sweep: add new interface Cluster to manage grouping inputs

This commit adds a new interface `Cluster` to manage cluster-level
inputs grouping. This new interface replaces the `inputCluster` and will
be futher refactored so the sweeper can use a much smaller coin
selection lock.
This commit is contained in:
yyforyongyu 2023-10-30 18:22:29 +08:00
parent a7e9c08baf
commit 9d5ddf29f3
No known key found for this signature in database
GPG key ID: 9BCD95C4FF296868
6 changed files with 171 additions and 353 deletions

View file

@ -4,6 +4,8 @@ import (
"sort"
"github.com/btcsuite/btcd/wire"
"github.com/lightningnetwork/lnd/input"
"github.com/lightningnetwork/lnd/lnwallet"
"github.com/lightningnetwork/lnd/lnwallet/chainfee"
)
@ -21,12 +23,152 @@ const (
DefaultFeeRateBucketSize = 10
)
// inputSet is a set of inputs that can be used as the basis to generate a tx
// on.
type inputSet []input.Input
// Cluster defines an interface that prepares inputs of a cluster to be grouped
// into a list of sets that can be used to create sweep transactions.
type Cluster interface {
// CreateInputSets goes through the cluster's inputs and constructs
// sets of inputs that can be used to generate a sensible transaction.
CreateInputSets(wallet Wallet, maxFeeRate chainfee.SatPerKWeight,
maxInputs int) ([]inputSet, error)
// FeeRate returns the fee rate of the cluster.
FeeRate() chainfee.SatPerKWeight
}
// Compile-time constraint to ensure inputCluster implements Cluster.
var _ Cluster = (*inputCluster)(nil)
// inputCluster is a helper struct to gather a set of pending inputs that
// should be swept with the specified fee rate.
type inputCluster struct {
lockTime *uint32
sweepFeeRate chainfee.SatPerKWeight
inputs pendingInputs
}
// FeeRate returns the fee rate of the cluster.
func (c *inputCluster) FeeRate() chainfee.SatPerKWeight {
return c.sweepFeeRate
}
// GroupInputs goes through the cluster's inputs and constructs sets of inputs
// that can be used to generate a sensible transaction. Each set contains up to
// the configured maximum number of inputs. Negative yield inputs are skipped.
// No input sets with a total value after fees below the dust limit are
// returned.
func (c *inputCluster) CreateInputSets(
wallet Wallet, maxFeeRate chainfee.SatPerKWeight,
maxInputs int) ([]inputSet, error) {
// Turn the inputs into a slice so we can sort them.
inputList := make([]*pendingInput, 0, len(c.inputs))
for _, input := range c.inputs {
inputList = append(inputList, input)
}
// Yield is calculated as the difference between value and added fee
// for this input. The fee calculation excludes fee components that are
// common to all inputs, as those wouldn't influence the order. The
// single component that is differentiating is witness size.
//
// For witness size, the upper limit is taken. The actual size depends
// on the signature length, which is not known yet at this point.
calcYield := func(input *pendingInput) int64 {
size, _, err := input.WitnessType().SizeUpperBound()
if err != nil {
log.Errorf("Failed to get input weight: %v", err)
return 0
}
yield := input.SignDesc().Output.Value -
int64(c.sweepFeeRate.FeeForWeight(int64(size)))
return yield
}
// Sort input by yield. We will start constructing input sets starting
// with the highest yield inputs. This is to prevent the construction
// of a set with an output below the dust limit, causing the sweep
// process to stop, while there are still higher value inputs
// available. It also allows us to stop evaluating more inputs when the
// first input in this ordering is encountered with a negative yield.
sort.Slice(inputList, func(i, j int) bool {
// Because of the specific ordering and termination condition
// that is described above, we place force sweeps at the start
// of the list. Otherwise we can't be sure that they will be
// included in an input set.
if inputList[i].parameters().Force {
return true
}
return calcYield(inputList[i]) > calcYield(inputList[j])
})
// Select blocks of inputs up to the configured maximum number.
var sets []inputSet
for len(inputList) > 0 {
// Start building a set of positive-yield tx inputs under the
// condition that the tx will be published with the specified
// fee rate.
txInputs := newTxInputSet(
wallet, c.sweepFeeRate, maxFeeRate, maxInputs,
)
// From the set of sweepable inputs, keep adding inputs to the
// input set until the tx output value no longer goes up or the
// maximum number of inputs is reached.
txInputs.addPositiveYieldInputs(inputList)
// If there are no positive yield inputs, we can stop here.
inputCount := len(txInputs.inputs)
if inputCount == 0 {
return sets, nil
}
// Check the current output value and add wallet utxos if
// needed to push the output value to the lower limit.
if err := txInputs.tryAddWalletInputsIfNeeded(); err != nil {
return nil, err
}
// If the output value of this block of inputs does not reach
// the dust limit, stop sweeping. Because of the sorting,
// continuing with the remaining inputs will only lead to sets
// with an even lower output value.
if !txInputs.enoughInput() {
// The change output is always a p2tr here.
dl := lnwallet.DustLimitForSize(input.P2TRSize)
log.Debugf("Input set value %v (required=%v, "+
"change=%v) below dust limit of %v",
txInputs.totalOutput(), txInputs.requiredOutput,
txInputs.changeOutput, dl)
return sets, nil
}
log.Infof("Candidate sweep set of size=%v (+%v wallet inputs),"+
" has yield=%v, weight=%v",
inputCount, len(txInputs.inputs)-inputCount,
txInputs.totalOutput()-txInputs.walletInputTotal,
txInputs.weightEstimate(true).weight())
sets = append(sets, txInputs.inputs)
inputList = inputList[inputCount:]
}
return sets, nil
}
// UtxoAggregator defines an interface that takes a list of inputs and
// aggregate them into groups. Each group is used as the inputs to create a
// sweeping transaction.
type UtxoAggregator interface {
// ClusterInputs takes a list of inputs and groups them into clusters.
ClusterInputs(pendingInputs) []inputCluster
ClusterInputs(pendingInputs) []Cluster
}
// SimpleAggregator aggregates inputs known by the Sweeper based on each
@ -72,11 +214,7 @@ func NewSimpleUtxoAggregator(estimator chainfee.Estimator,
// inputs known by the UtxoSweeper. It clusters inputs by
// 1) Required tx locktime
// 2) Similar fee rates.
//
// TODO(yy): remove this nolint once done refactoring.
//
//nolint:revive
func (s *SimpleAggregator) ClusterInputs(inputs pendingInputs) []inputCluster {
func (s *SimpleAggregator) ClusterInputs(inputs pendingInputs) []Cluster {
// We start by getting the inputs clusters by locktime. Since the
// inputs commit to the locktime, they can only be clustered together
// if the locktime is equal.
@ -88,7 +226,19 @@ func (s *SimpleAggregator) ClusterInputs(inputs pendingInputs) []inputCluster {
// Since the inputs that we clustered by fee rate don't commit to a
// specific locktime, we can try to merge a locktime cluster with a fee
// cluster.
return zipClusters(lockTimeClusters, feeClusters)
clusters := zipClusters(lockTimeClusters, feeClusters)
sort.Slice(clusters, func(i, j int) bool {
return clusters[i].sweepFeeRate >
clusters[j].sweepFeeRate
})
result := make([]Cluster, 0, len(clusters))
for _, c := range clusters {
result = append(result, &c)
}
return result
}
// clusterByLockTime takes the given set of pending inputs and clusters those

View file

@ -37,8 +37,8 @@ type mockUtxoAggregator struct {
var _ UtxoAggregator = (*mockUtxoAggregator)(nil)
// ClusterInputs takes a list of inputs and groups them into clusters.
func (m *mockUtxoAggregator) ClusterInputs(pendingInputs) []inputCluster {
func (m *mockUtxoAggregator) ClusterInputs(pendingInputs) []Cluster {
args := m.Called(pendingInputs{})
return args.Get(0).([]inputCluster)
return args.Get(0).([]Cluster)
}

View file

@ -4,7 +4,6 @@ import (
"errors"
"fmt"
"math/rand"
"sort"
"sync"
"sync/atomic"
"time"
@ -224,14 +223,6 @@ func (p *pendingInput) terminated() bool {
// pendingInputs is a type alias for a set of pending inputs.
type pendingInputs = map[wire.OutPoint]*pendingInput
// inputCluster is a helper struct to gather a set of pending inputs that should
// be swept with the specified fee rate.
type inputCluster struct {
lockTime *uint32
sweepFeeRate chainfee.SatPerKWeight
inputs pendingInputs
}
// pendingSweepsReq is an internal message we'll use to represent an external
// caller's intent to retrieve all of the pending inputs the UtxoSweeper is
// attempting to sweep.
@ -750,60 +741,26 @@ func (s *UtxoSweeper) removeExclusiveGroup(group uint64) {
}
// sweepCluster tries to sweep the given input cluster.
func (s *UtxoSweeper) sweepCluster(cluster inputCluster) error {
func (s *UtxoSweeper) sweepCluster(cluster Cluster) error {
// Execute the sweep within a coin select lock. Otherwise the coins
// that we are going to spend may be selected for other transactions
// like funding of a channel.
//
// TODO(yy): decrease the lock scope.
return s.cfg.Wallet.WithCoinSelectLock(func() error {
// Examine pending inputs and try to construct lists of inputs.
allSets, newSets, err := s.getInputLists(cluster)
sets, err := cluster.CreateInputSets(
s.cfg.Wallet,
s.cfg.MaxFeeRate.FeePerKWeight(),
s.cfg.MaxInputsPerTx,
)
if err != nil {
return fmt.Errorf("examine pending inputs: %w", err)
}
// errAllSets records the error from broadcasting the sweeping
// transactions for all input sets.
var errAllSets error
// allSets contains retried inputs and new inputs. To avoid
// creating an RBF for the new inputs, we'd sweep this set
// first.
for _, inputs := range allSets {
errAllSets = s.sweep(inputs, cluster.sweepFeeRate)
// TODO(yy): we should also find out which set created
// this error. If there are new inputs in this set, we
// should give it a second chance by sweeping them
// below. To enable this, we need to provide richer
// state for each input other than just recording the
// publishAttempts. We'd also need to refactor how we
// create the input sets. Atm, the steps are,
// 1. create a list of input sets.
// 2. sweep each set by creating and publishing the tx.
// We should change the flow as,
// 1. create a list of input sets, and for each set,
// 2. when created, we create and publish the tx.
// 3. if the publish fails, find out which input is
// causing the failure and retry the rest of the
// inputs.
if errAllSets != nil {
log.Errorf("Sweep all inputs got error: %v",
errAllSets)
break
}
}
// If we have successfully swept all inputs, there's no need to
// sweep the new inputs as it'd create an RBF case.
if allSets != nil && errAllSets == nil {
return nil
}
// We'd end up there if there's no retried inputs or the above
// sweeping tx failed. In this case, we'd sweep the new input
// sets. If there's an error when sweeping a given set, we'd
// log the error and sweep the next set.
for _, inputs := range newSets {
err := s.sweep(inputs, cluster.sweepFeeRate)
// Create sweeping transaction for each set.
for _, inputs := range sets {
err := s.sweep(inputs, cluster.FeeRate())
if err != nil {
log.Errorf("sweep new inputs: %w", err)
}
@ -844,76 +801,6 @@ func (s *UtxoSweeper) signalResult(pi *pendingInput, result Result) {
}
}
// getInputLists goes through the given inputs and constructs multiple distinct
// sweep lists with the given fee rate, each up to the configured maximum
// number of inputs. Negative yield inputs are skipped. Transactions with an
// output below the dust limit are not published. Those inputs remain pending
// and will be bundled with future inputs if possible. It returns two list -
// one containing all inputs and the other containing only the new inputs. If
// there's no retried inputs, the first set returned will be empty.
func (s *UtxoSweeper) getInputLists(
cluster inputCluster) ([]inputSet, []inputSet, error) {
// Filter for inputs that need to be swept. Create two lists: all
// sweepable inputs and a list containing only the new, never tried
// inputs.
//
// We want to create as large a tx as possible, so we return a final
// set list that starts with sets created from all inputs. However,
// there is a chance that those txes will not publish, because they
// already contain inputs that failed before. Therefore we also add
// sets consisting of only new inputs to the list, to make sure that
// new inputs are given a good, isolated chance of being published.
//
// TODO(yy): this would lead to conflict transactions as the same input
// can be used in two sweeping transactions, and our rebroadcaster will
// retry the failed one. We should instead understand why the input is
// failed in the first place, and start tracking input states in
// sweeper to avoid this.
var newInputs, retryInputs []txInput
for _, input := range cluster.inputs {
// Add input to the either one of the lists.
if input.publishAttempts == 0 {
newInputs = append(newInputs, input)
} else {
retryInputs = append(retryInputs, input)
}
}
// Convert the max fee rate's unit from sat/vb to sat/kw.
maxFeeRate := s.cfg.MaxFeeRate.FeePerKWeight()
// If there is anything to retry, combine it with the new inputs and
// form input sets.
var allSets []inputSet
if len(retryInputs) > 0 {
var err error
allSets, err = generateInputPartitionings(
append(retryInputs, newInputs...),
cluster.sweepFeeRate, maxFeeRate,
s.cfg.MaxInputsPerTx, s.cfg.Wallet,
)
if err != nil {
return nil, nil, fmt.Errorf("input partitionings: %w",
err)
}
}
// Create sets for just the new inputs.
newSets, err := generateInputPartitionings(
newInputs, cluster.sweepFeeRate, maxFeeRate,
s.cfg.MaxInputsPerTx, s.cfg.Wallet,
)
if err != nil {
return nil, nil, fmt.Errorf("input partitionings: %w", err)
}
log.Debugf("Sweep candidates at height=%v: total_num_pending=%v, "+
"total_num_new=%v", s.currentHeight, len(allSets), len(newSets))
return allSets, newSets, nil
}
// sweep takes a set of preselected inputs, creates a sweep tx and publishes the
// tx. The output address is only marked as used if the publish succeeds.
func (s *UtxoSweeper) sweep(inputs inputSet,
@ -1678,10 +1565,6 @@ func (s *UtxoSweeper) sweepPendingInputs(inputs pendingInputs) {
// rate order. We do this to ensure any inputs which have had their fee
// rate bumped are broadcast first in order enforce the RBF policy.
inputClusters := s.cfg.Aggregator.ClusterInputs(inputs)
sort.Slice(inputClusters, func(i, j int) bool {
return inputClusters[i].sweepFeeRate >
inputClusters[j].sweepFeeRate
})
for _, cluster := range inputClusters {
err := s.sweepCluster(cluster)

View file

@ -1882,115 +1882,6 @@ func TestSweeperShutdownHandling(t *testing.T) {
require.Error(t, err)
}
// TestGetInputLists checks that the expected input sets are returned based on
// whether there are retried inputs or not.
func TestGetInputLists(t *testing.T) {
t.Parallel()
// Create a test param with a dummy fee preference. This is needed so
// `feeRateForPreference` won't throw an error.
param := Params{Fee: FeeEstimateInfo{ConfTarget: 1}}
// Create a mock input and mock all the methods used in this test.
testInput := &input.MockInput{}
testInput.On("RequiredLockTime").Return(0, false)
testInput.On("WitnessType").Return(input.CommitmentAnchor)
testInput.On("OutPoint").Return(&wire.OutPoint{Index: 1})
testInput.On("RequiredTxOut").Return(nil)
testInput.On("UnconfParent").Return(nil)
testInput.On("SignDesc").Return(&input.SignDescriptor{
Output: &wire.TxOut{Value: 100_000},
})
// Create a new and a retried input.
//
// NOTE: we use the same input.Input for both pending inputs as we only
// test the logic of returning the correct non-nil input sets, and not
// the content the of sets. To validate the content of the sets, we
// should test `generateInputPartitionings` instead.
newInput := &pendingInput{
Input: testInput,
params: param,
}
oldInput := &pendingInput{
Input: testInput,
params: param,
publishAttempts: 1,
}
// clusterNew contains only new inputs.
clusterNew := pendingInputs{
wire.OutPoint{Index: 1}: newInput,
}
// clusterMixed contains a mixed of new and retried inputs.
clusterMixed := pendingInputs{
wire.OutPoint{Index: 1}: newInput,
wire.OutPoint{Index: 2}: oldInput,
}
// clusterOld contains only retried inputs.
clusterOld := pendingInputs{
wire.OutPoint{Index: 2}: oldInput,
}
// Create a test sweeper.
s := New(&UtxoSweeperConfig{
MaxInputsPerTx: DefaultMaxInputsPerTx,
})
testCases := []struct {
name string
cluster inputCluster
expectedNilAllSet bool
expectNilNewSet bool
}{
{
// When there are only new inputs, we'd expect the
// first returned set(allSets) to be empty.
name: "new inputs only",
cluster: inputCluster{inputs: clusterNew},
expectedNilAllSet: true,
expectNilNewSet: false,
},
{
// When there are only retried inputs, we'd expect the
// second returned set(newSet) to be empty.
name: "retried inputs only",
cluster: inputCluster{inputs: clusterOld},
expectedNilAllSet: false,
expectNilNewSet: true,
},
{
// When there are mixed inputs, we'd expect two sets
// are returned.
name: "mixed inputs",
cluster: inputCluster{inputs: clusterMixed},
expectedNilAllSet: false,
expectNilNewSet: false,
},
}
for _, tc := range testCases {
tc := tc
t.Run(tc.name, func(t *testing.T) {
t.Parallel()
allSets, newSets, err := s.getInputLists(tc.cluster)
require.NoError(t, err)
if tc.expectNilNewSet {
require.Nil(t, newSets)
}
if tc.expectedNilAllSet {
require.Nil(t, allSets)
}
})
}
}
// TestMarkInputsPendingPublish checks that given a list of inputs with
// different states, only the non-terminal state will be marked as `Published`.
func TestMarkInputsPendingPublish(t *testing.T) {

View file

@ -331,7 +331,7 @@ func (t *txInputSet) add(input input.Input, constraints addConstraints) bool {
// up the utxo set even if it costs us some fees up front. In the spirit of
// minimizing any negative externalities we cause for the Bitcoin system as a
// whole.
func (t *txInputSet) addPositiveYieldInputs(sweepableInputs []txInput) {
func (t *txInputSet) addPositiveYieldInputs(sweepableInputs []*pendingInput) {
for i, inp := range sweepableInputs {
// Apply relaxed constraints for force sweeps.
constraints := constraintsRegular

View file

@ -37,112 +37,6 @@ type txInput interface {
parameters() Params
}
// inputSet is a set of inputs that can be used as the basis to generate a tx
// on.
type inputSet []input.Input
// generateInputPartitionings goes through all given inputs and constructs sets
// of inputs that can be used to generate a sensible transaction. Each set
// contains up to the configured maximum number of inputs. Negative yield
// inputs are skipped. No input sets with a total value after fees below the
// dust limit are returned.
func generateInputPartitionings(sweepableInputs []txInput,
feePerKW, maxFeeRate chainfee.SatPerKWeight, maxInputsPerTx int,
wallet Wallet) ([]inputSet, error) {
// Sort input by yield. We will start constructing input sets starting
// with the highest yield inputs. This is to prevent the construction
// of a set with an output below the dust limit, causing the sweep
// process to stop, while there are still higher value inputs
// available. It also allows us to stop evaluating more inputs when the
// first input in this ordering is encountered with a negative yield.
//
// Yield is calculated as the difference between value and added fee
// for this input. The fee calculation excludes fee components that are
// common to all inputs, as those wouldn't influence the order. The
// single component that is differentiating is witness size.
//
// For witness size, the upper limit is taken. The actual size depends
// on the signature length, which is not known yet at this point.
yields := make(map[wire.OutPoint]int64)
for _, input := range sweepableInputs {
size, _, err := input.WitnessType().SizeUpperBound()
if err != nil {
return nil, fmt.Errorf(
"failed adding input weight: %v", err)
}
yields[*input.OutPoint()] = input.SignDesc().Output.Value -
int64(feePerKW.FeeForWeight(int64(size)))
}
sort.Slice(sweepableInputs, func(i, j int) bool {
// Because of the specific ordering and termination condition
// that is described above, we place force sweeps at the start
// of the list. Otherwise we can't be sure that they will be
// included in an input set.
if sweepableInputs[i].parameters().Force {
return true
}
return yields[*sweepableInputs[i].OutPoint()] >
yields[*sweepableInputs[j].OutPoint()]
})
// Select blocks of inputs up to the configured maximum number.
var sets []inputSet
for len(sweepableInputs) > 0 {
// Start building a set of positive-yield tx inputs under the
// condition that the tx will be published with the specified
// fee rate.
txInputs := newTxInputSet(
wallet, feePerKW, maxFeeRate, maxInputsPerTx,
)
// From the set of sweepable inputs, keep adding inputs to the
// input set until the tx output value no longer goes up or the
// maximum number of inputs is reached.
txInputs.addPositiveYieldInputs(sweepableInputs)
// If there are no positive yield inputs, we can stop here.
inputCount := len(txInputs.inputs)
if inputCount == 0 {
return sets, nil
}
// Check the current output value and add wallet utxos if
// needed to push the output value to the lower limit.
if err := txInputs.tryAddWalletInputsIfNeeded(); err != nil {
return nil, err
}
// If the output value of this block of inputs does not reach
// the dust limit, stop sweeping. Because of the sorting,
// continuing with the remaining inputs will only lead to sets
// with an even lower output value.
if !txInputs.enoughInput() {
// The change output is always a p2tr here.
dl := lnwallet.DustLimitForSize(input.P2TRSize)
log.Debugf("Input set value %v (required=%v, "+
"change=%v) below dust limit of %v",
txInputs.totalOutput(), txInputs.requiredOutput,
txInputs.changeOutput, dl)
return sets, nil
}
log.Infof("Candidate sweep set of size=%v (+%v wallet inputs), "+
"has yield=%v, weight=%v",
inputCount, len(txInputs.inputs)-inputCount,
txInputs.totalOutput()-txInputs.walletInputTotal,
txInputs.weightEstimate(true).weight())
sets = append(sets, txInputs.inputs)
sweepableInputs = sweepableInputs[inputCount:]
}
return sets, nil
}
// createSweepTx builds a signed tx spending the inputs to the given outputs,
// sending any leftover change to the change script.
func createSweepTx(inputs []input.Input, outputs []*wire.TxOut,