lnd/routing/missioncontrol_state.go

270 lines
8.3 KiB
Go
Raw Normal View History

package routing
import (
"time"
"github.com/lightningnetwork/lnd/routing/route"
)
// missionControlState is an object that manages the internal mission control
// state. Note that it isn't thread safe and synchronization needs to be
// enforced externally.
type missionControlState struct {
// lastPairResult tracks the last payment result (on a pair basis) for
// each transited node. This is a multi-layer map that allows us to look
// up the failure history of all connected channels (node pairs) for a
// particular node.
lastPairResult map[route.Vertex]NodeResults
// lastSecondChance tracks the last time a second chance was granted for
// a directed node pair.
lastSecondChance map[DirectedNodePair]time.Time
// minFailureRelaxInterval is the minimum time that must have passed
// since the previously recorded failure before the failure amount may
// be raised.
minFailureRelaxInterval time.Duration
}
// newMissionControlState instantiates a new mission control state object.
func newMissionControlState(
minFailureRelaxInterval time.Duration) *missionControlState {
return &missionControlState{
lastPairResult: make(map[route.Vertex]NodeResults),
lastSecondChance: make(map[DirectedNodePair]time.Time),
minFailureRelaxInterval: minFailureRelaxInterval,
}
}
// getLastPairResult returns the current state for connections to the given
// node.
func (m *missionControlState) getLastPairResult(node route.Vertex) (NodeResults,
bool) {
result, ok := m.lastPairResult[node]
return result, ok
}
// ResetHistory resets the history of missionControlState returning it to a
// state as if no payment attempts have been made.
func (m *missionControlState) resetHistory() {
m.lastPairResult = make(map[route.Vertex]NodeResults)
m.lastSecondChance = make(map[DirectedNodePair]time.Time)
}
// setLastPairResult stores a result for a node pair.
func (m *missionControlState) setLastPairResult(fromNode, toNode route.Vertex,
timestamp time.Time, result *pairResult, force bool) {
nodePairs, ok := m.lastPairResult[fromNode]
if !ok {
nodePairs = make(NodeResults)
m.lastPairResult[fromNode] = nodePairs
}
current := nodePairs[toNode]
// Apply the new result to the existing data for this pair. If there is
// no existing data, apply it to the default values for TimedPairResult.
if result.success {
successAmt := result.amt
current.SuccessTime = timestamp
// Only update the success amount if this amount is higher. This
// prevents the success range from shrinking when there is no
// reason to do so. For example: small amount probes shouldn't
// affect a previous success for a much larger amount.
if force || successAmt > current.SuccessAmt {
current.SuccessAmt = successAmt
}
// If the success amount goes into the failure range, move the
// failure range up. Future attempts up to the success amount
// are likely to succeed. We don't want to clear the failure
// completely, because we haven't learnt much for amounts above
// the current success amount.
if force || (!current.FailTime.IsZero() &&
successAmt >= current.FailAmt) {
current.FailAmt = successAmt + 1
}
} else {
// For failures we always want to update both the amount and the
// time. Those need to relate to the same result, because the
2022-01-13 17:29:43 +01:00
// time is used to gradually diminish the penalty for that
// specific result. Updating the timestamp but not the amount
// could cause a failure for a lower amount (a more severe
// condition) to be revived as if it just happened.
failAmt := result.amt
// Drop result if it would increase the failure amount too soon
// after a previous failure. This can happen if htlc results
// come in out of order. This check makes it easier for payment
// processes to converge to a final state.
failInterval := timestamp.Sub(current.FailTime)
if !force && failAmt > current.FailAmt &&
failInterval < m.minFailureRelaxInterval {
log.Debugf("Ignoring higher amount failure within min "+
"failure relaxation interval: prev_fail_amt=%v, "+
"fail_amt=%v, interval=%v",
current.FailAmt, failAmt, failInterval)
return
}
current.FailTime = timestamp
current.FailAmt = failAmt
switch {
// The failure amount is set to zero when the failure is
// amount-independent, meaning that the attempt would have
// failed regardless of the amount. This should also reset the
// success amount to zero.
case failAmt == 0:
current.SuccessAmt = 0
// If the failure range goes into the success range, move the
// success range down.
case failAmt <= current.SuccessAmt:
current.SuccessAmt = failAmt - 1
}
}
log.Debugf("Setting %v->%v range to [%v-%v]",
fromNode, toNode, current.SuccessAmt, current.FailAmt)
nodePairs[toNode] = current
}
// setAllFail stores a fail result for all known connections to and from the
// given node.
func (m *missionControlState) setAllFail(node route.Vertex,
timestamp time.Time) {
for fromNode, nodePairs := range m.lastPairResult {
for toNode := range nodePairs {
if fromNode == node || toNode == node {
nodePairs[toNode] = TimedPairResult{
FailTime: timestamp,
}
}
}
}
}
// requestSecondChance checks whether the node fromNode can have a second chance
// at providing a channel update for its channel with toNode.
func (m *missionControlState) requestSecondChance(timestamp time.Time,
fromNode, toNode route.Vertex) bool {
// Look up previous second chance time.
pair := DirectedNodePair{
From: fromNode,
To: toNode,
}
lastSecondChance, ok := m.lastSecondChance[pair]
// If the channel hasn't already be given a second chance or its last
// second chance was long ago, we give it another chance.
if !ok || timestamp.Sub(lastSecondChance) > minSecondChanceInterval {
m.lastSecondChance[pair] = timestamp
log.Debugf("Second chance granted for %v->%v", fromNode, toNode)
return true
}
// Otherwise penalize the channel, because we don't allow channel
// updates that are that frequent. This is to prevent nodes from keeping
// us busy by continuously sending new channel updates.
log.Debugf("Second chance denied for %v->%v, remaining interval: %v",
fromNode, toNode, timestamp.Sub(lastSecondChance))
return false
}
// GetHistorySnapshot takes a snapshot from the current mission control state
// and actual probability estimates.
func (m *missionControlState) getSnapshot() *MissionControlSnapshot {
log.Debugf("Requesting history snapshot from mission control: "+
"pair_result_count=%v", len(m.lastPairResult))
pairs := make([]MissionControlPairSnapshot, 0, len(m.lastPairResult))
for fromNode, fromPairs := range m.lastPairResult {
for toNode, result := range fromPairs {
pair := NewDirectedNodePair(fromNode, toNode)
pairSnapshot := MissionControlPairSnapshot{
Pair: pair,
TimedPairResult: result,
}
pairs = append(pairs, pairSnapshot)
}
}
snapshot := MissionControlSnapshot{
Pairs: pairs,
}
return &snapshot
}
// importSnapshot takes an existing snapshot and merges it with our current
// state if the result provided are fresher than our current results. It returns
// the number of pairs that were used.
func (m *missionControlState) importSnapshot(snapshot *MissionControlSnapshot,
force bool) int {
var imported int
for _, pair := range snapshot.Pairs {
fromNode := pair.Pair.From
toNode := pair.Pair.To
results, found := m.getLastPairResult(fromNode)
if !found {
results = make(map[route.Vertex]TimedPairResult)
}
lastResult := results[toNode]
failResult := failPairResult(pair.FailAmt)
imported += m.importResult(
lastResult.FailTime, pair.FailTime, failResult,
fromNode, toNode, force,
)
successResult := successPairResult(pair.SuccessAmt)
imported += m.importResult(
lastResult.SuccessTime, pair.SuccessTime, successResult,
fromNode, toNode, force,
)
}
return imported
}
func (m *missionControlState) importResult(currentTs, importedTs time.Time,
importedResult pairResult, fromNode, toNode route.Vertex,
force bool) int {
if !force && currentTs.After(importedTs) {
log.Debugf("Not setting pair result for %v->%v (%v) "+
"success=%v, timestamp %v older than last result %v",
fromNode, toNode, importedResult.amt,
importedResult.success, importedTs, currentTs)
return 0
}
m.setLastPairResult(
fromNode, toNode, importedTs, &importedResult, force,
)
return 1
}