aezeed: fix typos and formatting

This commit is contained in:
Oliver Gugger 2022-05-12 12:47:06 +02:00
parent 4949243d67
commit 83f1c2c9b6
No known key found for this signature in database
GPG key ID: 8E4256593F177720
3 changed files with 68 additions and 59 deletions

View file

@ -62,7 +62,7 @@ const (
// be seen as the size of the equivalent MAC.
CipherTextExpansion = 4
// EntropySize is the number of bytes of entropy we'll use the generate
// EntropySize is the number of bytes of entropy we'll use to generate
// the seed.
EntropySize = 16
@ -78,7 +78,7 @@ const (
// adSize is the size of the encoded associated data that will be
// passed into aez when enciphering and deciphering the seed. The AD
// itself (associated data) is just the CipherSeedVersion and salt.
// itself (associated data) is just the cipher seed version and salt.
adSize = 6
// checkSumSize is the size of the checksum applied to the final
@ -93,7 +93,7 @@ const (
// We encode our mnemonic using 24 words, so 264 bits (33 bytes).
BitsPerWord = 11
// saltOffset is the index within an enciphered cipherseed that marks
// saltOffset is the index within an enciphered cipher seed that marks
// the start of the salt.
saltOffset = EncipheredCipherSeedSize - checkSumSize - saltSize
@ -103,8 +103,8 @@ const (
)
var (
// Below at the default scrypt parameters that are tied to
// CipherSeedVersion zero.
// Below at the default scrypt parameters that are tied to cipher seed
// version zero.
scryptN = 32768
scryptR = 8
scryptP = 1
@ -129,7 +129,7 @@ var (
)
// CipherSeed is a fully decoded instance of the aezeed scheme. At a high
// level, the encoded cipherseed is the enciphering of: a version byte, a set
// level, the encoded cipher seed is the enciphering of: a version byte, a set
// of bytes for a timestamp, the entropy which will be used to directly
// construct the HD seed, and finally a checksum over the rest. This scheme was
// created as the widely used schemes in the space lack two critical traits: a
@ -151,7 +151,7 @@ var (
// users can encrypt the raw "plaintext" seed under distinct passwords to
// produce unique mnemonic phrases.
type CipherSeed struct {
// InternalVersion is the version of the plaintext cipherseed. This is
// InternalVersion is the version of the plaintext cipher seed. This is
// to be used by wallets to determine if the seed version is compatible
// with the derivation schemes they know.
InternalVersion uint8
@ -178,7 +178,7 @@ type CipherSeed struct {
func New(internalVersion uint8, entropy *[EntropySize]byte,
now time.Time) (*CipherSeed, error) {
// TODO(roasbeef): pass randomness source? to make fully determinsitc?
// TODO(roasbeef): pass randomness source? to make fully deterministic?
// If a set of entropy wasn't provided, then we'll read a set of bytes
// from the CSPRNG of our operating platform.
@ -272,11 +272,13 @@ func extractAD(encipheredSeed [EncipheredCipherSeedSize]byte) [adSize]byte {
return ad
}
// encipher takes a fully populated cipherseed instance, and enciphers the
// encipher takes a fully populated cipher seed instance, and enciphers the
// encoded seed, then appends a randomly generated seed used to stretch the
// passphrase out into an appropriate key, then computes a checksum over the
// preceding.
func (c *CipherSeed) encipher(pass []byte) ([EncipheredCipherSeedSize]byte, error) {
func (c *CipherSeed) encipher(pass []byte) ([EncipheredCipherSeedSize]byte,
error) {
var cipherSeedBytes [EncipheredCipherSeedSize]byte
// If the passphrase wasn't provided, then we'll use the string
@ -295,7 +297,7 @@ func (c *CipherSeed) encipher(pass []byte) ([EncipheredCipherSeedSize]byte, erro
return cipherSeedBytes, err
}
// Next, we'll encode the serialized plaintext cipherseed into a buffer
// Next, we'll encode the serialized plaintext cipher seed into a buffer
// that we'll use for encryption.
var seedBytes bytes.Buffer
if err := c.encode(&seedBytes); err != nil {
@ -335,7 +337,9 @@ func (c *CipherSeed) encipher(pass []byte) ([EncipheredCipherSeedSize]byte, erro
// cipherTextToMnemonic converts the aez ciphertext appended with the salt to a
// 24-word mnemonic pass phrase.
func cipherTextToMnemonic(cipherText [EncipheredCipherSeedSize]byte) (Mnemonic, error) {
func cipherTextToMnemonic(cipherText [EncipheredCipherSeedSize]byte) (Mnemonic,
error) {
var words [NumMnemonicWords]string
// First, we'll convert the ciphertext itself into a bitstream for easy
@ -356,7 +360,7 @@ func cipherTextToMnemonic(cipherText [EncipheredCipherSeedSize]byte) (Mnemonic,
return words, nil
}
// ToMnemonic maps the final enciphered cipher seed to a human readable 24-word
// ToMnemonic maps the final enciphered cipher seed to a human-readable 24-word
// mnemonic phrase. The password is optional, as if it isn't specified aezeed
// will be used in its place.
func (c *CipherSeed) ToMnemonic(pass []byte) (Mnemonic, error) {
@ -374,7 +378,9 @@ func (c *CipherSeed) ToMnemonic(pass []byte) (Mnemonic, error) {
// Encipher maps the cipher seed to an aez ciphertext using an optional
// passphrase.
func (c *CipherSeed) Encipher(pass []byte) ([EncipheredCipherSeedSize]byte, error) {
func (c *CipherSeed) Encipher(pass []byte) ([EncipheredCipherSeedSize]byte,
error) {
return c.encipher(pass)
}
@ -385,7 +391,7 @@ func (c *CipherSeed) BirthdayTime() time.Time {
return BitcoinGenesisDate.Add(offset)
}
// Mnemonic is a 24-word passphrase as of CipherSeedVersion zero. This
// Mnemonic is a 24-word passphrase as of cipher seed version zero. This
// passphrase encodes an encrypted seed triple (version, birthday, entropy).
// Additionally, we also encode the salt used with scrypt to derive the key
// that the cipher text is encrypted with, and the version which tells us how
@ -465,7 +471,9 @@ func decipherCipherSeed(cipherSeedBytes [EncipheredCipherSeedSize]byte,
// Before we perform any crypto operations, we'll re-create and verify
// the checksum to ensure that the user input the proper set of words.
freshChecksum := crc32.Checksum(cipherSeedBytes[:checkSumOffset], crcTable)
freshChecksum := crc32.Checksum(
cipherSeedBytes[:checkSumOffset], crcTable,
)
if freshChecksum != binary.BigEndian.Uint32(checksum) {
return plainSeed, ErrIncorrectMnemonic
}
@ -499,7 +507,8 @@ func decipherCipherSeed(cipherSeedBytes [EncipheredCipherSeedSize]byte,
// Decipher attempts to decipher the encoded mnemonic by first mapping to the
// original ciphertext, then applying our deciphering scheme. ErrInvalidPass
// will be returned if the passphrase is incorrect.
func (m *Mnemonic) Decipher(pass []byte) ([DecipheredCipherSeedSize]byte, error) {
func (m *Mnemonic) Decipher(pass []byte) ([DecipheredCipherSeedSize]byte,
error) {
// Before we attempt to map the mnemonic back to the original
// ciphertext, we'll ensure that all the word are actually a part of
@ -512,7 +521,7 @@ func (m *Mnemonic) Decipher(pass []byte) ([DecipheredCipherSeedSize]byte, error)
for i, word := range m {
if _, ok := wordDict[word]; !ok {
emptySeed := [DecipheredCipherSeedSize]byte{}
return emptySeed, ErrUnknownMnenomicWord{
return emptySeed, ErrUnknownMnemonicWord{
Word: word,
Index: uint8(i),
}
@ -537,20 +546,20 @@ func (m *Mnemonic) Decipher(pass []byte) ([DecipheredCipherSeedSize]byte, error)
}
// ChangePass takes an existing mnemonic, and passphrase for said mnemonic and
// re-enciphers the plaintext cipher seed into a brand new mnemonic. This can
// re-enciphers the plaintext cipher seed into a brand-new mnemonic. This can
// be used to allow users to re-encrypt the same seed with multiple pass
// phrases, or just change the passphrase on an existing seed.
func (m *Mnemonic) ChangePass(oldPass, newPass []byte) (Mnemonic, error) {
var newmnemonic Mnemonic
var newMnemonic Mnemonic
// First, we'll try to decrypt the current mnemonic using the existing
// passphrase. If this fails, then we can't proceed any further.
cipherSeed, err := m.ToCipherSeed(oldPass)
if err != nil {
return newmnemonic, err
return newMnemonic, err
}
// If the deciperhing was successful, then we'll now re-encipher using
// If the deciphering was successful, then we'll now re-encipher using
// the new user provided passphrase.
return cipherSeed.ToMnemonic(newPass)
}

View file

@ -84,9 +84,9 @@ func assertCipherSeedEqual(t *testing.T, cipherSeed *CipherSeed,
func TestAezeedVersion0TestVectors(t *testing.T) {
t.Parallel()
// To minimize the number of tests that need to be run,
// go through all test vectors in the same test and also check
// the birthday calculation while we're at it.
// To minimize the number of tests that need to be run, go through all
// test vectors in the same test and also check the birthday calculation
// while we're at it.
for _, v := range version0TestVectors {
// First, we create new cipher seed with the given values
// from the test vector.
@ -95,12 +95,12 @@ func TestAezeedVersion0TestVectors(t *testing.T) {
t.Fatalf("unable to create seed: %v", err)
}
// Then we need to set the salt to the pre-defined value, otherwise
// we'll end up with randomness in our mnemonics.
// Then we need to set the salt to the pre-defined value,
// otherwise we'll end up with randomness in our mnemonics.
cipherSeed.salt = testSalt
// Now that the seed has been created, we'll attempt to convert it to a
// valid mnemonic.
// Now that the seed has been created, we'll attempt to convert
// it to a valid mnemonic.
mnemonic, err := cipherSeed.ToMnemonic(v.password)
if err != nil {
t.Fatalf("unable to create mnemonic: %v", err)
@ -189,7 +189,7 @@ func TestManualEntropyGeneration(t *testing.T) {
}
// TestInvalidPassphraseRejection tests if a caller attempts to use the
// incorrect passprhase for an enciphered seed, then the proper error is
// incorrect passphrase for an enciphered seed, then the proper error is
// returned.
func TestInvalidPassphraseRejection(t *testing.T) {
t.Parallel()
@ -228,7 +228,7 @@ func TestRawEncipherDecipher(t *testing.T) {
t.Fatalf("unable to create seed: %v", err)
}
// With the cipherseed obtained, we'll now use the raw encipher method
// With the cipher seed obtained, we'll now use the raw encipher method
// to obtain our final cipher text.
cipherText, err := cipherSeed.Encipher(pass)
if err != nil {
@ -270,7 +270,7 @@ func TestInvalidExternalVersion(t *testing.T) {
t.Fatalf("unable to create seed: %v", err)
}
// With the cipherseed obtained, we'll now use the raw encipher method
// With the cipher seed obtained, we'll now use the raw encipher method
// to obtain our final cipher text.
pass := []byte("newpasswhodis")
cipherText, err := cipherSeed.Encipher(pass)
@ -312,16 +312,16 @@ func TestChangePassphrase(t *testing.T) {
}
// Now that have the mnemonic, we'll attempt to re-encipher the
// passphrase in order to get a brand new mnemonic.
// passphrase in order to get a brand-new mnemonic.
newPass := []byte("strongerpassyeh!")
newmnemonic, err := mnemonic.ChangePass(pass, newPass)
newMnemonic, err := mnemonic.ChangePass(pass, newPass)
if err != nil {
t.Fatalf("unable to change passphrase: %v", err)
}
// We'll now attempt to decipher the new mnemonic using the new
// passphrase to arrive at (what should be) the original cipher seed.
newCipherSeed, err := newmnemonic.ToCipherSeed(newPass)
newCipherSeed, err := newMnemonic.ToCipherSeed(newPass)
if err != nil {
t.Fatalf("unable to decipher cipher seed: %v", err)
}
@ -332,7 +332,7 @@ func TestChangePassphrase(t *testing.T) {
}
// TestChangePassphraseWrongPass tests that if we have a valid enciphered
// cipherseed, but then try to change the password with the *wrong* password,
// cipher seed, but then try to change the password with the *wrong* password,
// then we get an error.
func TestChangePassphraseWrongPass(t *testing.T) {
t.Parallel()
@ -352,7 +352,7 @@ func TestChangePassphraseWrongPass(t *testing.T) {
}
// Now that have the mnemonic, we'll attempt to re-encipher the
// passphrase in order to get a brand new mnemonic. However, we'll be
// passphrase in order to get a brand-new mnemonic. However, we'll be
// using the *wrong* passphrase. This should result in an
// ErrInvalidPass error.
wrongPass := []byte("kek")
@ -397,7 +397,7 @@ func TestMnemonicEncoding(t *testing.T) {
}
// TestEncipherDecipher is a property-based test that ensures that given a
// version, entropy, and birthday, then we're able to map that to a cipherseed
// version, entropy, and birthday, then we're able to map that to a cipher seed
// mnemonic, then back to the original plaintext cipher seed.
func TestEncipherDecipher(t *testing.T) {
t.Parallel()
@ -406,7 +406,7 @@ func TestEncipherDecipher(t *testing.T) {
// ensure that given a random seed tuple (internal version, entropy,
// and birthday) we're able to convert that to a valid cipher seed.
// Additionally, we should be able to decipher the final mnemonic, and
// recover the original cipherseed.
// recover the original cipher seed.
mainScenario := func(version uint8, entropy [EntropySize]byte,
nowInt int64, pass [20]byte) bool {
@ -458,7 +458,7 @@ func TestEncipherDecipher(t *testing.T) {
// arbitrary raw seed.
func TestSeedEncodeDecode(t *testing.T) {
// mainScenario is the primary driver of our property-based test. We'll
// ensure that given a random cipher seed, we can encode it an decode
// ensure that given a random cipher seed, we can encode it and decode
// it precisely.
mainScenario := func(version uint8, nowInt int64,
entropy [EntropySize]byte) bool {
@ -506,10 +506,10 @@ func TestSeedEncodeDecode(t *testing.T) {
}
}
// TestDecipherUnknownMnenomicWord tests that if we obtain a mnemonic, the
// TestDecipherUnknownMnemonicWord tests that if we obtain a mnemonic, then
// modify one of the words to not be within the word list, then it's detected
// when we attempt to map it back to the original cipher seed.
func TestDecipherUnknownMnenomicWord(t *testing.T) {
func TestDecipherUnknownMnemonicWord(t *testing.T) {
t.Parallel()
// First, we'll create a new cipher seed with "test" ass a password.
@ -532,15 +532,15 @@ func TestDecipherUnknownMnenomicWord(t *testing.T) {
mnemonic[randIndex] = "kek"
// If we attempt to map back to the original cipher seed now, then we
// should get ErrUnknownMnenomicWord.
// should get ErrUnknownMnemonicWord.
_, err = mnemonic.ToCipherSeed(pass)
if err == nil {
t.Fatalf("expected ErrUnknownMnenomicWord error")
t.Fatalf("expected ErrUnknownMnemonicWord error")
}
wordErr, ok := err.(ErrUnknownMnenomicWord)
wordErr, ok := err.(ErrUnknownMnemonicWord)
if !ok {
t.Fatalf("expected ErrUnknownMnenomicWord instead got %T", err)
t.Fatalf("expected ErrUnknownMnemonicWord instead got %T", err)
}
if wordErr.Word != "kek" {
@ -551,24 +551,24 @@ func TestDecipherUnknownMnenomicWord(t *testing.T) {
randIndex, wordErr.Index)
}
// If the mnemonic includes a word that is not in the englishList
// it fails, even when it is a substring of a valid word
// Example: `heart` is in the list, `hear` is not
// If the mnemonic includes a word that is not in the englishList it
// fails, even when it is a substring of a valid word Example: `heart`
// is in the list, `hear` is not.
mnemonic[randIndex] = "hear"
// If we attempt to map back to the original cipher seed now, then we
// should get ErrUnknownMnenomicWord.
// should get ErrUnknownMnemonicWord.
_, err = mnemonic.ToCipherSeed(pass)
if err == nil {
t.Fatalf("expected ErrUnknownMnenomicWord error")
t.Fatalf("expected ErrUnknownMnemonicWord error")
}
_, ok = err.(ErrUnknownMnenomicWord)
_, ok = err.(ErrUnknownMnemonicWord)
if !ok {
t.Fatalf("expected ErrUnknownMnenomicWord instead got %T", err)
t.Fatalf("expected ErrUnknownMnemonicWord instead got %T", err)
}
}
// TestDecipherIncorrectMnemonic tests that if we obtain a cipherseed, but then
// TestDecipherIncorrectMnemonic tests that if we obtain a cipher seed, but then
// swap out words, then checksum fails.
func TestDecipherIncorrectMnemonic(t *testing.T) {
// First, we'll create a new cipher seed with "test" ass a password.
@ -593,7 +593,7 @@ func TestDecipherIncorrectMnemonic(t *testing.T) {
// If we attempt to decrypt now, we should get a checksum failure.
// If we attempt to map back to the original cipher seed now, then we
// should get ErrUnknownMnenomicWord.
// should get ErrIncorrectMnemonic.
_, err = mnemonic.ToCipherSeed(pass)
if err != ErrIncorrectMnemonic {
t.Fatalf("expected ErrIncorrectMnemonic error")

View file

@ -18,9 +18,9 @@ var (
"match")
)
// ErrUnknownMnenomicWord is returned when attempting to decipher and
// ErrUnknownMnemonicWord is returned when attempting to decipher and
// enciphered mnemonic, but a word encountered isn't a member of our word list.
type ErrUnknownMnenomicWord struct {
type ErrUnknownMnemonicWord struct {
// Word is the unknown word in the mnemonic phrase.
Word string
@ -29,8 +29,8 @@ type ErrUnknownMnenomicWord struct {
Index uint8
}
// Error returns a human readable string describing the error.
func (e ErrUnknownMnenomicWord) Error() string {
// Error returns a human-readable string describing the error.
func (e ErrUnknownMnemonicWord) Error() string {
return fmt.Sprintf("word %v isn't a part of default word list "+
"(index=%v)", e.Word, e.Index)
}