itest: remove old CPFP tests

The old commitment deadline is removed as it's no longer relevant.
This commit is contained in:
yyforyongyu 2024-03-21 10:18:54 +08:00
parent a1a480a81c
commit 6933c5a86c
No known key found for this signature in database
GPG key ID: 9BCD95C4FF296868
2 changed files with 2 additions and 235 deletions

View file

@ -205,10 +205,6 @@ var allTestCases = []*lntest.TestCase{
Name: "channel unsettled balance",
TestFunc: testChannelUnsettledBalance,
},
{
Name: "commitment deadline",
TestFunc: testCommitmentTransactionDeadline,
},
{
Name: "channel force closure",
TestFunc: testChannelForceClosure,

View file

@ -2,7 +2,6 @@ package itest
import (
"bytes"
"encoding/hex"
"fmt"
"testing"
@ -17,240 +16,10 @@ import (
"github.com/lightningnetwork/lnd/lntest"
"github.com/lightningnetwork/lnd/lntest/node"
"github.com/lightningnetwork/lnd/lntest/wait"
"github.com/lightningnetwork/lnd/lnwallet"
"github.com/lightningnetwork/lnd/lnwallet/chainfee"
"github.com/lightningnetwork/lnd/routing"
"github.com/stretchr/testify/require"
)
// testCommitmentTransactionDeadline tests that the anchor sweep transaction is
// taking account of the deadline of the commitment transaction. It tests three
// scenarios:
// 1. when the CPFP is skipped, checks that the deadline is not used.
// 2. when the CPFP is used, checks that the deadline is NOT applied when it's
// larger than 144.
// 3. when the CPFP is used, checks that the deadline is applied when it's
// less than 144.
//
// Note that whether the deadline is used or not is implicitly checked by its
// corresponding fee rates.
func testCommitmentTransactionDeadline(ht *lntest.HarnessTest) {
// Get the default max fee rate used in sweeping the commitment
// transaction.
defaultMax := lnwallet.DefaultAnchorsCommitMaxFeeRateSatPerVByte
maxPerKw := chainfee.SatPerKVByte(defaultMax * 1000).FeePerKWeight()
const (
// feeRateConfDefault(sat/kw) is used when no conf target is
// set. This value will be returned by the fee estimator but
// won't be used because our commitment fee rate is capped by
// DefaultAnchorsCommitMaxFeeRateSatPerVByte.
feeRateDefault = 20000
// defaultDeadline is the anchorSweepConfTarget, which is used
// when the commitment has no deadline pressure.
defaultDeadline = 144
// deadline is one block below the default deadline. A forced
// anchor sweep will be performed when seeing this value.
deadline = defaultDeadline - 1
)
// feeRateSmall(sat/kw) is used when we want to skip the CPFP
// on anchor transactions. When the fee rate is smaller than
// the parent's (commitment transaction) fee rate, the CPFP
// will be skipped. Atm, the parent tx's fee rate is roughly
// 2500 sat/kw in this test.
feeRateSmall := maxPerKw / 2
// feeRateLarge(sat/kw) is used when we want to use the anchor
// transaction to CPFP our commitment transaction.
feeRateLarge := maxPerKw * 2
// Before we start, set up the default fee rate and we will test the
// actual fee rate against it to decide whether we are using the
// deadline to perform fee estimation.
ht.SetFeeEstimate(feeRateDefault)
// setupNode creates a new node and sends 1 btc to the node.
setupNode := func(name string) *node.HarnessNode {
// Create the node.
args := []string{"--hodl.exit-settle"}
args = append(args, lntest.NodeArgsForCommitType(
lnrpc.CommitmentType_ANCHORS)...,
)
node := ht.NewNode(name, args)
// Send some coins to the node.
ht.FundCoins(btcutil.SatoshiPerBitcoin, node)
// For neutrino backend, we need one additional UTXO to create
// the sweeping tx for the remote anchor.
if ht.IsNeutrinoBackend() {
ht.FundCoins(btcutil.SatoshiPerBitcoin, node)
}
return node
}
// calculateSweepFeeRate runs multiple steps to calculate the fee rate
// used in sweeping the transactions.
calculateSweepFeeRate := func(expectAnchor bool, deadline int) int64 {
// Create two nodes, Alice and Bob.
alice := setupNode("Alice")
defer ht.Shutdown(alice)
bob := setupNode("Bob")
defer ht.Shutdown(bob)
// Connect Alice to Bob.
ht.ConnectNodes(alice, bob)
// Open a channel between Alice and Bob.
chanPoint := ht.OpenChannel(
alice, bob, lntest.OpenChannelParams{
Amt: 10e6,
PushAmt: 5e6,
},
)
// Calculate the final ctlv delta based on the expected
// deadline.
finalCltvDelta := int32(deadline - int(routing.BlockPadding))
// Send a payment with a specified finalCTLVDelta, which will
// be used as our deadline later on when Alice force closes the
// channel.
req := &routerrpc.SendPaymentRequest{
Dest: bob.PubKey[:],
Amt: 10e4,
PaymentHash: ht.Random32Bytes(),
FinalCltvDelta: finalCltvDelta,
TimeoutSeconds: 60,
FeeLimitMsat: noFeeLimitMsat,
}
alice.RPC.SendPayment(req)
// Once the HTLC has cleared, all the nodes in our mini network
// should show that the HTLC has been locked in.
ht.AssertNumActiveHtlcs(alice, 1)
ht.AssertNumActiveHtlcs(bob, 1)
// Alice force closes the channel.
ht.CloseChannelAssertPending(alice, chanPoint, true)
// Now that the channel has been force closed, it should show
// up in the PendingChannels RPC under the waiting close
// section.
waitingClose := ht.AssertChannelWaitingClose(alice, chanPoint)
// The waiting close channel closing tx hex should be set and
// be valid.
require.NotEmpty(ht, waitingClose.ClosingTxHex)
rawTxBytes, err := hex.DecodeString(waitingClose.ClosingTxHex)
require.NoError(
ht, err,
"waiting close channel closingTxHex invalid hex",
)
rawTx := &wire.MsgTx{}
err = rawTx.Deserialize(bytes.NewReader(rawTxBytes))
require.NoError(
ht, err, "waiting close channel ClosingTxHex invalid",
)
require.Equal(
ht, waitingClose.ClosingTxid, rawTx.TxHash().String(),
)
// We should see Alice's force closing tx in the mempool.
expectedNumTxes := 1
// If anchor is expected, we should see the anchor sweep tx in
// the mempool too.
if expectAnchor {
expectedNumTxes = 2
}
// Check our sweep transactions can be found in mempool.
sweepTxns := ht.Miner.GetNumTxsFromMempool(expectedNumTxes)
// Mine a block to confirm these transactions such that they
// don't remain in the mempool for any subsequent tests.
ht.MineBlocksAndAssertNumTxes(1, expectedNumTxes)
// Bob should now sweep his to_local output and anchor output.
expectedNumTxes = 2
ht.AssertNumPendingSweeps(bob, 2)
// If Alice's anchor is not swept above, we should see it here.
if !expectAnchor {
expectedNumTxes = 3
ht.AssertNumPendingSweeps(alice, 1)
}
// Mine one block to trigger the sweeps.
ht.MineBlocks(1)
// Mine one more block to assert the sweep transactions.
ht.MineBlocksAndAssertNumTxes(1, expectedNumTxes)
// Calculate the fee rate used.
feeRate := ht.CalculateTxesFeeRate(sweepTxns)
return feeRate
}
// Setup our fee estimation for the deadline. Because the fee rate is
// smaller than the parent tx's fee rate, this value won't be used and
// we should see only one sweep tx in the mempool.
ht.SetFeeEstimateWithConf(feeRateSmall, deadline)
// Calculate fee rate used and assert only the force close tx is
// broadcast.
feeRate := calculateSweepFeeRate(false, deadline)
// We expect the default max fee rate is used. Allow some deviation
// because weight estimates during tx generation are estimates.
require.InEpsilonf(
ht, int64(maxPerKw), feeRate, 0.01,
"expected fee rate:%d, got fee rate:%d", maxPerKw, feeRate,
)
// Setup our fee estimation for the deadline. Because the fee rate is
// greater than the parent tx's fee rate, this value will be used to
// sweep the anchor transaction. However, due to the default value
// being used, we should not attempt CPFP here because we are not force
// sweeping the anchor output.
ht.SetFeeEstimateWithConf(feeRateLarge, defaultDeadline)
// Calculate fee rate used and assert only the force close tx is
// broadcast.
feeRate = calculateSweepFeeRate(false, defaultDeadline)
// We expect the default max fee rate is used. Allow some deviation
// because weight estimates during tx generation are estimates.
require.InEpsilonf(
ht, int64(maxPerKw), feeRate, 0.01,
"expected fee rate:%d, got fee rate:%d", maxPerKw, feeRate,
)
// Setup our fee estimation for the deadline. Because the fee rate is
// greater than the parent tx's fee rate, this value will be used to
// sweep the anchor transaction and we should see two sweep
// transactions in the mempool.
ht.SetFeeEstimateWithConf(feeRateLarge, deadline)
// Calculate fee rate used and assert both the force close tx and the
// anchor sweeping tx are broadcast.
feeRate = calculateSweepFeeRate(true, deadline)
// We expect the anchor to be swept with the deadline, which has the
// fee rate of feeRateLarge.
require.InEpsilonf(
ht, int64(feeRateLarge), feeRate, 0.01,
"expected fee rate:%d, got fee rate:%d", feeRateLarge, feeRate,
)
}
// testChannelForceClosure performs a test to exercise the behavior of "force"
// closing a channel or unilaterally broadcasting the latest local commitment
// state on-chain. The test creates a new channel between Alice and Carol, then
@ -878,6 +647,7 @@ func channelForceClosureTest(ht *lntest.HarnessTest,
// We expect alice to have a timeout tx resolution with
// an amount equal to the payment amount.
//nolint:lll
aliceReports[outpoint.String()] = &lnrpc.Resolution{
ResolutionType: lnrpc.ResolutionType_OUTGOING_HTLC,
Outcome: lnrpc.ResolutionOutcome_FIRST_STAGE,
@ -890,6 +660,7 @@ func channelForceClosureTest(ht *lntest.HarnessTest,
// incoming htlc timeout which reflects the full amount
// of the htlc. It has no spend tx, because carol stops
// monitoring the htlc once it has timed out.
//nolint:lll
carolReports[outpoint.String()] = &lnrpc.Resolution{
ResolutionType: lnrpc.ResolutionType_INCOMING_HTLC,
Outcome: lnrpc.ResolutionOutcome_TIMEOUT,