itest: refactor testMultiHopHtlcAggregation

This commit is contained in:
yyforyongyu 2022-07-29 12:48:21 +08:00
parent 0115ec8719
commit b463147595
No known key found for this signature in database
GPG key ID: 9BCD95C4FF296868
3 changed files with 131 additions and 458 deletions

View file

@ -2,7 +2,6 @@ package itest
import (
"context"
"crypto/rand"
"fmt"
"testing"
"time"
@ -15,7 +14,6 @@ import (
"github.com/lightningnetwork/lnd/labels"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/lnrpc/signrpc"
"github.com/lightningnetwork/lnd/lnrpc/walletrpc"
"github.com/lightningnetwork/lnd/lntemp"
"github.com/lightningnetwork/lnd/lntemp/node"
"github.com/lightningnetwork/lnd/lntest"
@ -717,115 +715,6 @@ func testChannelFundingPersistence(net *lntest.NetworkHarness, t *harnessTest) {
closeChannelAndAssert(t, net, net.Alice, chanPoint, false)
}
// deriveFundingShim creates a channel funding shim by deriving the necessary
// keys on both sides.
// TODO(yy): remove.
func deriveFundingShimOld(net *lntest.NetworkHarness, t *harnessTest,
carol, dave *lntest.HarnessNode, chanSize btcutil.Amount,
thawHeight uint32, publish bool) (*lnrpc.FundingShim,
*lnrpc.ChannelPoint, *chainhash.Hash) {
ctxb := context.Background()
keyLoc := &walletrpc.KeyReq{KeyFamily: 9999}
carolFundingKey, err := carol.WalletKitClient.DeriveNextKey(ctxb, keyLoc)
require.NoError(t.t, err)
daveFundingKey, err := dave.WalletKitClient.DeriveNextKey(ctxb, keyLoc)
require.NoError(t.t, err)
// Now that we have the multi-sig keys for each party, we can manually
// construct the funding transaction. We'll instruct the backend to
// immediately create and broadcast a transaction paying out an exact
// amount. Normally this would reside in the mempool, but we just
// confirm it now for simplicity.
_, fundingOutput, err := input.GenFundingPkScript(
carolFundingKey.RawKeyBytes, daveFundingKey.RawKeyBytes,
int64(chanSize),
)
require.NoError(t.t, err)
var txid *chainhash.Hash
targetOutputs := []*wire.TxOut{fundingOutput}
if publish {
txid, err = net.Miner.SendOutputsWithoutChange(
targetOutputs, 5,
)
require.NoError(t.t, err)
} else {
tx, err := net.Miner.CreateTransaction(targetOutputs, 5, false)
require.NoError(t.t, err)
txHash := tx.TxHash()
txid = &txHash
}
// At this point, we can being our external channel funding workflow.
// We'll start by generating a pending channel ID externally that will
// be used to track this new funding type.
var pendingChanID [32]byte
_, err = rand.Read(pendingChanID[:])
require.NoError(t.t, err)
// Now that we have the pending channel ID, Dave (our responder) will
// register the intent to receive a new channel funding workflow using
// the pending channel ID.
chanPoint := &lnrpc.ChannelPoint{
FundingTxid: &lnrpc.ChannelPoint_FundingTxidBytes{
FundingTxidBytes: txid[:],
},
}
chanPointShim := &lnrpc.ChanPointShim{
Amt: int64(chanSize),
ChanPoint: chanPoint,
LocalKey: &lnrpc.KeyDescriptor{
RawKeyBytes: daveFundingKey.RawKeyBytes,
KeyLoc: &lnrpc.KeyLocator{
KeyFamily: daveFundingKey.KeyLoc.KeyFamily,
KeyIndex: daveFundingKey.KeyLoc.KeyIndex,
},
},
RemoteKey: carolFundingKey.RawKeyBytes,
PendingChanId: pendingChanID[:],
ThawHeight: thawHeight,
}
fundingShim := &lnrpc.FundingShim{
Shim: &lnrpc.FundingShim_ChanPointShim{
ChanPointShim: chanPointShim,
},
}
_, err = dave.FundingStateStep(ctxb, &lnrpc.FundingTransitionMsg{
Trigger: &lnrpc.FundingTransitionMsg_ShimRegister{
ShimRegister: fundingShim,
},
})
require.NoError(t.t, err)
// If we attempt to register the same shim (has the same pending chan
// ID), then we should get an error.
_, err = dave.FundingStateStep(ctxb, &lnrpc.FundingTransitionMsg{
Trigger: &lnrpc.FundingTransitionMsg_ShimRegister{
ShimRegister: fundingShim,
},
})
if err == nil {
t.Fatalf("duplicate pending channel ID funding shim " +
"registration should trigger an error")
}
// We'll take the chan point shim we just registered for Dave (the
// responder), and swap the local/remote keys before we feed it in as
// Carol's funding shim as the initiator.
fundingShim.GetChanPointShim().LocalKey = &lnrpc.KeyDescriptor{
RawKeyBytes: carolFundingKey.RawKeyBytes,
KeyLoc: &lnrpc.KeyLocator{
KeyFamily: carolFundingKey.KeyLoc.KeyFamily,
KeyIndex: carolFundingKey.KeyLoc.KeyIndex,
},
}
fundingShim.GetChanPointShim().RemoteKey = daveFundingKey.RawKeyBytes
return fundingShim, chanPoint, txid
}
// testBatchChanFunding makes sure multiple channels can be opened in one batch
// transaction in an atomic way.
func testBatchChanFunding(net *lntest.NetworkHarness, t *harnessTest) {

View file

@ -1,18 +1,16 @@
package itest
import (
"context"
"fmt"
"time"
"github.com/btcsuite/btcd/btcutil"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/wire"
"github.com/lightningnetwork/lnd/lncfg"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/lnrpc/invoicesrpc"
"github.com/lightningnetwork/lnd/lnrpc/routerrpc"
"github.com/lightningnetwork/lnd/lntest"
"github.com/lightningnetwork/lnd/lntest/wait"
"github.com/lightningnetwork/lnd/lntemp"
"github.com/lightningnetwork/lnd/lntemp/node"
"github.com/lightningnetwork/lnd/lntemp/rpc"
"github.com/lightningnetwork/lnd/lntypes"
"github.com/stretchr/testify/require"
)
@ -22,41 +20,35 @@ import (
// resolve them using the second level timeout and success transactions. In
// case of anchor channels, the second-level spends can also be aggregated and
// properly feebumped, so we'll check that as well.
func testMultiHopHtlcAggregation(net *lntest.NetworkHarness, t *harnessTest,
alice, bob *lntest.HarnessNode, c lnrpc.CommitmentType,
zeroConf bool) {
func testMultiHopHtlcAggregation(ht *lntemp.HarnessTest,
alice, bob *node.HarnessNode, c lnrpc.CommitmentType, zeroConf bool) {
const finalCltvDelta = 40
ctxb := context.Background()
// First, we'll create a three hop network: Alice -> Bob -> Carol.
aliceChanPoint, bobChanPoint, carol := createThreeHopNetworkOld(
t, net, alice, bob, false, c, zeroConf,
aliceChanPoint, bobChanPoint, carol := createThreeHopNetwork(
ht, alice, bob, false, c, zeroConf,
)
defer shutdownAndAssert(net, t, carol)
// For neutrino backend, we need one additional UTXO to create
// the sweeping tx for the second-level success txes.
if ht.IsNeutrinoBackend() {
ht.FundCoins(btcutil.SatoshiPerBitcoin, bob)
}
// To ensure we have capacity in both directions of the route, we'll
// make a fairly large payment Alice->Carol and settle it.
// make a fairly large payment Alice->Carol and settle it.
const reBalanceAmt = 500_000
invoice := &lnrpc.Invoice{
Value: reBalanceAmt,
}
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
resp, err := carol.AddInvoice(ctxt, invoice)
require.NoError(t.t, err)
invoice := &lnrpc.Invoice{Value: reBalanceAmt}
resp := carol.RPC.AddInvoice(invoice)
sendReq := &routerrpc.SendPaymentRequest{
PaymentRequest: resp.PaymentRequest,
TimeoutSeconds: 60,
FeeLimitMsat: noFeeLimitMsat,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
stream, err := alice.RouterClient.SendPaymentV2(ctxt, sendReq)
require.NoError(t.t, err)
result, err := getPaymentResult(stream)
require.NoError(t.t, err)
require.Equal(t.t, result.Status, lnrpc.Payment_SUCCEEDED)
stream := alice.RPC.SendPayment(sendReq)
ht.AssertPaymentStatusFromStream(stream, lnrpc.Payment_SUCCEEDED)
// With the network active, we'll now add a new hodl invoices at both
// Alice's and Carol's end. Make sure the cltv expiry delta is large
@ -65,116 +57,105 @@ func testMultiHopHtlcAggregation(net *lntest.NetworkHarness, t *harnessTest,
const invoiceAmt = 50_000
var (
carolInvoices []*invoicesrpc.AddHoldInvoiceResp
aliceInvoices []*invoicesrpc.AddHoldInvoiceResp
alicePreimages []lntypes.Preimage
payHashes [][]byte
alicePayHashes [][]byte
carolPayHashes [][]byte
carolInvoices []*invoicesrpc.AddHoldInvoiceResp
aliceInvoices []*invoicesrpc.AddHoldInvoiceResp
alicePreimages []lntypes.Preimage
payHashes [][]byte
invoiceStreamsCarol []rpc.SingleInvoiceClient
invoiceStreamsAlice []rpc.SingleInvoiceClient
)
// Add Carol invoices.
for i := 0; i < numInvoices; i++ {
preimage := lntypes.Preimage{1, 1, 1, byte(i)}
var preimage lntypes.Preimage
copy(preimage[:], ht.Random32Bytes())
payHash := preimage.Hash()
invoiceReq := &invoicesrpc.AddHoldInvoiceRequest{
Value: invoiceAmt,
CltvExpiry: finalCltvDelta,
Hash: payHash[:],
}
ctxt, cancel := context.WithTimeout(ctxb, defaultTimeout)
defer cancel()
carolInvoice, err := carol.AddHoldInvoice(ctxt, invoiceReq)
require.NoError(t.t, err)
carolInvoice := carol.RPC.AddHoldInvoice(invoiceReq)
carolInvoices = append(carolInvoices, carolInvoice)
payHashes = append(payHashes, payHash[:])
carolPayHashes = append(carolPayHashes, payHash[:])
// Subscribe the invoice.
stream := carol.RPC.SubscribeSingleInvoice(payHash[:])
invoiceStreamsCarol = append(invoiceStreamsCarol, stream)
}
// We'll give Alice's invoices a longer CLTV expiry, to ensure the
// channel Bob<->Carol will be closed first.
for i := 0; i < numInvoices; i++ {
preimage := lntypes.Preimage{2, 2, 2, byte(i)}
var preimage lntypes.Preimage
copy(preimage[:], ht.Random32Bytes())
payHash := preimage.Hash()
invoiceReq := &invoicesrpc.AddHoldInvoiceRequest{
Value: invoiceAmt,
CltvExpiry: 2 * finalCltvDelta,
Hash: payHash[:],
}
ctxt, cancel := context.WithTimeout(ctxb, defaultTimeout)
defer cancel()
aliceInvoice, err := alice.AddHoldInvoice(ctxt, invoiceReq)
require.NoError(t.t, err)
aliceInvoice := alice.RPC.AddHoldInvoice(invoiceReq)
aliceInvoices = append(aliceInvoices, aliceInvoice)
alicePreimages = append(alicePreimages, preimage)
payHashes = append(payHashes, payHash[:])
alicePayHashes = append(alicePayHashes, payHash[:])
// Subscribe the invoice.
stream := alice.RPC.SubscribeSingleInvoice(payHash[:])
invoiceStreamsAlice = append(invoiceStreamsAlice, stream)
}
// Now that we've created the invoices, we'll pay them all from
// Alice<->Carol, going through Bob. We won't wait for the response
// however, as neither will immediately settle the payment.
ctx, cancel := context.WithCancel(ctxb)
defer cancel()
// Alice will pay all of Carol's invoices.
for _, carolInvoice := range carolInvoices {
_, err = alice.RouterClient.SendPaymentV2(
ctx, &routerrpc.SendPaymentRequest{
PaymentRequest: carolInvoice.PaymentRequest,
TimeoutSeconds: 60,
FeeLimitMsat: noFeeLimitMsat,
},
)
require.NoError(t.t, err)
req := &routerrpc.SendPaymentRequest{
PaymentRequest: carolInvoice.PaymentRequest,
TimeoutSeconds: 60,
FeeLimitMsat: noFeeLimitMsat,
}
alice.RPC.SendPayment(req)
}
// And Carol will pay Alice's.
for _, aliceInvoice := range aliceInvoices {
_, err = carol.RouterClient.SendPaymentV2(
ctx, &routerrpc.SendPaymentRequest{
PaymentRequest: aliceInvoice.PaymentRequest,
TimeoutSeconds: 60,
FeeLimitMsat: noFeeLimitMsat,
},
)
require.NoError(t.t, err)
req := &routerrpc.SendPaymentRequest{
PaymentRequest: aliceInvoice.PaymentRequest,
TimeoutSeconds: 60,
FeeLimitMsat: noFeeLimitMsat,
}
carol.RPC.SendPayment(req)
}
// At this point, all 3 nodes should now the HTLCs active on their
// channels.
nodes := []*lntest.HarnessNode{alice, bob, carol}
err = wait.NoError(func() error {
return assertActiveHtlcs(nodes, payHashes...)
}, defaultTimeout)
require.NoError(t.t, err)
ht.AssertActiveHtlcs(alice, payHashes...)
ht.AssertActiveHtlcs(bob, payHashes...)
ht.AssertActiveHtlcs(carol, payHashes...)
// Wait for Alice and Carol to mark the invoices as accepted. There is
// a small gap to bridge between adding the htlc to the channel and
// executing the exit hop logic.
for _, payHash := range carolPayHashes {
h := lntypes.Hash{}
copy(h[:], payHash)
waitForInvoiceAccepted(t, carol, h)
for _, stream := range invoiceStreamsCarol {
ht.AssertInvoiceState(stream, lnrpc.Invoice_ACCEPTED)
}
for _, payHash := range alicePayHashes {
h := lntypes.Hash{}
copy(h[:], payHash)
waitForInvoiceAccepted(t, alice, h)
for _, stream := range invoiceStreamsAlice {
ht.AssertInvoiceState(stream, lnrpc.Invoice_ACCEPTED)
}
// Increase the fee estimate so that the following force close tx will
// be cpfp'ed.
net.SetFeeEstimate(30000)
ht.SetFeeEstimate(30000)
// We want Carol's htlcs to expire off-chain to demonstrate bob's force
// close. However, Carol will cancel her invoices to prevent force
// closes, so we shut her down for now.
restartCarol, err := net.SuspendNode(carol)
require.NoError(t.t, err)
restartCarol := ht.SuspendNode(carol)
// We'll now mine enough blocks to trigger Bob's broadcast of his
// commitment transaction due to the fact that the Carol's HTLCs are
@ -183,8 +164,7 @@ func testMultiHopHtlcAggregation(net *lntest.NetworkHarness, t *harnessTest,
numBlocks := padCLTV(
uint32(finalCltvDelta - lncfg.DefaultOutgoingBroadcastDelta),
)
_, err = net.Miner.Client.Generate(numBlocks)
require.NoError(t.t, err)
ht.MineBlocksAssertNodesSync(numBlocks)
// Bob's force close transaction should now be found in the mempool. If
// there are anchors, we also expect Bob's anchor sweep.
@ -193,22 +173,15 @@ func testMultiHopHtlcAggregation(net *lntest.NetworkHarness, t *harnessTest,
if hasAnchors {
expectedTxes = 2
}
ht.Miner.AssertNumTxsInMempool(expectedTxes)
bobFundingTxid, err := lnrpc.GetChanPointFundingTxid(bobChanPoint)
require.NoError(t.t, err)
_, err = waitForNTxsInMempool(
net.Miner.Client, expectedTxes, minerMempoolTimeout,
)
require.NoError(t.t, err)
closeTx := getSpendingTxInMempool(
t, net.Miner.Client, minerMempoolTimeout, wire.OutPoint{
Hash: *bobFundingTxid,
Index: bobChanPoint.OutputIndex,
},
closeTx := ht.Miner.AssertOutpointInMempool(
ht.OutPointFromChannelPoint(bobChanPoint),
)
closeTxid := closeTx.TxHash()
// Go through the closing transaction outputs, and make an index for the HTLC outputs.
// Go through the closing transaction outputs, and make an index for
// the HTLC outputs.
successOuts := make(map[wire.OutPoint]struct{})
timeoutOuts := make(map[wire.OutPoint]struct{})
for i, txOut := range closeTx.TxOut {
@ -224,33 +197,26 @@ func testMultiHopHtlcAggregation(net *lntest.NetworkHarness, t *harnessTest,
case invoiceAmt:
timeoutOuts[op] = struct{}{}
// If the HTLC has direction towards Alice, Bob will
// claim it with the success TX when he learns the preimage. In
// this case one extra sat will be on the output, because of
// the routing fee.
// If the HTLC has direction towards Alice, Bob will claim it
// with the success TX when he learns the preimage. In this
// case one extra sat will be on the output, because of the
// routing fee.
case invoiceAmt + 1:
successOuts[op] = struct{}{}
}
}
// Once bob has force closed, we can restart carol.
require.NoError(t.t, restartCarol())
require.NoError(ht, restartCarol())
// Mine a block to confirm the closing transaction.
mineBlocks(t, net, 1, expectedTxes)
time.Sleep(1 * time.Second)
ht.Miner.MineBlocksAndAssertNumTxes(1, expectedTxes)
// Let Alice settle her invoices. When Bob now gets the preimages, he
// has no other option than to broadcast his second-level transactions
// to claim the money.
for _, preimage := range alicePreimages {
ctx, cancel = context.WithTimeout(ctxb, defaultTimeout)
defer cancel()
_, err = alice.SettleInvoice(ctx, &invoicesrpc.SettleInvoiceMsg{
Preimage: preimage[:],
})
require.NoError(t.t, err)
alice.RPC.SettleInvoice(preimage[:])
}
switch c {
@ -271,13 +237,9 @@ func testMultiHopHtlcAggregation(net *lntest.NetworkHarness, t *harnessTest,
expectedTxes = 4
default:
t.Fatalf("unhandled commitment type %v", c)
ht.Fatalf("unhandled commitment type %v", c)
}
txes, err := getNTxsFromMempool(
net.Miner.Client, expectedTxes, minerMempoolTimeout,
)
require.NoError(t.t, err)
txes := ht.Miner.GetNumTxsFromMempool(expectedTxes)
// Since Bob can aggregate the transactions, we expect a single
// transaction, that have multiple spends from the commitment.
@ -306,81 +268,53 @@ func testMultiHopHtlcAggregation(net *lntest.NetworkHarness, t *harnessTest,
// levels to be aggregated into one tx. For earlier channel types, they
// will be separate transactions.
if hasAnchors {
require.Len(t.t, timeoutTxs, 1)
require.Len(t.t, successTxs, 1)
require.Len(ht, timeoutTxs, 1)
require.Len(ht, successTxs, 1)
} else {
require.Len(t.t, timeoutTxs, numInvoices)
require.Len(t.t, successTxs, numInvoices)
require.Len(ht, timeoutTxs, numInvoices)
require.Len(ht, successTxs, numInvoices)
}
// All mempool transactions should be spending from the commitment
// transaction.
assertAllTxesSpendFrom(t, txes, closeTxid)
ht.AssertAllTxesSpendFrom(txes, closeTxid)
// Mine a block to confirm the transactions.
block := mineBlocks(t, net, 1, expectedTxes)[0]
require.Len(t.t, block.Transactions, expectedTxes+1)
// Mine a block to confirm the all the transactions, including Carol's
// commitment tx, anchor tx(optional), and the second-level timeout and
// success txes.
block := ht.Miner.MineBlocksAndAssertNumTxes(1, expectedTxes)[0]
require.Len(ht, block.Transactions, expectedTxes+1)
// At this point, Bob should have broadcast his second layer success
// transaction, and should have sent it to the nursery for incubation,
// or to the sweeper for sweeping.
err = waitForNumChannelPendingForceClose(
bob, 1, func(c *lnrpcForceCloseChannel) error {
if c.Channel.LocalBalance != 0 {
return nil
}
ht.AssertNumPendingForceClose(bob, 1)
if len(c.PendingHtlcs) != 1 {
return fmt.Errorf("bob should have pending " +
"htlc but doesn't")
}
if c.PendingHtlcs[0].Stage != 1 {
return fmt.Errorf("bob's htlc should have "+
"advanced to the first stage but was "+
"stage: %v", c.PendingHtlcs[0].Stage)
}
return nil
},
)
require.NoError(t.t, err)
// For this channel, we also check the number of HTLCs and the stage
// are correct.
ht.AssertNumHTLCsAndStage(bob, bobChanPoint, numInvoices*2, 2)
if c != lnrpc.CommitmentType_SCRIPT_ENFORCED_LEASE {
// If we then mine additional blocks, Bob can sweep his commitment
// output.
_, err = net.Miner.Client.Generate(defaultCSV - 2)
require.NoError(t.t, err)
// If we then mine additional blocks, Bob can sweep his
// commitment output.
ht.MineBlocksAssertNodesSync(defaultCSV - 2)
// Find the commitment sweep.
bobCommitSweepHash, err := waitForTxInMempool(
net.Miner.Client, minerMempoolTimeout,
)
require.NoError(t.t, err)
bobCommitSweep, err := net.Miner.Client.GetRawTransaction(
bobCommitSweepHash,
)
require.NoError(t.t, err)
require.Equal(
t.t, closeTxid,
bobCommitSweep.MsgTx().TxIn[0].PreviousOutPoint.Hash,
)
bobCommitSweep := ht.Miner.GetNumTxsFromMempool(1)[0]
ht.AssertTxSpendFrom(bobCommitSweep, closeTxid)
// Also ensure it is not spending from any of the HTLC output.
for _, txin := range bobCommitSweep.MsgTx().TxIn {
for _, txin := range bobCommitSweep.TxIn {
for _, timeoutTx := range timeoutTxs {
if *timeoutTx == txin.PreviousOutPoint.Hash {
t.Fatalf("found unexpected spend of " +
"timeout tx")
}
require.NotEqual(ht, *timeoutTx,
txin.PreviousOutPoint.Hash,
"found unexpected spend of timeout tx")
}
for _, successTx := range successTxs {
if *successTx == txin.PreviousOutPoint.Hash {
t.Fatalf("found unexpected spend of " +
"success tx")
}
require.NotEqual(ht, *successTx,
txin.PreviousOutPoint.Hash,
"found unexpected spend of success tx")
}
}
}
@ -390,43 +324,42 @@ func testMultiHopHtlcAggregation(net *lntest.NetworkHarness, t *harnessTest,
// the nursery waits an extra block before sweeping. Before the blocks
// are mined, we should expect to see Bob's commit sweep in the mempool.
case lnrpc.CommitmentType_LEGACY:
_ = mineBlocks(t, net, 2, 1)
ht.Miner.MineBlocksAndAssertNumTxes(2, 1)
// Mining one additional block, Bob's second level tx is mature, and he
// can sweep the output. Before the blocks are mined, we should expect
// to see Bob's commit sweep in the mempool.
case lnrpc.CommitmentType_ANCHORS:
_ = mineBlocks(t, net, 1, 1)
ht.Miner.MineBlocksAndAssertNumTxes(1, 1)
// Since Bob is the initiator of the Bob-Carol script-enforced leased
// channel, he incurs an additional CLTV when sweeping outputs back to
// his wallet. We'll need to mine enough blocks for the timelock to
// expire to prompt his broadcast.
case lnrpc.CommitmentType_SCRIPT_ENFORCED_LEASE:
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
resp, err := bob.PendingChannels(
ctxt, &lnrpc.PendingChannelsRequest{},
)
require.NoError(t.t, err)
require.Len(t.t, resp.PendingForceClosingChannels, 1)
resp := bob.RPC.PendingChannels()
require.Len(ht, resp.PendingForceClosingChannels, 1)
forceCloseChan := resp.PendingForceClosingChannels[0]
require.Positive(t.t, forceCloseChan.BlocksTilMaturity)
_ = mineBlocks(t, net, uint32(forceCloseChan.BlocksTilMaturity), 0)
require.Positive(ht, forceCloseChan.BlocksTilMaturity)
numBlocks := uint32(forceCloseChan.BlocksTilMaturity)
// Add debug log.
_, height := ht.Miner.GetBestBlock()
bob.AddToLogf("itest: now mine %d blocks at height %d",
numBlocks, height)
ht.MineBlocksAssertNodesSync(numBlocks)
default:
t.Fatalf("unhandled commitment type %v", c)
ht.Fatalf("unhandled commitment type %v", c)
}
bobSweep, err := waitForTxInMempool(net.Miner.Client, minerMempoolTimeout)
require.NoError(t.t, err)
// Make sure it spends from the second level tx.
secondLevelSweep, err := net.Miner.Client.GetRawTransaction(bobSweep)
require.NoError(t.t, err)
secondLevelSweep := ht.Miner.GetNumTxsFromMempool(1)[0]
bobSweep := secondLevelSweep.TxHash()
// It should be sweeping all the second-level outputs.
var secondLvlSpends int
for _, txin := range secondLevelSweep.MsgTx().TxIn {
for _, txin := range secondLevelSweep.TxIn {
for _, timeoutTx := range timeoutTxs {
if *timeoutTx == txin.PreviousOutPoint.Hash {
secondLvlSpends++
@ -440,25 +373,22 @@ func testMultiHopHtlcAggregation(net *lntest.NetworkHarness, t *harnessTest,
}
}
require.Equal(t.t, 2*numInvoices, secondLvlSpends)
require.Equal(ht, 2*numInvoices, secondLvlSpends)
// When we mine one additional block, that will confirm Bob's second
// level sweep. Now Bob should have no pending channels anymore, as
// this just resolved it by the confirmation of the sweep transaction.
block = mineBlocks(t, net, 1, 1)[0]
assertTxInBlock(t, block, bobSweep)
err = waitForNumChannelPendingForceClose(bob, 0, nil)
require.NoError(t.t, err)
block = ht.Miner.MineBlocksAndAssertNumTxes(1, 1)[0]
ht.Miner.AssertTxInBlock(block, &bobSweep)
ht.AssertNumPendingForceClose(bob, 0)
// THe channel with Alice is still open.
assertNodeNumChannels(t, bob, 1)
ht.AssertNodeNumChannels(bob, 1)
// Carol should have no channels left (open nor pending).
err = waitForNumChannelPendingForceClose(carol, 0, nil)
require.NoError(t.t, err)
assertNodeNumChannels(t, carol, 0)
ht.AssertNumPendingForceClose(carol, 0)
ht.AssertNodeNumChannels(carol, 0)
// Coop close channel, expect no anchors.
closeChannelAndAssertType(t, net, alice, aliceChanPoint, false, false)
// Coop close, no anchors.
ht.CloseChannel(alice, aliceChanPoint)
}

View file

@ -15,7 +15,6 @@ import (
"github.com/lightningnetwork/lnd/lntemp/rpc"
"github.com/lightningnetwork/lnd/lntest"
"github.com/lightningnetwork/lnd/lntypes"
"github.com/stretchr/testify/require"
)
func testMultiHopHtlcClaims(ht *lntemp.HarnessTest) {
@ -67,11 +66,11 @@ func testMultiHopHtlcClaims(ht *lntemp.HarnessTest) {
name: "remote chain claim",
test: testMultiHopHtlcRemoteChainClaim,
},
// {
// // bob: outgoing and incoming, sweep all on chain
// name: "local htlc aggregation",
// test: testMultiHopHtlcAggregation,
// },
{
// bob: outgoing and incoming, sweep all on chain
name: "local htlc aggregation",
test: testMultiHopHtlcAggregation,
},
}
commitWithZeroConf := []struct {
@ -237,151 +236,6 @@ func checkPaymentStatus(node *lntest.HarnessNode, preimage lntypes.Preimage,
return nil
}
// TODO(yy): delete.
func createThreeHopNetworkOld(t *harnessTest, net *lntest.NetworkHarness,
alice, bob *lntest.HarnessNode, carolHodl bool, c lnrpc.CommitmentType,
zeroConf bool) (
*lnrpc.ChannelPoint, *lnrpc.ChannelPoint, *lntest.HarnessNode) {
net.EnsureConnected(t.t, alice, bob)
// Make sure there are enough utxos for anchoring.
for i := 0; i < 2; i++ {
net.SendCoins(t.t, btcutil.SatoshiPerBitcoin, alice)
net.SendCoins(t.t, btcutil.SatoshiPerBitcoin, bob)
}
// We'll start the test by creating a channel between Alice and Bob,
// which will act as the first leg for out multi-hop HTLC.
const chanAmt = 1000000
var aliceFundingShim *lnrpc.FundingShim
var thawHeight uint32
if c == lnrpc.CommitmentType_SCRIPT_ENFORCED_LEASE {
_, minerHeight, err := net.Miner.Client.GetBestBlock()
require.NoError(t.t, err)
thawHeight = uint32(minerHeight + 144)
aliceFundingShim, _, _ = deriveFundingShimOld(
net, t, alice, bob, chanAmt, thawHeight, true,
)
}
// If a zero-conf channel is being opened, the nodes are signalling the
// zero-conf feature bit. Setup a ChannelAcceptor for the fundee.
ctxb := context.Background()
var (
cancel context.CancelFunc
ctxc context.Context
)
if zeroConf {
ctxc, cancel = context.WithCancel(ctxb)
acceptStream, err := bob.ChannelAcceptor(ctxc)
require.NoError(t.t, err)
go acceptChannel(t.t, true, acceptStream)
}
aliceChanPoint := openChannelAndAssert(
t, net, alice, bob,
lntest.OpenChannelParams{
Amt: chanAmt,
CommitmentType: c,
FundingShim: aliceFundingShim,
ZeroConf: zeroConf,
},
)
// Remove the ChannelAcceptor for Bob.
if zeroConf {
cancel()
}
err := alice.WaitForNetworkChannelOpen(aliceChanPoint)
if err != nil {
t.Fatalf("alice didn't report channel: %v", err)
}
err = bob.WaitForNetworkChannelOpen(aliceChanPoint)
if err != nil {
t.Fatalf("bob didn't report channel: %v", err)
}
// Next, we'll create a new node "carol" and have Bob connect to her. If
// the carolHodl flag is set, we'll make carol always hold onto the
// HTLC, this way it'll force Bob to go to chain to resolve the HTLC.
carolFlags := nodeArgsForCommitType(c)
if carolHodl {
carolFlags = append(carolFlags, "--hodl.exit-settle")
}
if zeroConf {
carolFlags = append(
carolFlags, "--protocol.option-scid-alias",
"--protocol.zero-conf",
)
}
carol := net.NewNode(t.t, "Carol", carolFlags)
net.ConnectNodes(t.t, bob, carol)
// Make sure Carol has enough utxos for anchoring. Because the anchor by
// itself often doesn't meet the dust limit, a utxo from the wallet
// needs to be attached as an additional input. This can still lead to a
// positively-yielding transaction.
for i := 0; i < 2; i++ {
net.SendCoins(t.t, btcutil.SatoshiPerBitcoin, carol)
}
// We'll then create a channel from Bob to Carol. After this channel is
// open, our topology looks like: A -> B -> C.
var bobFundingShim *lnrpc.FundingShim
if c == lnrpc.CommitmentType_SCRIPT_ENFORCED_LEASE {
bobFundingShim, _, _ = deriveFundingShimOld(
net, t, bob, carol, chanAmt, thawHeight, true,
)
}
// Setup a ChannelAcceptor for Carol if a zero-conf channel open is
// being attempted.
if zeroConf {
ctxc, cancel = context.WithCancel(ctxb)
acceptStream, err := carol.ChannelAcceptor(ctxc)
require.NoError(t.t, err)
go acceptChannel(t.t, true, acceptStream)
}
bobChanPoint := openChannelAndAssert(
t, net, bob, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
CommitmentType: c,
FundingShim: bobFundingShim,
ZeroConf: zeroConf,
},
)
// Remove the ChannelAcceptor for Carol.
if zeroConf {
cancel()
}
err = bob.WaitForNetworkChannelOpen(bobChanPoint)
if err != nil {
t.Fatalf("alice didn't report channel: %v", err)
}
err = carol.WaitForNetworkChannelOpen(bobChanPoint)
if err != nil {
t.Fatalf("bob didn't report channel: %v", err)
}
err = alice.WaitForNetworkChannelOpen(bobChanPoint)
if err != nil {
t.Fatalf("bob didn't report channel: %v", err)
}
return aliceChanPoint, bobChanPoint, carol
}
// assertAllTxesSpendFrom asserts that all txes in the list spend from the given
// tx.
func assertAllTxesSpendFrom(t *harnessTest, txes []*wire.MsgTx,