autopilot/choice: add weightedChoice tests

This commit is contained in:
Johan T. Halseth 2018-12-10 11:23:19 +01:00
parent 4ac3c171ec
commit 902d6edad2
No known key found for this signature in database
GPG Key ID: 15BAADA29DA20D26

View File

@ -15,6 +15,159 @@ var (
nID4 = NodeID([33]byte{4})
)
// TestWeightedChoiceEmptyMap tests that passing in an empty slice of weights
// returns an error.
func TestWeightedChoiceEmptyMap(t *testing.T) {
t.Parallel()
var w []float64
_, err := weightedChoice(w)
if err != ErrNoPositive {
t.Fatalf("expected ErrNoPositive when choosing in "+
"empty map, instead got %v", err)
}
}
// singeNonZero is a type used to generate float64 slices with one non-zero
// element.
type singleNonZero []float64
// Generate generates a value of type sinelNonZero to be used during
// QuickTests.
func (singleNonZero) Generate(rand *rand.Rand, size int) reflect.Value {
w := make([]float64, size)
// Pick a random index and set it to a random float.
i := rand.Intn(size)
w[i] = rand.Float64()
return reflect.ValueOf(w)
}
// TestWeightedChoiceSingleIndex tests that choosing randomly in a slice with
// one positive element always returns that one index.
func TestWeightedChoiceSingleIndex(t *testing.T) {
t.Parallel()
// Helper that returns the index of the non-zero element.
allButOneZero := func(weights []float64) (bool, int) {
var (
numZero uint32
nonZeroEl int
)
for i, w := range weights {
if w != 0 {
numZero++
nonZeroEl = i
}
}
return numZero == 1, nonZeroEl
}
property := func(weights singleNonZero) bool {
// Make sure the generated slice has exactly one non-zero
// element.
conditionMet, nonZeroElem := allButOneZero(weights[:])
if !conditionMet {
return false
}
// Call weightedChoice and assert it picks the non-zero
// element.
choice, err := weightedChoice(weights[:])
if err != nil {
return false
}
return choice == nonZeroElem
}
if err := quick.Check(property, nil); err != nil {
t.Fatal(err)
}
}
// nonNegative is a type used to generate float64 slices with non-negative
// elements.
type nonNegative []float64
// Generate generates a value of type nonNegative to be used during
// QuickTests.
func (nonNegative) Generate(rand *rand.Rand, size int) reflect.Value {
const precision = 100
w := make([]float64, size)
for i := range w {
r := rand.Float64()
// For very small weights it won't work to check deviation from
// expected value, so we set them to zero.
if r < 0.01*float64(size) {
r = 0
}
w[i] = float64(r)
}
return reflect.ValueOf(w)
}
func assertChoice(w []float64, iterations int) bool {
var sum float64
for _, v := range w {
sum += v
}
// Calculate the expected frequency of each choice.
expFrequency := make([]float64, len(w))
for i, ww := range w {
expFrequency[i] = ww / sum
}
chosen := make(map[int]int)
for i := 0; i < iterations; i++ {
res, err := weightedChoice(w)
if err != nil {
return false
}
chosen[res]++
}
// Since this is random we check that the number of times chosen is
// within 20% of the expected value.
totalChoices := 0
for i, f := range expFrequency {
exp := float64(iterations) * f
v := float64(chosen[i])
totalChoices += chosen[i]
expHigh := exp + exp/5
expLow := exp - exp/5
if v < expLow || v > expHigh {
return false
}
}
// The sum of choices must be exactly iterations of course.
if totalChoices != iterations {
return false
}
return true
}
// TestWeightedChoiceDistribution asserts that the weighted choice algorithm
// chooses among indexes according to their scores.
func TestWeightedChoiceDistribution(t *testing.T) {
const iterations = 100000
property := func(weights nonNegative) bool {
return assertChoice(weights, iterations)
}
if err := quick.Check(property, nil); err != nil {
t.Fatal(err)
}
}
// TestChooseNEmptyMap checks that chooseN returns an empty result when no
// nodes are chosen among.
func TestChooseNEmptyMap(t *testing.T) {