mirror of
https://github.com/lightningnetwork/lnd.git
synced 2024-11-19 01:43:16 +01:00
autopilot/choice: add weightedChoice tests
This commit is contained in:
parent
4ac3c171ec
commit
902d6edad2
@ -15,6 +15,159 @@ var (
|
||||
nID4 = NodeID([33]byte{4})
|
||||
)
|
||||
|
||||
// TestWeightedChoiceEmptyMap tests that passing in an empty slice of weights
|
||||
// returns an error.
|
||||
func TestWeightedChoiceEmptyMap(t *testing.T) {
|
||||
t.Parallel()
|
||||
|
||||
var w []float64
|
||||
_, err := weightedChoice(w)
|
||||
if err != ErrNoPositive {
|
||||
t.Fatalf("expected ErrNoPositive when choosing in "+
|
||||
"empty map, instead got %v", err)
|
||||
}
|
||||
}
|
||||
|
||||
// singeNonZero is a type used to generate float64 slices with one non-zero
|
||||
// element.
|
||||
type singleNonZero []float64
|
||||
|
||||
// Generate generates a value of type sinelNonZero to be used during
|
||||
// QuickTests.
|
||||
func (singleNonZero) Generate(rand *rand.Rand, size int) reflect.Value {
|
||||
w := make([]float64, size)
|
||||
|
||||
// Pick a random index and set it to a random float.
|
||||
i := rand.Intn(size)
|
||||
w[i] = rand.Float64()
|
||||
|
||||
return reflect.ValueOf(w)
|
||||
}
|
||||
|
||||
// TestWeightedChoiceSingleIndex tests that choosing randomly in a slice with
|
||||
// one positive element always returns that one index.
|
||||
func TestWeightedChoiceSingleIndex(t *testing.T) {
|
||||
t.Parallel()
|
||||
|
||||
// Helper that returns the index of the non-zero element.
|
||||
allButOneZero := func(weights []float64) (bool, int) {
|
||||
var (
|
||||
numZero uint32
|
||||
nonZeroEl int
|
||||
)
|
||||
|
||||
for i, w := range weights {
|
||||
if w != 0 {
|
||||
numZero++
|
||||
nonZeroEl = i
|
||||
}
|
||||
}
|
||||
|
||||
return numZero == 1, nonZeroEl
|
||||
}
|
||||
|
||||
property := func(weights singleNonZero) bool {
|
||||
// Make sure the generated slice has exactly one non-zero
|
||||
// element.
|
||||
conditionMet, nonZeroElem := allButOneZero(weights[:])
|
||||
if !conditionMet {
|
||||
return false
|
||||
}
|
||||
|
||||
// Call weightedChoice and assert it picks the non-zero
|
||||
// element.
|
||||
choice, err := weightedChoice(weights[:])
|
||||
if err != nil {
|
||||
return false
|
||||
}
|
||||
return choice == nonZeroElem
|
||||
}
|
||||
|
||||
if err := quick.Check(property, nil); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
}
|
||||
|
||||
// nonNegative is a type used to generate float64 slices with non-negative
|
||||
// elements.
|
||||
type nonNegative []float64
|
||||
|
||||
// Generate generates a value of type nonNegative to be used during
|
||||
// QuickTests.
|
||||
func (nonNegative) Generate(rand *rand.Rand, size int) reflect.Value {
|
||||
const precision = 100
|
||||
w := make([]float64, size)
|
||||
|
||||
for i := range w {
|
||||
r := rand.Float64()
|
||||
|
||||
// For very small weights it won't work to check deviation from
|
||||
// expected value, so we set them to zero.
|
||||
if r < 0.01*float64(size) {
|
||||
r = 0
|
||||
}
|
||||
w[i] = float64(r)
|
||||
}
|
||||
return reflect.ValueOf(w)
|
||||
}
|
||||
|
||||
func assertChoice(w []float64, iterations int) bool {
|
||||
var sum float64
|
||||
for _, v := range w {
|
||||
sum += v
|
||||
}
|
||||
|
||||
// Calculate the expected frequency of each choice.
|
||||
expFrequency := make([]float64, len(w))
|
||||
for i, ww := range w {
|
||||
expFrequency[i] = ww / sum
|
||||
}
|
||||
|
||||
chosen := make(map[int]int)
|
||||
for i := 0; i < iterations; i++ {
|
||||
res, err := weightedChoice(w)
|
||||
if err != nil {
|
||||
return false
|
||||
}
|
||||
chosen[res]++
|
||||
}
|
||||
|
||||
// Since this is random we check that the number of times chosen is
|
||||
// within 20% of the expected value.
|
||||
totalChoices := 0
|
||||
for i, f := range expFrequency {
|
||||
exp := float64(iterations) * f
|
||||
v := float64(chosen[i])
|
||||
totalChoices += chosen[i]
|
||||
expHigh := exp + exp/5
|
||||
expLow := exp - exp/5
|
||||
if v < expLow || v > expHigh {
|
||||
return false
|
||||
}
|
||||
}
|
||||
|
||||
// The sum of choices must be exactly iterations of course.
|
||||
if totalChoices != iterations {
|
||||
return false
|
||||
}
|
||||
return true
|
||||
|
||||
}
|
||||
|
||||
// TestWeightedChoiceDistribution asserts that the weighted choice algorithm
|
||||
// chooses among indexes according to their scores.
|
||||
func TestWeightedChoiceDistribution(t *testing.T) {
|
||||
const iterations = 100000
|
||||
|
||||
property := func(weights nonNegative) bool {
|
||||
return assertChoice(weights, iterations)
|
||||
}
|
||||
|
||||
if err := quick.Check(property, nil); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
}
|
||||
|
||||
// TestChooseNEmptyMap checks that chooseN returns an empty result when no
|
||||
// nodes are chosen among.
|
||||
func TestChooseNEmptyMap(t *testing.T) {
|
||||
|
Loading…
Reference in New Issue
Block a user