lnd/itest/lnd_multi-hop_force_close_test.go

755 lines
24 KiB
Go
Raw Normal View History

package itest
import (
"testing"
"github.com/btcsuite/btcd/btcutil"
"github.com/lightningnetwork/lnd/lncfg"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/lnrpc/invoicesrpc"
"github.com/lightningnetwork/lnd/lnrpc/routerrpc"
"github.com/lightningnetwork/lnd/lntest"
"github.com/lightningnetwork/lnd/lntest/node"
"github.com/lightningnetwork/lnd/lntypes"
"github.com/stretchr/testify/require"
)
const chanAmt = 1000000
var leasedType = lnrpc.CommitmentType_SCRIPT_ENFORCED_LEASE
// multiHopForceCloseTestCases defines a set of tests that focuses on the
// behavior of the force close in a multi-hop scenario.
var multiHopForceCloseTestCases = []*lntest.TestCase{
{
Name: "multihop local claim outgoing htlc anchor",
TestFunc: testLocalClaimOutgoingHTLCAnchor,
},
{
Name: "multihop local claim outgoing htlc simple taproot",
TestFunc: testLocalClaimOutgoingHTLCSimpleTaproot,
},
{
Name: "multihop local claim outgoing htlc leased",
TestFunc: testLocalClaimOutgoingHTLCLeased,
},
{
Name: "multihop receiver preimage claim anchor",
TestFunc: testMultiHopReceiverPreimageClaimAnchor,
},
{
Name: "multihop receiver preimage claim simple taproot",
TestFunc: testMultiHopReceiverPreimageClaimSimpleTaproot,
},
{
Name: "multihop receiver preimage claim leased",
TestFunc: testMultiHopReceiverPreimageClaimLeased,
},
}
// testLocalClaimOutgoingHTLCAnchor tests `runLocalClaimOutgoingHTLC` with
// anchor channel.
func testLocalClaimOutgoingHTLCAnchor(ht *lntest.HarnessTest) {
success := ht.Run("no zero conf", func(t *testing.T) {
st := ht.Subtest(t)
// Create a three hop network: Alice -> Bob -> Carol, using
// anchor channels.
//
// Prepare params.
openChannelParams := lntest.OpenChannelParams{Amt: chanAmt}
cfg := node.CfgAnchor
cfgCarol := append([]string{"--hodl.exit-settle"}, cfg...)
cfgs := [][]string{cfg, cfg, cfgCarol}
runLocalClaimOutgoingHTLC(st, cfgs, openChannelParams)
})
if !success {
return
}
ht.Run("zero conf", func(t *testing.T) {
st := ht.Subtest(t)
// Create a three hop network: Alice -> Bob -> Carol, using
// zero-conf anchor channels.
//
// Prepare params.
openChannelParams := lntest.OpenChannelParams{
Amt: chanAmt,
ZeroConf: true,
CommitmentType: lnrpc.CommitmentType_ANCHORS,
}
// Prepare Carol's node config to enable zero-conf and anchor.
cfg := node.CfgZeroConf
cfgCarol := append([]string{"--hodl.exit-settle"}, cfg...)
cfgs := [][]string{cfg, cfg, cfgCarol}
runLocalClaimOutgoingHTLC(st, cfgs, openChannelParams)
})
}
// testLocalClaimOutgoingHTLCSimpleTaproot tests `runLocalClaimOutgoingHTLC`
// with simple taproot channel.
func testLocalClaimOutgoingHTLCSimpleTaproot(ht *lntest.HarnessTest) {
c := lnrpc.CommitmentType_SIMPLE_TAPROOT
success := ht.Run("no zero conf", func(t *testing.T) {
st := ht.Subtest(t)
// Create a three hop network: Alice -> Bob -> Carol, using
// simple taproot channels.
//
// Prepare params.
openChannelParams := lntest.OpenChannelParams{
Amt: chanAmt,
CommitmentType: c,
Private: true,
}
cfg := node.CfgSimpleTaproot
cfgCarol := append([]string{"--hodl.exit-settle"}, cfg...)
cfgs := [][]string{cfg, cfg, cfgCarol}
runLocalClaimOutgoingHTLC(st, cfgs, openChannelParams)
})
if !success {
return
}
ht.Run("zero conf", func(t *testing.T) {
st := ht.Subtest(t)
// Create a three hop network: Alice -> Bob -> Carol, using
// zero-conf simple taproot channels.
//
// Prepare params.
openChannelParams := lntest.OpenChannelParams{
Amt: chanAmt,
ZeroConf: true,
CommitmentType: c,
Private: true,
}
// Prepare Carol's node config to enable zero-conf and leased
// channel.
cfg := node.CfgSimpleTaproot
cfg = append(cfg, node.CfgZeroConf...)
cfgCarol := append([]string{"--hodl.exit-settle"}, cfg...)
cfgs := [][]string{cfg, cfg, cfgCarol}
runLocalClaimOutgoingHTLC(st, cfgs, openChannelParams)
})
}
// testLocalClaimOutgoingHTLCLeased tests `runLocalClaimOutgoingHTLC` with
// script enforced lease channel.
func testLocalClaimOutgoingHTLCLeased(ht *lntest.HarnessTest) {
success := ht.Run("no zero conf", func(t *testing.T) {
st := ht.Subtest(t)
// Create a three hop network: Alice -> Bob -> Carol, using
// leased channels.
//
// Prepare params.
openChannelParams := lntest.OpenChannelParams{
Amt: chanAmt,
CommitmentType: leasedType,
}
cfg := node.CfgLeased
cfgCarol := append([]string{"--hodl.exit-settle"}, cfg...)
cfgs := [][]string{cfg, cfg, cfgCarol}
runLocalClaimOutgoingHTLC(st, cfgs, openChannelParams)
})
if !success {
return
}
ht.Run("zero conf", func(t *testing.T) {
st := ht.Subtest(t)
// Create a three hop network: Alice -> Bob -> Carol, using
// zero-conf anchor channels.
//
// Prepare params.
openChannelParams := lntest.OpenChannelParams{
Amt: chanAmt,
ZeroConf: true,
CommitmentType: leasedType,
}
// Prepare Carol's node config to enable zero-conf and leased
// channel.
cfg := node.CfgLeased
cfg = append(cfg, node.CfgZeroConf...)
cfgCarol := append([]string{"--hodl.exit-settle"}, cfg...)
cfgs := [][]string{cfg, cfg, cfgCarol}
runLocalClaimOutgoingHTLC(st, cfgs, openChannelParams)
})
}
// runLocalClaimOutgoingHTLC tests that in a multi-hop scenario, if the
// outgoing HTLC is about to time out, then we'll go to chain in order to claim
// it using the HTLC timeout transaction. Any dust HTLC's should be immediately
// canceled backwards. Once the timeout has been reached, then we should sweep
// it on-chain, and cancel the HTLC backwards.
func runLocalClaimOutgoingHTLC(ht *lntest.HarnessTest,
cfgs [][]string, params lntest.OpenChannelParams) {
// Create a three hop network: Alice -> Bob -> Carol.
_, nodes := ht.CreateSimpleNetwork(cfgs, params)
alice, bob, carol := nodes[0], nodes[1], nodes[2]
// For neutrino backend, we need to fund one more UTXO for Bob so he
// can sweep his outputs.
if ht.IsNeutrinoBackend() {
ht.FundCoins(btcutil.SatoshiPerBitcoin, bob)
}
// Now that our channels are set up, we'll send two HTLC's from Alice
// to Carol. The first HTLC will be universally considered "dust",
// while the second will be a proper fully valued HTLC.
const (
dustHtlcAmt = btcutil.Amount(100)
htlcAmt = btcutil.Amount(300_000)
)
// We'll create two random payment hashes unknown to carol, then send
// each of them by manually specifying the HTLC details.
carolPubKey := carol.PubKey[:]
dustPayHash := ht.Random32Bytes()
payHash := ht.Random32Bytes()
// If this is a taproot channel, then we'll need to make some manual
// route hints so Alice can actually find a route.
var routeHints []*lnrpc.RouteHint
if params.CommitmentType == lnrpc.CommitmentType_SIMPLE_TAPROOT {
routeHints = makeRouteHints(bob, carol, params.ZeroConf)
}
alice.RPC.SendPayment(&routerrpc.SendPaymentRequest{
Dest: carolPubKey,
Amt: int64(dustHtlcAmt),
PaymentHash: dustPayHash,
FinalCltvDelta: finalCltvDelta,
TimeoutSeconds: 60,
FeeLimitMsat: noFeeLimitMsat,
RouteHints: routeHints,
})
alice.RPC.SendPayment(&routerrpc.SendPaymentRequest{
Dest: carolPubKey,
Amt: int64(htlcAmt),
PaymentHash: payHash,
FinalCltvDelta: finalCltvDelta,
TimeoutSeconds: 60,
FeeLimitMsat: noFeeLimitMsat,
RouteHints: routeHints,
})
// Verify that all nodes in the path now have two HTLC's with the
// proper parameters.
ht.AssertActiveHtlcs(alice, dustPayHash, payHash)
ht.AssertActiveHtlcs(bob, dustPayHash, payHash)
ht.AssertActiveHtlcs(carol, dustPayHash, payHash)
// We'll now mine enough blocks to trigger Bob's force close the
// channel Bob=>Carol due to the fact that the HTLC is about to
// timeout. With the default outgoing broadcast delta of zero, this
// will be the same height as the htlc expiry height.
numBlocks := padCLTV(
uint32(finalCltvDelta - lncfg.DefaultOutgoingBroadcastDelta),
)
ht.MineBlocks(int(numBlocks))
// Bob's force close tx should have the following outputs,
// 1. anchor output.
// 2. to_local output, which is CSV locked.
// 3. outgoing HTLC output, which has expired.
//
// Bob's anchor output should be offered to his sweeper since Bob has
// time-sensitive HTLCs - we expect both anchors to be offered, while
// the sweeping of the remote anchor will be marked as failed due to
// `testmempoolaccept` check.
//
// For neutrino backend, there's no way to know the sweeping of the
// remote anchor is failed, so Bob still sees two pending sweeps.
if ht.IsNeutrinoBackend() {
ht.AssertNumPendingSweeps(bob, 2)
} else {
ht.AssertNumPendingSweeps(bob, 1)
}
// We expect to see tow txns in the mempool,
// 1. Bob's force close tx.
// 2. Bob's anchor sweep tx.
ht.AssertNumTxsInMempool(2)
// Mine a block to confirm the closing tx and the anchor sweeping tx.
ht.MineBlocksAndAssertNumTxes(1, 2)
// At this point, Bob should have canceled backwards the dust HTLC that
// we sent earlier. This means Alice should now only have a single HTLC
// on her channel.
ht.AssertActiveHtlcs(alice, payHash)
// With the closing transaction confirmed, we should expect Bob's HTLC
// timeout transaction to be offered to the sweeper due to the expiry
// being reached. we also expect Carol's anchor sweeps.
ht.AssertNumPendingSweeps(bob, 1)
ht.AssertNumPendingSweeps(carol, 1)
// Bob's sweeper should sweep his outgoing HTLC immediately since it's
// expired. His to_local output cannot be swept due to the CSV lock.
// Carol's anchor sweep should be failed due to output being dust.
ht.AssertNumTxsInMempool(1)
// Mine a block to confirm Bob's outgoing HTLC sweeping tx.
ht.MineBlocksAndAssertNumTxes(1, 1)
// With Bob's HTLC timeout transaction confirmed, there should be no
// active HTLC's on the commitment transaction from Alice -> Bob.
ht.AssertNumActiveHtlcs(alice, 0)
// At this point, Bob should show that the pending HTLC has advanced to
// the second stage and is ready to be swept once the timelock is up.
resp := ht.AssertNumPendingForceClose(bob, 1)[0]
require.NotZero(ht, resp.LimboBalance)
require.Positive(ht, resp.BlocksTilMaturity)
require.Equal(ht, 1, len(resp.PendingHtlcs))
require.Equal(ht, uint32(2), resp.PendingHtlcs[0].Stage)
ht.Logf("Bob's timelock to_local output=%v, timelock on second stage "+
"htlc=%v", resp.BlocksTilMaturity,
resp.PendingHtlcs[0].BlocksTilMaturity)
if params.CommitmentType == leasedType {
// Since Bob is the initiator of the script-enforced leased
// channel between him and Carol, he will incur an additional
// CLTV on top of the usual CSV delay on any outputs that he
// can sweep back to his wallet.
//
// We now mine enough blocks so the CLTV lock expires, which
// will trigger the sweep of the to_local and outgoing HTLC
// outputs.
ht.MineBlocks(int(resp.BlocksTilMaturity))
// Check that Bob has a pending sweeping tx which sweeps his
// to_local and outgoing HTLC outputs.
ht.AssertNumPendingSweeps(bob, 2)
// Mine a block to confirm the sweeping tx.
ht.MineBlocksAndAssertNumTxes(1, 1)
} else {
// Since Bob force closed the channel between him and Carol, he
// will incur the usual CSV delay on any outputs that he can
// sweep back to his wallet. We'll subtract one block from our
// current maturity period to assert on the mempool.
ht.MineBlocks(int(resp.BlocksTilMaturity - 1))
// Check that Bob has a pending sweeping tx which sweeps his
// to_local output.
ht.AssertNumPendingSweeps(bob, 1)
// Mine a block to confirm the to_local sweeping tx, which also
// triggers the sweeping of the second stage HTLC output.
ht.MineBlocksAndAssertNumTxes(1, 1)
// Bob's sweeper should now broadcast his second layer sweep
// due to the CSV on the HTLC timeout output.
ht.AssertNumTxsInMempool(1)
// Next, we'll mine a final block that should confirm the
// sweeping transactions left.
ht.MineBlocksAndAssertNumTxes(1, 1)
}
// Once this transaction has been confirmed, Bob should detect that he
// no longer has any pending channels.
ht.AssertNumPendingForceClose(bob, 0)
}
// testMultiHopReceiverPreimageClaimAnchor tests
// `runMultiHopReceiverPreimageClaim` with anchor channels.
func testMultiHopReceiverPreimageClaimAnchor(ht *lntest.HarnessTest) {
success := ht.Run("no zero conf", func(t *testing.T) {
st := ht.Subtest(t)
// Create a three hop network: Alice -> Bob -> Carol, using
// anchor channels.
//
// Prepare params.
openChannelParams := lntest.OpenChannelParams{Amt: chanAmt}
cfg := node.CfgAnchor
cfgs := [][]string{cfg, cfg, cfg}
runMultiHopReceiverPreimageClaim(st, cfgs, openChannelParams)
})
if !success {
return
}
ht.Run("zero conf", func(t *testing.T) {
st := ht.Subtest(t)
// Create a three hop network: Alice -> Bob -> Carol, using
// zero-conf anchor channels.
//
// Prepare params.
openChannelParams := lntest.OpenChannelParams{
Amt: chanAmt,
ZeroConf: true,
CommitmentType: lnrpc.CommitmentType_ANCHORS,
}
// Prepare Carol's node config to enable zero-conf and anchor.
cfg := node.CfgZeroConf
cfgs := [][]string{cfg, cfg, cfg}
runMultiHopReceiverPreimageClaim(st, cfgs, openChannelParams)
})
}
// testMultiHopReceiverPreimageClaimSimpleTaproot tests
// `runMultiHopReceiverPreimageClaim` with simple taproot channels.
func testMultiHopReceiverPreimageClaimSimpleTaproot(ht *lntest.HarnessTest) {
c := lnrpc.CommitmentType_SIMPLE_TAPROOT
success := ht.Run("no zero conf", func(t *testing.T) {
st := ht.Subtest(t)
// Create a three hop network: Alice -> Bob -> Carol, using
// simple taproot channels.
//
// Prepare params.
openChannelParams := lntest.OpenChannelParams{
Amt: chanAmt,
CommitmentType: c,
Private: true,
}
cfg := node.CfgSimpleTaproot
cfgs := [][]string{cfg, cfg, cfg}
runMultiHopReceiverPreimageClaim(st, cfgs, openChannelParams)
})
if !success {
return
}
ht.Run("zero conf", func(t *testing.T) {
st := ht.Subtest(t)
// Create a three hop network: Alice -> Bob -> Carol, using
// zero-conf simple taproot channels.
//
// Prepare params.
openChannelParams := lntest.OpenChannelParams{
Amt: chanAmt,
ZeroConf: true,
CommitmentType: c,
Private: true,
}
// Prepare Carol's node config to enable zero-conf and leased
// channel.
cfg := node.CfgSimpleTaproot
cfg = append(cfg, node.CfgZeroConf...)
cfgs := [][]string{cfg, cfg, cfg}
runMultiHopReceiverPreimageClaim(st, cfgs, openChannelParams)
})
}
// testMultiHopReceiverPreimageClaimLeased tests
// `runMultiHopReceiverPreimageClaim` with script enforce lease channels.
func testMultiHopReceiverPreimageClaimLeased(ht *lntest.HarnessTest) {
success := ht.Run("no zero conf", func(t *testing.T) {
st := ht.Subtest(t)
// Create a three hop network: Alice -> Bob -> Carol, using
// leased channels.
//
// Prepare params.
openChannelParams := lntest.OpenChannelParams{
Amt: chanAmt,
CommitmentType: leasedType,
}
cfg := node.CfgLeased
cfgs := [][]string{cfg, cfg, cfg}
runMultiHopReceiverPreimageClaim(st, cfgs, openChannelParams)
})
if !success {
return
}
ht.Run("zero conf", func(t *testing.T) {
st := ht.Subtest(t)
// Create a three hop network: Alice -> Bob -> Carol, using
// zero-conf anchor channels.
//
// Prepare params.
openChannelParams := lntest.OpenChannelParams{
Amt: chanAmt,
ZeroConf: true,
CommitmentType: leasedType,
}
// Prepare Carol's node config to enable zero-conf and leased
// channel.
cfg := node.CfgLeased
cfg = append(cfg, node.CfgZeroConf...)
cfgs := [][]string{cfg, cfg, cfg}
runMultiHopReceiverPreimageClaim(st, cfgs, openChannelParams)
})
}
// runMultiHopReceiverClaim tests that in the multi-hop setting, if the
// receiver of an HTLC knows the preimage, but wasn't able to settle the HTLC
// off-chain, then it goes on chain to claim the HTLC uing the HTLC success
// transaction. In this scenario, the node that sent the outgoing HTLC should
// extract the preimage from the sweep transaction, and finish settling the
// HTLC backwards into the route.
func runMultiHopReceiverPreimageClaim(ht *lntest.HarnessTest,
cfgs [][]string, params lntest.OpenChannelParams) {
// Set the min relay feerate to be 10 sat/vbyte so the non-CPFP anchor
// is never swept.
//
// TODO(yy): delete this line once the normal anchor sweeping is
// removed.
ht.SetMinRelayFeerate(10_000)
// Create a three hop network: Alice -> Bob -> Carol.
chanPoints, nodes := ht.CreateSimpleNetwork(cfgs, params)
alice, bob, carol := nodes[0], nodes[1], nodes[2]
bobChanPoint := chanPoints[1]
ht.FundCoins(btcutil.SatoshiPerBitcoin, carol)
// For neutrino backend, we need to one more UTXO for Carol so she can
// sweep her outputs.
if ht.IsNeutrinoBackend() {
ht.FundCoins(btcutil.SatoshiPerBitcoin, carol)
}
// Fund Carol one UTXO so she can sweep outputs.
ht.FundCoins(btcutil.SatoshiPerBitcoin, carol)
// If this is a taproot channel, then we'll need to make some manual
// route hints so Alice can actually find a route.
var routeHints []*lnrpc.RouteHint
if params.CommitmentType == lnrpc.CommitmentType_SIMPLE_TAPROOT {
routeHints = makeRouteHints(bob, carol, params.ZeroConf)
}
// With the network active, we'll now add a new hodl invoice at Carol's
// end. Make sure the cltv expiry delta is large enough, otherwise Bob
// won't send out the outgoing htlc.
const invoiceAmt = 100000
var preimage lntypes.Preimage
copy(preimage[:], ht.Random32Bytes())
payHash := preimage.Hash()
invoiceReq := &invoicesrpc.AddHoldInvoiceRequest{
Value: invoiceAmt,
CltvExpiry: finalCltvDelta,
Hash: payHash[:],
RouteHints: routeHints,
}
carolInvoice := carol.RPC.AddHoldInvoice(invoiceReq)
// Subscribe the invoice.
stream := carol.RPC.SubscribeSingleInvoice(payHash[:])
// Now that we've created the invoice, we'll send a single payment from
// Alice to Carol. We won't wait for the response however, as Carol
// will not immediately settle the payment.
req := &routerrpc.SendPaymentRequest{
PaymentRequest: carolInvoice.PaymentRequest,
TimeoutSeconds: 60,
FeeLimitMsat: noFeeLimitMsat,
}
alice.RPC.SendPayment(req)
// At this point, all 3 nodes should now have an active channel with
// the created HTLC pending on all of them.
ht.AssertActiveHtlcs(alice, payHash[:])
ht.AssertActiveHtlcs(bob, payHash[:])
ht.AssertActiveHtlcs(carol, payHash[:])
// Wait for Carol to mark invoice as accepted. There is a small gap to
// bridge between adding the htlc to the channel and executing the exit
// hop logic.
ht.AssertInvoiceState(stream, lnrpc.Invoice_ACCEPTED)
// Stop Bob so he won't be able to settle the incoming htlc.
restartBob := ht.SuspendNode(bob)
// Settle invoice. This will just mark the invoice as settled, as there
// is no link anymore to remove the htlc from the commitment tx. For
// this test, it is important to actually settle and not leave the
// invoice in the accepted state, because without a known preimage, the
// channel arbitrator won't go to chain.
carol.RPC.SettleInvoice(preimage[:])
// We now advance the block height to the point where Carol will force
// close her channel with Bob, broadcast the closing tx but keep it
// unconfirmed.
numBlocks := padCLTV(uint32(
invoiceReq.CltvExpiry - lncfg.DefaultIncomingBroadcastDelta,
))
// Now we'll mine enough blocks to prompt Carol to actually go to the
// chain in order to sweep her HTLC since the value is high enough.
ht.MineBlocks(int(numBlocks))
// Carol's force close tx should have the following outputs,
// 1. anchor output.
// 2. to_local output, which is CSV locked.
// 3. incoming HTLC output, which she has the preimage to settle.
//
// Carol's anchor output should be offered to her sweeper since she has
// time-sensitive HTLCs - we expect both anchors to be offered, while
// the sweeping of the remote anchor will be marked as failed due to
// `testmempoolaccept` check.
//
// For neutrino backend, there's no way to know the sweeping of the
// remote anchor is failed, so Carol still sees two pending sweeps.
if ht.IsNeutrinoBackend() {
ht.AssertNumPendingSweeps(carol, 2)
} else {
ht.AssertNumPendingSweeps(carol, 1)
}
// We expect to see tow txns in the mempool,
// 1. Carol's force close tx.
// 2. Carol's anchor sweep tx.
ht.AssertNumTxsInMempool(2)
// Mine a block to confirm the closing tx and the anchor sweeping tx.
ht.MineBlocksAndAssertNumTxes(1, 2)
ht.Log("Current height", ht.CurrentHeight())
// After the force close tx is mined, Carol should offer her second
// level HTLC tx to the sweeper.
ht.AssertNumPendingSweeps(carol, 1)
// Restart bob again.
require.NoError(ht, restartBob())
// Once Bob is online, he should notice Carol's second level tx in the
// mempool, he will extract the preimage and settle the HTLC back
// off-chain. He will also try to sweep his anchor and to_local
// outputs, with the anchor output being skipped due to it being
// uneconomical.
if params.CommitmentType == leasedType {
// For leased channels, Bob cannot sweep his to_local output
// yet since it's timelocked, so we only see his anchor input.
ht.AssertNumPendingSweeps(bob, 1)
} else {
// For non-leased channels, Bob should have two pending sweeps,
// 1. to_local output.
// 2. anchor output, tho it won't be swept due to it being
// uneconomical.
ht.AssertNumPendingSweeps(bob, 2)
}
// Mine an empty block the for neutrino backend. We need this step to
// trigger Bob's chain watcher to detect the force close tx. Deep down,
// this happens because the notification system for neutrino is very
// different from others. Specifically, when a block contains the force
// close tx is notified, these two calls,
// - RegisterBlockEpochNtfn, will notify the block first.
// - RegisterSpendNtfn, will wait for the neutrino notifier to sync to
// the block, then perform a GetUtxo, which, by the time the spend
// details are sent, the blockbeat is considered processed in Bob's
// chain watcher.
//
// TODO(yy): refactor txNotifier to fix the above issue.
if ht.IsNeutrinoBackend() {
ht.MineEmptyBlocks(1)
}
if params.CommitmentType == leasedType {
// We expect to see 1 txns in the mempool,
// - Carol's second level HTLC sweep tx.
// We now mine a block to confirm it.
ht.MineBlocksAndAssertNumTxes(1, 1)
} else {
// We expect to see 2 txns in the mempool,
// - Bob's to_local sweep tx.
// - Carol's second level HTLC sweep tx.
// We now mine a block to confirm the sweeping txns.
ht.MineBlocksAndAssertNumTxes(1, 2)
}
// Once the second-level transaction confirmed, Bob should have
// extracted the preimage from the chain, and sent it back to Alice,
// clearing the HTLC off-chain.
ht.AssertNumActiveHtlcs(alice, 0)
// Check that the Alice's payment is correctly marked succeeded.
ht.AssertPaymentStatus(alice, preimage, lnrpc.Payment_SUCCEEDED)
// Carol's pending channel report should now show two outputs under
// limbo: her commitment output, as well as the second-layer claim
// output, and the pending HTLC should also now be in stage 2.
ht.AssertNumHTLCsAndStage(carol, bobChanPoint, 1, 2)
// If we mine 4 additional blocks, then Carol can sweep the second
// level HTLC output once the CSV expires.
ht.MineBlocks(defaultCSV - 1)
// Assert Carol has the pending HTLC sweep.
ht.AssertNumPendingSweeps(carol, 1)
// We should have a new transaction in the mempool.
ht.AssertNumTxsInMempool(1)
// Finally, if we mine an additional block to confirm Carol's second
// level success transaction. Carol should not show a pending channel
// in her report afterwards.
ht.MineBlocksAndAssertNumTxes(1, 1)
ht.AssertNumPendingForceClose(carol, 0)
// The invoice should show as settled for Carol, indicating that it was
// swept on-chain.
ht.AssertInvoiceSettled(carol, carolInvoice.PaymentAddr)
// For leased channels, Bob still has his commit output to sweep to
// since he incurred an additional CLTV from being the channel
// initiator.
if params.CommitmentType == leasedType {
resp := ht.AssertNumPendingForceClose(bob, 1)[0]
require.Positive(ht, resp.LimboBalance)
require.Positive(ht, resp.BlocksTilMaturity)
// Mine enough blocks for Bob's commit output's CLTV to expire
// and sweep it.
ht.MineBlocks(int(resp.BlocksTilMaturity))
// Bob should have two pending inputs to be swept, the commit
// output and the anchor output.
ht.AssertNumPendingSweeps(bob, 2)
// Mine a block to confirm the commit output sweep.
ht.MineBlocksAndAssertNumTxes(1, 1)
}
// Assert Bob also sees the channel as closed.
ht.AssertNumPendingForceClose(bob, 0)
}