lnd_test: extends force closure test to test for outgoing htlc incubation

This commit is contained in:
Conner Fromknecht 2017-10-06 16:58:13 -07:00
parent 2859956cd2
commit 2ef821ed9a
No known key found for this signature in database
GPG Key ID: 39DE78FBE6ACB0EF

View File

@ -753,6 +753,13 @@ func testDisconnectingTargetPeer(net *networkHarness, t *harnessTest) {
// Check existing connection.
assertNumConnections(ctxb, t, net.Alice, net.Bob, 1)
// Mine enough blocks to clear the force closed outputs from the UTXO
// nursery.
if _, err := net.Miner.Node.Generate(4); err != nil {
t.Fatalf("unable to mine blocks: %v", err)
}
time.Sleep(300 * time.Millisecond)
}
// testFundingPersistence is intended to ensure that the Funding Manager
@ -962,57 +969,248 @@ func testChannelBalance(net *networkHarness, t *harnessTest) {
closeChannelAndAssert(ctx, t, net, net.Alice, chanPoint, false)
}
// findForceClosedChannel searches a pending channel response for a particular
// channel, returning the force closed channel upon success.
func findForceClosedChannel(t *harnessTest,
pendingChanResp *lnrpc.PendingChannelResponse,
op *wire.OutPoint) *lnrpc.PendingChannelResponse_ForceClosedChannel {
var found bool
var forceClose *lnrpc.PendingChannelResponse_ForceClosedChannel
for _, forceClose = range pendingChanResp.PendingForceClosingChannels {
if forceClose.Channel.ChannelPoint == op.String() {
found = true
break
}
}
if !found {
t.Fatalf("channel not marked as force closed")
}
return forceClose
}
func assertCommitmentMaturity(t *harnessTest,
forceClose *lnrpc.PendingChannelResponse_ForceClosedChannel,
maturityHeight uint32, blocksTilMaturity int32) {
if forceClose.MaturityHeight != maturityHeight {
t.Fatalf("expected commitment maturity height to be %d, "+
"found %d instead", maturityHeight,
forceClose.MaturityHeight)
}
if forceClose.BlocksTilMaturity != blocksTilMaturity {
t.Fatalf("expected commitment blocks til maturity to be %d, "+
"found %d instead", blocksTilMaturity,
forceClose.BlocksTilMaturity)
}
}
// assertForceClosedChannelNumHtlcs verifies that a force closed channel has the
// proper number of htlcs.
func assertPendingChannelNumHtlcs(t *harnessTest,
forceClose *lnrpc.PendingChannelResponse_ForceClosedChannel,
expectedNumHtlcs int) {
if len(forceClose.PendingHtlcs) != expectedNumHtlcs {
t.Fatalf("expected force closed channel to have %d pending "+
"htlcs, found %d instead", expectedNumHtlcs,
len(forceClose.PendingHtlcs))
}
}
// assertNumForceClosedChannels checks that a pending channel response has the
// expected number of force closed channels.
func assertNumForceClosedChannels(t *harnessTest,
pendingChanResp *lnrpc.PendingChannelResponse, expectedNumChans int) {
if len(pendingChanResp.PendingForceClosingChannels) != expectedNumChans {
t.Fatalf("expected to find %d force closed channels, got %d",
expectedNumChans,
len(pendingChanResp.PendingForceClosingChannels))
}
}
// assertPendingHtlcStageAndMaturity uniformly tests all pending htlc's
// belonging to a force closed channel, testing for the expeced stage number,
// blocks till maturity, and the maturity height.
func assertPendingHtlcStageAndMaturity(t *harnessTest,
forceClose *lnrpc.PendingChannelResponse_ForceClosedChannel,
stage, maturityHeight uint32, blocksTillMaturity int32) {
for _, pendingHtlc := range forceClose.PendingHtlcs {
if pendingHtlc.Stage != stage {
t.Fatalf("expected pending htlc to be stage %d, "+
"found %d", stage, pendingHtlc.Stage)
}
if pendingHtlc.MaturityHeight != maturityHeight {
t.Fatalf("expected pending htlc maturity height to be "+
"%d, instead has %d", maturityHeight,
pendingHtlc.MaturityHeight)
}
if pendingHtlc.BlocksTilMaturity != blocksTillMaturity {
t.Fatalf("expected pending htlc blocks til maturity "+
"to be %d, instead has %d", blocksTillMaturity,
pendingHtlc.BlocksTilMaturity)
}
}
}
// testChannelForceClosure performs a test to exercise the behavior of "force"
// closing a channel or unilaterally broadcasting the latest local commitment
// state on-chain. The test creates a new channel between Alice and Bob, then
// force closes the channel after some cursory assertions. Within the test, two
// transactions should be broadcast on-chain, the commitment transaction itself
// (which closes the channel), and the sweep transaction a few blocks later
// once the output(s) become mature. This test also includes several restarts
// to ensure that the transaction output states are persisted throughout
// the forced closure process.
// state on-chain. The test creates a new channel between Alice and Carol, then
// force closes the channel after some cursory assertions. Within the test, a
// total of 3 + n transactions will be broadcast, representing the commitment
// transaction, a transaction sweeping the local CSV delayed output, a
// transaction sweeping the CSV delayed 2nd-layer htlcs outputs, and n
// htlc success transactions, where n is the number of payments Alice attempted
// to send to Carol. This test includes several restarts to ensure that the
// transaction output states are persisted throughout the forced closure
// process.
//
// TODO(roasbeef): also add an unsettled HTLC before force closing.
func testChannelForceClosure(net *networkHarness, t *harnessTest) {
timeout := time.Duration(time.Second * 10)
ctxb := context.Background()
const (
timeout = time.Duration(time.Second * 10)
chanAmt = btcutil.Amount(10e6)
pushAmt = btcutil.Amount(5e6)
paymentAmt = 100000
numInvoices = 6
)
// Before we start, obtain Bob's current wallet balance, we'll check to
// ensure that at the end of the force closure by Alice, Bob recognizes
// his new on-chain output.
bobBalReq := &lnrpc.WalletBalanceRequest{}
bobBalResp, err := net.Bob.WalletBalance(ctxb, bobBalReq)
// TODO(roasbeef): should check default value in config here
// instead, or make delay a param
defaultCSV := uint32(4)
defaultCLTV := defaultBitcoinForwardingPolicy.TimeLockDelta
// Since we'd like to test failure scenarios with outstanding htlcs,
// we'll introduce another node into our test network: Carol.
carol, err := net.NewNode([]string{"--debughtlc", "--hodlhtlc"})
if err != nil {
t.Fatalf("unable to get bob's balance: %v", err)
t.Fatalf("unable to create new nodes: %v", err)
}
bobStartingBalance := btcutil.Amount(bobBalResp.Balance * 1e8)
// First establish a channel with a capacity of 100k satoshis between
// Alice and Bob. We also push 50k satoshis of the initial amount
// towards Bob.
numFundingConfs := uint32(1)
chanAmt := btcutil.Amount(10e4)
pushAmt := btcutil.Amount(5e4)
chanOpenUpdate, err := net.OpenChannel(ctxb, net.Alice, net.Bob,
chanAmt, pushAmt)
// We must let Alice have an open channel before she can send a node
// announcement, so we open a channel with Carol,
if err := net.ConnectNodes(ctxb, net.Alice, carol); err != nil {
t.Fatalf("unable to connect alice to carol: %v", err)
}
// Before we start, obtain Carol's current wallet balance, we'll check
// to ensure that at the end of the force closure by Alice, Carol
// recognizes his new on-chain output.
carolBalReq := &lnrpc.WalletBalanceRequest{}
carolBalResp, err := carol.WalletBalance(ctxb, carolBalReq)
if err != nil {
t.Fatalf("unable to open channel: %v", err)
t.Fatalf("unable to get carol's balance: %v", err)
}
if _, err := net.Miner.Node.Generate(numFundingConfs); err != nil {
t.Fatalf("unable to mine block: %v", err)
}
carolStartingBalance := btcutil.Amount(carolBalResp.Balance * 1e8)
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint, err := net.WaitForChannelOpen(ctxt, chanOpenUpdate)
chanPoint := openChannelAndAssert(ctxt, t, net, net.Alice, carol,
chanAmt, pushAmt)
// Wait for Alice to receive the channel edge from the funding manager.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("error while waiting for channel to open: %v", err)
t.Fatalf("alice didn't see the alice->carol channel before "+
"timeout: %v", err)
}
// Now that the channel is open, immediately execute a force closure of
// the channel. This will also assert that the commitment transaction
// was immediately broadcast in order to fulfill the force closure
// request.
// With the channel open, we'll create a few invoices for Carol that
// Alice will pay to in order to advance the state of the channel.
carolPaymentReqs := make([]string, numInvoices)
for i := 0; i < numInvoices; i++ {
preimage := bytes.Repeat([]byte{byte(128 - i)}, 32)
invoice := &lnrpc.Invoice{
Memo: "testing",
RPreimage: preimage,
Value: paymentAmt,
}
resp, err := carol.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
carolPaymentReqs[i] = resp.PaymentRequest
}
// As we'll be querying the state of Carols's channels frequently we'll
// create a closure helper function for the purpose.
getAliceChanInfo := func() (*lnrpc.ActiveChannel, error) {
req := &lnrpc.ListChannelsRequest{}
aliceChannelInfo, err := net.Alice.ListChannels(ctxb, req)
if err != nil {
return nil, err
}
if len(aliceChannelInfo.Channels) != 1 {
t.Fatalf("alice should only have a single channel, "+
"instead he has %v",
len(aliceChannelInfo.Channels))
}
return aliceChannelInfo.Channels[0], nil
}
// Open up a payment stream to Alice that we'll use to send payment to
// Carol. We also create a small helper function to send payments to
// Carol, consuming the payment hashes we generated above.
alicePayStream, err := net.Alice.SendPayment(ctxb)
if err != nil {
t.Fatalf("unable to create payment stream for alice: %v", err)
}
sendPayments := func(start, stop int) error {
for i := start; i < stop; i++ {
sendReq := &lnrpc.SendRequest{
PaymentRequest: carolPaymentReqs[i],
}
if err := alicePayStream.Send(sendReq); err != nil {
return err
}
}
return nil
}
// Fetch starting height of this test so we can compute the block
// heights we expect certain events to take place.
_, curHeight, err := net.Miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get best block height")
}
// Using the current height of the chain, derive the relevant heights
// for incubating two-stage htlcs.
var (
startHeight = uint32(curHeight)
commCsvMaturityHeight = startHeight + 1 + defaultCSV
htlcExpiryHeight = startHeight + defaultCLTV
htlcCsvMaturityHeight = startHeight + defaultCLTV + 1 + defaultCSV
)
// Send payments from Alice to Carol, since Carol is htlchodl mode,
// the htlc outputs should be left unsettled, and should be swept by the
// utxo nursery.
if err := sendPayments(0, numInvoices); err != nil {
t.Fatalf("unable to send payment: %v", err)
}
time.Sleep(200 * time.Millisecond)
aliceChan, err := getAliceChanInfo()
if err != nil {
t.Fatalf("unable to get alice's channel info: %v", err)
}
if aliceChan.NumUpdates == 0 {
t.Fatalf("alice should see at least one update to her channel")
}
// Now that the channel is open and we have unsettled htlcs, immediately
// execute a force closure of the channel. This will also assert that
// the commitment transaction was immediately broadcast in order to
// fulfill the force closure request.
_, closingTxID, err := net.CloseChannel(ctxb, net.Alice, chanPoint, true)
if err != nil {
t.Fatalf("unable to execute force channel closure: %v", err)
@ -1025,25 +1223,41 @@ func testChannelForceClosure(net *networkHarness, t *harnessTest) {
if err != nil {
t.Fatalf("unable to query for pending channels: %v", err)
}
var found bool
assertNumForceClosedChannels(t, pendingChanResp, 1)
// Compute the outpoint of the channel, which we will use repeatedly to
// locate the pending channel information in the rpc responses.
txid, _ := chainhash.NewHash(chanPoint.FundingTxid[:])
op := wire.OutPoint{
Hash: *txid,
Index: chanPoint.OutputIndex,
}
for _, forceClose := range pendingChanResp.PendingForceClosingChannels {
if forceClose.Channel.ChannelPoint == op.String() {
found = true
break
}
forceClose := findForceClosedChannel(t, pendingChanResp, &op)
// Immediately after force closing, all of the funds should be in limbo,
// and the pending channels response should not indicate that any funds
// have been recovered.
if forceClose.LimboBalance == 0 {
t.Fatalf("all funds should still be in limbo")
}
if !found {
t.Fatalf("channel not marked as force close for alice")
if forceClose.RecoveredBalance != 0 {
t.Fatalf("no funds should yet be shown as recovered")
}
// TODO(roasbeef): should check default value in config here instead,
// or make delay a param
const defaultCSV = 4
// The commitment transaction has not been confirmed, so we expect to
// see a maturity height and blocks til maturity of 0.
assertCommitmentMaturity(t, forceClose, 0, 0)
// Since all of our payments were sent with Carol in hodl mode, all of
// them should be unsettled and attached to the commitment transaction.
// They also should have been configured such that they are not filtered
// as dust. At this point, all pending htlcs should be in stage 1, with
// a timeout set to the default CLTV expiry (144) blocks above the
// starting height.
assertPendingChannelNumHtlcs(t, forceClose, numInvoices)
assertPendingHtlcStageAndMaturity(t, forceClose, 1, htlcExpiryHeight,
int32(defaultCLTV))
// The several restarts in this test are intended to ensure that when a
// channel is force-closed, the UTXO nursery has persisted the state of
@ -1071,23 +1285,31 @@ func testChannelForceClosure(net *networkHarness, t *harnessTest) {
duration := time.Millisecond * 300
time.Sleep(duration)
// Now that the channel has been force closed, it should now have the
// height and number of blocks to confirm populated.
pendingChan, err := net.Alice.PendingChannels(ctxb, pendingChansRequest)
pendingChanResp, err = net.Alice.PendingChannels(ctxb, pendingChansRequest)
if err != nil {
t.Fatalf("unable to query for pending channels: %v", err)
}
if len(pendingChan.PendingForceClosingChannels) == 0 {
t.Fatalf("channel not marked as force close for alice")
assertNumForceClosedChannels(t, pendingChanResp, 1)
forceClose = findForceClosedChannel(t, pendingChanResp, &op)
// Now that the channel has been force closed, it should now have the
// height and number of blocks to confirm populated.
assertCommitmentMaturity(t, forceClose, commCsvMaturityHeight,
int32(defaultCSV))
// Check that our pending htlcs have deducted the block confirming the
// commitment transactionfrom their blocks til maturity value.
assertPendingChannelNumHtlcs(t, forceClose, numInvoices)
assertPendingHtlcStageAndMaturity(t, forceClose, 1, htlcExpiryHeight,
int32(defaultCLTV)-1)
// None of our outputs have been swept, so they should all be limbo.
if forceClose.LimboBalance == 0 {
t.Fatalf("all funds should still be in limbo")
}
forceClosedChan := pendingChan.PendingForceClosingChannels[0]
if forceClosedChan.MaturityHeight == 0 {
t.Fatalf("force close channel marked as not confirmed")
}
if forceClosedChan.BlocksTilMaturity != defaultCSV {
t.Fatalf("force closed channel has incorrect maturity time: "+
"expected %v, got %v", forceClosedChan.BlocksTilMaturity,
defaultCSV)
if forceClose.RecoveredBalance != 0 {
t.Fatalf("no funds should yet be shown as recovered")
}
// The following restart is intended to ensure that outputs from the
@ -1106,13 +1328,40 @@ func testChannelForceClosure(net *networkHarness, t *harnessTest) {
t.Fatalf("unable to mine blocks: %v", err)
}
// The following restart checks to ensure that outputs in the kindergarten
// bucket are persisted while waiting for the required number of
// confirmations to be reported.
// The following restart checks to ensure that outputs in the
// kindergarten bucket are persisted while waiting for the required
// number of confirmations to be reported.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
pendingChanResp, err = net.Alice.PendingChannels(ctxb, pendingChansRequest)
if err != nil {
t.Fatalf("unable to query for pending channels: %v", err)
}
assertNumForceClosedChannels(t, pendingChanResp, 1)
forceClose = findForceClosedChannel(t, pendingChanResp, &op)
// At this point, the nursery should show that the commitment output has
// 1 block left before its CSV delay expires. In total, we have mined
// exactly defaultCSV blocks, so the htlc outputs should also reflect
// that this many blocks have passed.
assertCommitmentMaturity(t, forceClose, commCsvMaturityHeight, 1)
assertPendingChannelNumHtlcs(t, forceClose, numInvoices)
assertPendingHtlcStageAndMaturity(t, forceClose, 1, htlcExpiryHeight,
int32(defaultCLTV)-int32(defaultCSV))
// All funds should still be shown in limbo.
if forceClose.LimboBalance == 0 {
t.Fatalf("all funds should still be in limbo")
}
if forceClose.RecoveredBalance != 0 {
t.Fatalf("no funds should yet be shown as recovered")
}
// Generate an additional block, which should cause the CSV delayed
// output from the commitment txn to expire.
if _, err := net.Miner.Node.Generate(1); err != nil {
t.Fatalf("unable to mine blocks: %v", err)
}
@ -1120,37 +1369,11 @@ func testChannelForceClosure(net *networkHarness, t *harnessTest) {
// At this point, the sweeping transaction should now be broadcast. So
// we fetch the node's mempool to ensure it has been properly
// broadcast.
var sweepingTXID *chainhash.Hash
var mempool []*chainhash.Hash
mempoolTimeout := time.After(3 * time.Second)
checkMempoolTick := time.NewTicker(100 * time.Millisecond)
defer checkMempoolTick.Stop()
mempoolPoll:
for {
select {
case <-mempoolTimeout:
t.Fatalf("sweep tx not found in mempool")
case <-checkMempoolTick.C:
mempool, err = net.Miner.Node.GetRawMempool()
if err != nil {
t.Fatalf("unable to fetch node's mempool: %v", err)
}
if len(mempool) != 0 {
break mempoolPoll
}
}
sweepingTXID, err := waitForTxInMempool(net.Miner.Node, 3*time.Second)
if err != nil {
t.Fatalf("failed to get sweep tx from mempool: %v", err)
}
// There should be exactly one transaction within the mempool at this
// point.
// TODO(roasbeef): assertion may not necessarily hold with concurrent
// test executions
if len(mempool) != 1 {
t.Fatalf("node's mempool is wrong size, expected 1 got %v",
len(mempool))
}
sweepingTXID = mempool[0]
// Fetch the sweep transaction, all input it's spending should be from
// the commitment transaction which was broadcast on-chain.
sweepTx, err := net.Miner.Node.GetRawTransaction(sweepingTXID)
@ -1165,7 +1388,13 @@ mempoolPoll:
}
}
// Finally, we mine an additional block which should include the sweep
// Restart Alice to ensure that she resumes watching the finalized
// commitment sweep txid.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
// Next, we mine an additional block which should include the sweep
// transaction as the input scripts and the sequence locks on the
// inputs should be properly met.
blockHash, err := net.Miner.Node.Generate(1)
@ -1179,28 +1408,309 @@ mempoolPoll:
assertTxInBlock(t, block, sweepTx.Hash())
// Now that the channel has been fully swept, it should no longer show
// up within the pending channels RPC.
time.Sleep(time.Millisecond * 300)
pendingChans, err := net.Alice.PendingChannels(ctxb, pendingChansRequest)
// We sleep here to ensure that Alice has enough time to receive a
// confirmation for the commitment transaction, which we already
// asserted was in the last block.
time.Sleep(300 * time.Millisecond)
// Now that the commit output has been fully swept, check to see that
// the channel remains open for the pending htlc outputs.
pendingChanResp, err = net.Alice.PendingChannels(ctxb, pendingChansRequest)
if err != nil {
t.Fatalf("unable to query for pending channels: %v", err)
}
if len(pendingChans.PendingForceClosingChannels) != 0 {
t.Fatalf("no channels should be shown as force closed")
assertNumForceClosedChannels(t, pendingChanResp, 1)
// Check that the commitment transactions shows that we are still past
// the maturity of the commitment output.
forceClose = findForceClosedChannel(t, pendingChanResp, &op)
assertCommitmentMaturity(t, forceClose, commCsvMaturityHeight, -1)
// Our pending htlcs should still be shown in the first stage, having
// deducted an additional two blocks from the relative maturity time..
assertPendingChannelNumHtlcs(t, forceClose, numInvoices)
assertPendingHtlcStageAndMaturity(t, forceClose, 1, htlcExpiryHeight,
int32(defaultCLTV)-int32(defaultCSV)-2)
// The htlc funds will still be shown as limbo, since they are still in
// their first stage. The commitment funds will have been recovered
// after the commit txn was included in the last block.
if forceClose.LimboBalance == 0 {
t.Fatalf("htlc funds should still be in limbo")
}
if forceClose.RecoveredBalance == 0 {
t.Fatalf("commitment funds should be shown as recovered")
}
// At this point, Bob should now be aware of his new immediately
// Compute the height preceding that which will cause the htlc CLTV
// timeouts will expire. The outputs entered at the same height as the
// output spending from the commitment txn, so we must deduct the number
// of blocks we have generated since adding it to the nursery, and take
// an additional block off so that we end up one block shy of the expiry
// height.
cltvHeightDelta := defaultCLTV - defaultCSV - 2 - 1
// Check that our htlcs are still expected to expire the computed expiry
// height, and that the remaining number of blocks is equal to the delta
// we just computed, including an additional block to actually trigger
// the broadcast.
assertPendingChannelNumHtlcs(t, forceClose, numInvoices)
assertPendingHtlcStageAndMaturity(t, forceClose, 1, htlcExpiryHeight,
int32(cltvHeightDelta+1))
// Advance the blockchain until just before the CLTV expires, nothing
// exciting should have happened during this time.
blockHash, err = net.Miner.Node.Generate(cltvHeightDelta)
if err != nil {
t.Fatalf("unable to generate block: %v", err)
}
time.Sleep(duration)
// We now restart Alice, to ensure that she will broadcast the presigned
// htlc timeout txns after the delay expires after experiencing an while
// waiting for the htlc outputs to incubate.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
time.Sleep(duration)
pendingChanResp, err = net.Alice.PendingChannels(ctxb, pendingChansRequest)
if err != nil {
t.Fatalf("unable to query for pending channels: %v", err)
}
assertNumForceClosedChannels(t, pendingChanResp, 1)
forceClose = findForceClosedChannel(t, pendingChanResp, &op)
// Verify that commitment output was confirmed many moons ago.
assertCommitmentMaturity(t, forceClose, commCsvMaturityHeight,
-int32(cltvHeightDelta)-1)
// We should now be at the block just before the utxo nursery will
// attempt to broadcast the htlc timeout transactions.
assertPendingChannelNumHtlcs(t, forceClose, numInvoices)
assertPendingHtlcStageAndMaturity(t, forceClose, 1, htlcExpiryHeight, 1)
// Now that our commitment confirmation depth has been surpassed, we
// should now see a non-zero recovered balance. All htlc outputs are
// still left in limbo, so it should be non-zero as well.
if forceClose.LimboBalance == 0 {
t.Fatalf("htlc funds should still be in limbo")
}
if forceClose.RecoveredBalance == 0 {
t.Fatalf("commitment funds should not be in limbo")
}
// Now, generate the block which will cause Alice to broadcast the
// presigned htlc timeout txns.
blockHash, err = net.Miner.Node.Generate(1)
if err != nil {
t.Fatalf("unable to generate block: %v", err)
}
// Since Alice had numInvoices (6) htlcs extended to Carol before force
// closing, we expect Alice to broadcast an htlc timeout txn for each
// one. Wait for them all to show up in the mempool.
htlcTxIDs, err := waitForNTxsInMempool(net.Miner.Node, numInvoices,
3*time.Second)
if err != nil {
t.Fatalf("unable to find htlc timeout txns in mempool: %v", err)
}
// Retrieve each htlc timeout txn from the mempool, and ensure it is
// well-formed. This entails verifying that each only spends from
// output, and that that output is from the commitment txn.
for _, htlcTxID := range htlcTxIDs {
// Fetch the sweep transaction, all input it's spending should
// be from the commitment transaction which was broadcast
// on-chain.
htlcTx, err := net.Miner.Node.GetRawTransaction(htlcTxID)
if err != nil {
t.Fatalf("unable to fetch sweep tx: %v", err)
}
// Ensure the htlc transaction only has one input.
if len(htlcTx.MsgTx().TxIn) != 1 {
t.Fatalf("htlc transaction should only have one txin, "+
"has %d", len(htlcTx.MsgTx().TxIn))
}
// Ensure the htlc transaction is spending from the commitment
// transaction.
txIn := htlcTx.MsgTx().TxIn[0]
if !closingTxID.IsEqual(&txIn.PreviousOutPoint.Hash) {
t.Fatalf("htlc transaction not spending from commit "+
"tx %v, instead spending %v",
closingTxID, txIn.PreviousOutPoint)
}
}
// With the htlc timeout txns still in the mempool, we restart Alice to
// verify that she can resume watching the htlc txns she broadcasted
// before crashing.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
time.Sleep(duration)
// Generate a block that mines the htlc timeout txns. Doing so now
// activates the 2nd-stage CSV delayed outputs.
blockHash, err = net.Miner.Node.Generate(1)
if err != nil {
t.Fatalf("unable to generate block: %v", err)
}
// This sleep gives Alice enough to time move the crib outputs into the
// kindergarten bucket.
time.Sleep(duration)
// Alice is restarted here to ensure that she promptly moved the crib
// outputs to the kindergarten bucket after the htlc timeout txns were
// confirmed.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
// Advance the chain until just before the 2nd-layer CSV delays expire.
blockHash, err = net.Miner.Node.Generate(defaultCSV - 1)
if err != nil {
t.Fatalf("unable to generate block: %v", err)
}
// Restart Alice to ensure that she can recover from a failure before
// having graduated the htlc outputs in the kindergarten bucket.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
// Now that the channel has been fully swept, it should no longer show
// incubated, check to see that Alice's node still reports the channel
// as pending force closed.
pendingChanResp, err = net.Alice.PendingChannels(ctxb, pendingChansRequest)
if err != nil {
t.Fatalf("unable to query for pending channels: %v", err)
}
assertNumForceClosedChannels(t, pendingChanResp, 1)
forceClose = findForceClosedChannel(t, pendingChanResp, &op)
assertCommitmentMaturity(t, forceClose, commCsvMaturityHeight,
-int32(cltvHeightDelta)-int32(defaultCSV)-2)
if forceClose.LimboBalance == 0 {
t.Fatalf("htlc funds should still be in limbo")
}
if forceClose.RecoveredBalance == 0 {
t.Fatalf("commitment funds should not be in limbo")
}
assertPendingChannelNumHtlcs(t, forceClose, numInvoices)
// Generate a block that causes Alice to sweep the htlc outputs in the
// kindergarten bucket.
blockHash, err = net.Miner.Node.Generate(1)
if err != nil {
t.Fatalf("unable to generate block: %v", err)
}
// Wait for the single sweep txn to appear in the mempool.
htlcSweepTxID, err := waitForTxInMempool(net.Miner.Node, 3*time.Second)
if err != nil {
t.Fatalf("failed to get sweep tx from mempool: %v", err)
}
// Construct a map of the already confirmed htlc timeout txids, that
// will count the number of times each is spent by the sweep txn. We
// prepopulate it in this way so that we can later detect if we are
// spending from an output that was not a confirmed htlc timeout txn.
var htlcTxIDSet = make(map[chainhash.Hash]int)
for _, htlcTxID := range htlcTxIDs {
htlcTxIDSet[*htlcTxID] = 0
}
// Fetch the htlc sweep transaction from the mempool.
htlcSweepTx, err := net.Miner.Node.GetRawTransaction(htlcSweepTxID)
if err != nil {
t.Fatalf("unable to fetch sweep tx: %v", err)
}
// Ensure the htlc sweep transaction only has one input for each htlc
// Alice extended before force closing.
if len(htlcSweepTx.MsgTx().TxIn) != numInvoices {
t.Fatalf("htlc transaction should have %d txin, "+
"has %d", numInvoices, len(htlcSweepTx.MsgTx().TxIn))
}
// Ensure that each output spends from exactly one htlc timeout txn.
for _, txIn := range htlcSweepTx.MsgTx().TxIn {
outpoint := txIn.PreviousOutPoint.Hash
// Check that the input is a confirmed htlc timeout txn.
if _, ok := htlcTxIDSet[outpoint]; !ok {
t.Fatalf("htlc sweep output not spending from htlc "+
"tx, instead spending output %v", outpoint)
}
// Increment our count for how many times this output was spent.
htlcTxIDSet[outpoint]++
// Check that each is only spent once.
if htlcTxIDSet[outpoint] > 1 {
t.Fatalf("htlc sweep tx has multiple spends from "+
"outpoint %v", outpoint)
}
}
// The following restart checks to ensure that the nursery store is
// storing the txid of the previously broadcast htlc sweep txn, and that
// it begins watching that txid after restarting.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
time.Sleep(duration)
// Now that the channel has been fully swept, it should no longer show
// incubated, check to see that Alice's node still reports the channel
// as pending force closed.
pendingChanResp, err = net.Alice.PendingChannels(ctxb, pendingChansRequest)
if err != nil {
t.Fatalf("unable to query for pending channels: %v", err)
}
assertNumForceClosedChannels(t, pendingChanResp, 1)
// All htlcs should show zero blocks until maturity, as evidenced by
// having checked the sweep transaction in the mempool.
forceClose = findForceClosedChannel(t, pendingChanResp, &op)
assertPendingChannelNumHtlcs(t, forceClose, numInvoices)
assertPendingHtlcStageAndMaturity(t, forceClose, 2,
htlcCsvMaturityHeight, 0)
// Generate the final block that sweeps all htlc funds into the user's
// wallet.
blockHash, err = net.Miner.Node.Generate(1)
if err != nil {
t.Fatalf("unable to generate block: %v", err)
}
time.Sleep(3 * duration)
// Now that the channel has been fully swept, it should no longer show
// up within the pending channels RPC.
pendingChanResp, err = net.Alice.PendingChannels(ctxb, pendingChansRequest)
if err != nil {
t.Fatalf("unable to query for pending channels: %v", err)
}
assertNumForceClosedChannels(t, pendingChanResp, 0)
// In addition to there being no pending channels, we verify that
// pending channels does not report any money still in limbo.
if pendingChanResp.TotalLimboBalance != 0 {
t.Fatalf("no user funds should be left in limbo after incubation")
}
// At this point, Carol should now be aware of his new immediately
// spendable on-chain balance, as it was Alice who broadcast the
// commitment transaction.
bobBalResp, err = net.Bob.WalletBalance(ctxb, bobBalReq)
carolBalResp, err = net.Bob.WalletBalance(ctxb, carolBalReq)
if err != nil {
t.Fatalf("unable to get bob's balance: %v", err)
t.Fatalf("unable to get carol's balance: %v", err)
}
bobExpectedBalance := bobStartingBalance + pushAmt
if btcutil.Amount(bobBalResp.Balance*1e8) < bobExpectedBalance {
t.Fatalf("bob's balance is incorrect: expected %v got %v",
bobExpectedBalance, btcutil.Amount(bobBalResp.Balance*1e8))
carolExpectedBalance := carolStartingBalance + pushAmt
if btcutil.Amount(carolBalResp.Balance*1e8) < carolExpectedBalance {
t.Fatalf("carol's balance is incorrect: expected %v got %v",
carolExpectedBalance,
btcutil.Amount(carolBalResp.Balance*1e8))
}
}
@ -1984,6 +2494,36 @@ poll:
return txid, nil
}
// waitForNTxsInMempool polls until finding the desired number of transactions
// in the provided miner's mempool. An error is returned if the this number is
// not met after the given timeout.
func waitForNTxsInMempool(miner *rpcclient.Client, n int,
timeout time.Duration) ([]*chainhash.Hash, error) {
breakTimeout := time.After(timeout)
ticker := time.NewTicker(50 * time.Millisecond)
defer ticker.Stop()
var err error
var mempool []*chainhash.Hash
for {
select {
case <-breakTimeout:
return nil, fmt.Errorf("wanted %v, only found %v txs "+
"in mempool", n, len(mempool))
case <-ticker.C:
mempool, err = miner.GetRawMempool()
if err != nil {
return nil, err
}
if len(mempool) == n {
return mempool, nil
}
}
}
}
// testRevokedCloseRetributinPostBreachConf tests that Alice is able carry out
// retribution in the event that she fails immediately after detecting Bob's
// breach txn in the mempool.
@ -3613,7 +4153,7 @@ func testBidirectionalAsyncPayments(net *networkHarness, t *harnessTest) {
const (
timeout = time.Duration(time.Second * 5)
paymentAmt = 100
paymentAmt = 1000
)
// First establish a channel with a capacity equals to the overall