel between srcNode and destNode with
// the passed channel funding parameters. If the passed context has a timeout,
// then if the timeout is reached before the channel pending notification is
@ -1319,22 +1269,19 @@ func receiveChanUpdate(ctx context.Context,
// sendAllCoinsToAddrType sweeps all coins from the wallet and sends them to a
// new address of the given type.
func sendAllCoinsToAddrType(ctx context.Context, t *harnessTest,
net *lntest.NetworkHarness, node *lntest.HarnessNode,
addrType lnrpc.AddressType) {
func sendAllCoinsToAddrType(ht *lntemp.HarnessTest,
hn *node.HarnessNode, addrType lnrpc.AddressType) {
resp, err := node.NewAddress(ctx, &lnrpc.NewAddressRequest{
resp := hn.RPC.NewAddress(&lnrpc.NewAddressRequest{
Type: addrType,
})
require.NoError(t.t, err)
_, err = node.SendCoins(ctx, &lnrpc.SendCoinsRequest{
hn.RPC.SendCoins(&lnrpc.SendCoinsRequest{
Addr: resp.Address,
SendAll: true,
SpendUnconfirmed: true,
})
require.NoError(t.t, err)
_ = mineBlocks(t, net, 1, 1)[0]
err = node.WaitForBlockchainSync()
require.NoError(t.t, err)
ht.MineBlocksAndAssertNumTxes(1, 1)
ht.WaitForBlockchainSync(hn)
}

View File

@ -1136,7 +1136,7 @@ func testTaprootImportTapscriptFullTree(ctxt context.Context, t *harnessTest,
// For the next step, we need a public key. Let's use a special family
// for this.
_, internalKey, derivationPath := deriveInternalKey(ctxt, t, alice)
_, internalKey, derivationPath := deriveInternalKeyOld(ctxt, t, alice)
// Let's create a taproot script output now. This is a hash lock with a
// simple preimage of "foobar".
@ -1213,7 +1213,7 @@ func testTaprootImportTapscriptPartialReveal(ctxt context.Context,
// For the next step, we need a public key. Let's use a special family
// for this.
_, internalKey, derivationPath := deriveInternalKey(ctxt, t, alice)
_, internalKey, derivationPath := deriveInternalKeyOld(ctxt, t, alice)
// Let's create a taproot script output now. This is a hash lock with a
// simple preimage of "foobar".
@ -1286,7 +1286,7 @@ func testTaprootImportTapscriptRootHashOnly(ctxt context.Context,
// For the next step, we need a public key. Let's use a special family
// for this.
_, internalKey, derivationPath := deriveInternalKey(ctxt, t, alice)
_, internalKey, derivationPath := deriveInternalKeyOld(ctxt, t, alice)
// Let's create a taproot script output now. This is a hash lock with a
// simple preimage of "foobar".
@ -1347,7 +1347,7 @@ func testTaprootImportTapscriptFullKey(ctxt context.Context, t *harnessTest,
// For the next step, we need a public key. Let's use a special family
// for this.
_, internalKey, derivationPath := deriveInternalKey(ctxt, t, alice)
_, internalKey, derivationPath := deriveInternalKeyOld(ctxt, t, alice)
// Let's create a taproot script output now. This is a hash lock with a
// simple preimage of "foobar".

View File

@ -12,10 +12,6 @@ var allTestCases = []*testCase{
name: "async bidirectional payments",
test: testBidirectionalAsyncPayments,
},
{
name: "sign psbt",
test: testSignPsbt,
},
{
name: "wallet import account",
test: testWalletImportAccount,