lnd/sweep/aggregator.go

384 lines
12 KiB
Go
Raw Normal View History

package sweep
import (
"sort"
"github.com/btcsuite/btcd/btcutil"
"github.com/btcsuite/btcd/wire"
"github.com/lightningnetwork/lnd/input"
"github.com/lightningnetwork/lnd/lntypes"
"github.com/lightningnetwork/lnd/lnwallet"
"github.com/lightningnetwork/lnd/lnwallet/chainfee"
)
// UtxoAggregator defines an interface that takes a list of inputs and
// aggregate them into groups. Each group is used as the inputs to create a
// sweeping transaction.
type UtxoAggregator interface {
// ClusterInputs takes a list of inputs and groups them into input
// sets. Each input set will be used to create a sweeping transaction.
ClusterInputs(inputs InputsMap) []InputSet
}
// BudgetAggregator is a budget-based aggregator that creates clusters based on
// deadlines and budgets of inputs.
type BudgetAggregator struct {
// estimator is used when crafting sweep transactions to estimate the
// necessary fee relative to the expected size of the sweep
// transaction.
estimator chainfee.Estimator
// maxInputs specifies the maximum number of inputs allowed in a single
// sweep tx.
maxInputs uint32
}
// Compile-time constraint to ensure BudgetAggregator implements UtxoAggregator.
var _ UtxoAggregator = (*BudgetAggregator)(nil)
// NewBudgetAggregator creates a new instance of a BudgetAggregator.
func NewBudgetAggregator(estimator chainfee.Estimator,
maxInputs uint32) *BudgetAggregator {
return &BudgetAggregator{
estimator: estimator,
maxInputs: maxInputs,
}
}
// clusterGroup defines an alias for a set of inputs that are to be grouped.
type clusterGroup map[int32][]SweeperInput
// ClusterInputs creates a list of input sets from pending inputs.
// 1. filter out inputs whose budget cannot cover min relay fee.
// 2. filter a list of exclusive inputs.
// 3. group the inputs into clusters based on their deadline height.
// 4. sort the inputs in each cluster by their budget.
// 5. optionally split a cluster if it exceeds the max input limit.
// 6. create input sets from each of the clusters.
// 7. create input sets for each of the exclusive inputs.
func (b *BudgetAggregator) ClusterInputs(inputs InputsMap) []InputSet {
// Filter out inputs that have a budget below min relay fee.
filteredInputs := b.filterInputs(inputs)
// Create clusters to group inputs based on their deadline height.
clusters := make(clusterGroup, len(filteredInputs))
// exclusiveInputs is a set of inputs that are not to be included in
// any cluster. These inputs can only be swept independently as there's
// no guarantee which input will be confirmed first, which means
// grouping exclusive inputs may jeopardize non-exclusive inputs.
exclusiveInputs := make(map[wire.OutPoint]clusterGroup)
// Iterate all the inputs and group them based on their specified
// deadline heights.
for _, input := range filteredInputs {
// Get deadline height, and use the specified default deadline
// height if it's not set.
height := input.DeadlineHeight
// Put exclusive inputs in their own set.
if input.params.ExclusiveGroup != nil {
log.Tracef("Input %v is exclusive", input.OutPoint())
exclusiveInputs[input.OutPoint()] = clusterGroup{
height: []SweeperInput{*input},
}
continue
}
cluster, ok := clusters[height]
if !ok {
cluster = make([]SweeperInput, 0)
}
cluster = append(cluster, *input)
clusters[height] = cluster
}
// Now that we have the clusters, we can create the input sets.
//
// NOTE: cannot pre-allocate the slice since we don't know the number
// of input sets in advance.
inputSets := make([]InputSet, 0)
for height, cluster := range clusters {
// Sort the inputs by their economical value.
sortedInputs := b.sortInputs(cluster)
// Split on locktimes if they are different.
splitClusters := splitOnLocktime(sortedInputs)
// Create input sets from the cluster.
for _, cluster := range splitClusters {
sets := b.createInputSets(cluster, height)
inputSets = append(inputSets, sets...)
}
}
// Create input sets from the exclusive inputs.
for _, cluster := range exclusiveInputs {
for height, input := range cluster {
sets := b.createInputSets(input, height)
inputSets = append(inputSets, sets...)
}
}
return inputSets
}
// createInputSet takes a set of inputs which share the same deadline height
// and turns them into a list of `InputSet`, each set is then used to create a
// sweep transaction.
//
// TODO(yy): by the time we call this method, all the invalid/uneconomical
// inputs have been filtered out, all the inputs have been sorted based on
// their budgets, and we are about to create input sets. The only thing missing
// here is, we need to group the inputs here even further based on whether
// their budgets can cover the starting fee rate used for this input set.
func (b *BudgetAggregator) createInputSets(inputs []SweeperInput,
deadlineHeight int32) []InputSet {
// sets holds the InputSets that we will return.
sets := make([]InputSet, 0)
// Copy the inputs to a new slice so we can modify it.
remainingInputs := make([]SweeperInput, len(inputs))
copy(remainingInputs, inputs)
// If the number of inputs is greater than the max inputs allowed, we
// will split them into smaller clusters.
for uint32(len(remainingInputs)) > b.maxInputs {
log.Tracef("Cluster has %v inputs, max is %v, dividing...",
len(inputs), b.maxInputs)
// Copy the inputs to be put into the new set, and update the
// remaining inputs by removing currentInputs.
currentInputs := make([]SweeperInput, b.maxInputs)
copy(currentInputs, remainingInputs[:b.maxInputs])
remainingInputs = remainingInputs[b.maxInputs:]
// Create an InputSet using the max allowed number of inputs.
set, err := NewBudgetInputSet(
currentInputs, deadlineHeight,
)
if err != nil {
log.Errorf("unable to create input set: %v", err)
continue
}
sets = append(sets, set)
}
// Create an InputSet from the remaining inputs.
if len(remainingInputs) > 0 {
set, err := NewBudgetInputSet(
remainingInputs, deadlineHeight,
)
if err != nil {
log.Errorf("unable to create input set: %v", err)
return nil
}
sets = append(sets, set)
}
return sets
}
// filterInputs filters out inputs that have,
// - a budget below the min relay fee.
// - a budget below its requested starting fee.
// - a required output that's below the dust.
func (b *BudgetAggregator) filterInputs(inputs InputsMap) InputsMap {
// Get the current min relay fee for this round.
minFeeRate := b.estimator.RelayFeePerKW()
// filterInputs stores a map of inputs that has a budget that at least
// can pay the minimal fee.
filteredInputs := make(InputsMap, len(inputs))
// Iterate all the inputs and filter out the ones whose budget cannot
// cover the min fee.
for _, pi := range inputs {
op := pi.OutPoint()
// Get the size of the witness and skip if there's an error.
witnessSize, _, err := pi.WitnessType().SizeUpperBound()
if err != nil {
log.Warnf("Skipped input=%v: cannot get its size: %v",
op, err)
continue
}
//nolint:lll
// Calculate the size if the input is included in the tx.
//
// NOTE: When including this input, we need to account the
// non-witness data which is expressed in vb.
//
// TODO(yy): This is not accurate for tapscript input. We need
// to unify calculations used in the `TxWeightEstimator` inside
// `input/size.go` and `weightEstimator` in
// `weight_estimator.go`. And calculate the expected weights
// similar to BOLT-3:
// https://github.com/lightning/bolts/blob/master/03-transactions.md#appendix-a-expected-weights
wu := lntypes.VByte(input.InputSize).ToWU() + witnessSize
// Skip inputs that has too little budget.
minFee := minFeeRate.FeeForWeight(wu)
if pi.params.Budget < minFee {
log.Warnf("Skipped input=%v: has budget=%v, but the "+
"min fee requires %v (feerate=%v), size=%v", op,
pi.params.Budget, minFee,
minFeeRate.FeePerVByte(), wu.ToVB())
continue
}
// Skip inputs that has cannot cover its starting fees.
startingFeeRate := pi.params.StartingFeeRate.UnwrapOr(
chainfee.SatPerKWeight(0),
)
startingFee := startingFeeRate.FeeForWeight(wu)
if pi.params.Budget < startingFee {
log.Errorf("Skipped input=%v: has budget=%v, but the "+
"starting fee requires %v (feerate=%v), "+
"size=%v", op, pi.params.Budget, startingFee,
startingFeeRate.FeePerVByte(), wu.ToVB())
continue
}
// If the input comes with a required tx out that is below
// dust, we won't add it.
//
// NOTE: only HtlcSecondLevelAnchorInput returns non-nil
// RequiredTxOut.
reqOut := pi.RequiredTxOut()
if reqOut != nil {
if isDustOutput(reqOut) {
log.Errorf("Rejected input=%v due to dust "+
"required output=%v", op, reqOut.Value)
continue
}
}
filteredInputs[op] = pi
}
return filteredInputs
}
// sortInputs sorts the inputs based on their economical value.
//
// NOTE: besides the forced inputs, the sorting won't make any difference
// because all the inputs are added to the same set. The exception is when the
// number of inputs exceeds the maxInputs limit, it requires us to split them
// into smaller clusters. In that case, the sorting will make a difference as
// the budgets of the clusters will be different.
func (b *BudgetAggregator) sortInputs(inputs []SweeperInput) []SweeperInput {
// sortedInputs is the final list of inputs sorted by their economical
// value.
sortedInputs := make([]SweeperInput, 0, len(inputs))
// Copy the inputs.
sortedInputs = append(sortedInputs, inputs...)
// Sort the inputs based on their budgets.
//
// NOTE: We can implement more sophisticated algorithm as the budget
// left is a function f(minFeeRate, size) = b1 - s1 * r > b2 - s2 * r,
// where b1 and b2 are budgets, s1 and s2 are sizes of the inputs.
sort.Slice(sortedInputs, func(i, j int) bool {
left := sortedInputs[i].params.Budget
right := sortedInputs[j].params.Budget
// Make sure forced inputs are always put in the front.
leftForce := sortedInputs[i].params.Immediate
rightForce := sortedInputs[j].params.Immediate
// If both are forced inputs, we return the one with the higher
// budget. If neither are forced inputs, we also return the one
// with the higher budget.
if leftForce == rightForce {
return left > right
}
// Otherwise, it's either the left or the right is forced. We
// can simply return `leftForce` here as, if it's true, the
// left is forced and should be put in the front. Otherwise,
// the right is forced and should be put in the front.
return leftForce
})
return sortedInputs
}
// splitOnLocktime splits the list of inputs based on their locktime.
//
// TODO(yy): this is a temporary hack as the blocks are not synced among the
// contractcourt and the sweeper.
func splitOnLocktime(inputs []SweeperInput) map[uint32][]SweeperInput {
result := make(map[uint32][]SweeperInput)
noLocktimeInputs := make([]SweeperInput, 0, len(inputs))
// mergeLocktime is the locktime that we use to merge all the
// nolocktime inputs into.
var mergeLocktime uint32
// Iterate all inputs and split them based on their locktimes.
for _, inp := range inputs {
locktime, required := inp.RequiredLockTime()
if !required {
log.Tracef("No locktime required for input=%v",
inp.OutPoint())
noLocktimeInputs = append(noLocktimeInputs, inp)
continue
}
log.Tracef("Split input=%v on locktime=%v", inp.OutPoint(),
locktime)
// Get the slice - the slice will be initialized if not found.
inputList := result[locktime]
// Add the input to the list.
inputList = append(inputList, inp)
// Update the map.
result[locktime] = inputList
// Update the merge locktime.
mergeLocktime = locktime
}
// If there are locktime inputs, we will merge the no locktime inputs
// to the last locktime group found.
if len(result) > 0 {
log.Tracef("No locktime inputs has been merged to locktime=%v",
mergeLocktime)
result[mergeLocktime] = append(
result[mergeLocktime], noLocktimeInputs...,
)
} else {
// Otherwise just return the no locktime inputs.
result[mergeLocktime] = noLocktimeInputs
}
return result
}
// isDustOutput checks if the given output is considered as dust.
func isDustOutput(output *wire.TxOut) bool {
// Fetch the dust limit for this output.
dustLimit := lnwallet.DustLimitForSize(len(output.PkScript))
// If the output is below the dust limit, we consider it dust.
return btcutil.Amount(output.Value) < dustLimit
}