lnd/fundingmanager.go

1083 lines
37 KiB
Go
Raw Normal View History

package main
import (
"bytes"
"encoding/hex"
"sync"
"sync/atomic"
"time"
"github.com/davecgh/go-spew/spew"
"github.com/go-errors/errors"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/lnwallet"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/roasbeef/btcd/btcec"
"github.com/roasbeef/btcd/chaincfg/chainhash"
"github.com/roasbeef/btcd/txscript"
"github.com/roasbeef/btcd/wire"
"github.com/roasbeef/btcutil"
"google.golang.org/grpc"
)
const (
// TODO(roasbeef): tune
msgBufferSize = 50
)
// reservationWithCtx encapsulates a pending channel reservation. This wrapper
// struct is used internally within the funding manager to track and progress
2016-10-15 15:18:38 +02:00
// the funding workflow initiated by incoming/outgoing methods from the target
// peer. Additionally, this struct houses a response and error channel which is
// used to respond to the caller in the case a channel workflow is initiated
// via a local signal such as RPC.
// TODO(roasbeef): actually use the context package
// * deadlines, etc.
type reservationWithCtx struct {
reservation *lnwallet.ChannelReservation
peer *peer
updates chan *lnrpc.OpenStatusUpdate
err chan error
}
// initFundingMsg is sent by an outside subsystem to the funding manager in
// order to kick off a funding workflow with a specified target peer. The
// original request which defines the parameters of the funding workflow are
// embedded within this message giving the funding manager full context w.r.t
// the workflow.
type initFundingMsg struct {
peer *peer
*openChanReq
}
// fundingRequestMsg couples an lnwire.SingleFundingRequest message with the
// peer who sent the message. This allows the funding manager to queue a
// response directly to the peer, progressing the funding workflow.
type fundingRequestMsg struct {
msg *lnwire.SingleFundingRequest
peer *peer
}
// fundingResponseMsg couples an lnwire.SingleFundingResponse message with the
// peer who sent the message. This allows the funding manager to queue a
// response directly to the peer, progressing the funding workflow.
type fundingResponseMsg struct {
msg *lnwire.SingleFundingResponse
peer *peer
}
// fundingCompleteMsg couples an lnwire.SingleFundingComplete message with the
// peer who sent the message. This allows the funding manager to queue a
// response directly to the peer, progressing the funding workflow.
type fundingCompleteMsg struct {
msg *lnwire.SingleFundingComplete
peer *peer
}
// fundingSignCompleteMsg couples an lnwire.SingleFundingSignComplete message
// with the peer who sent the message. This allows the funding manager to
// queue a response directly to the peer, progressing the funding workflow.
type fundingSignCompleteMsg struct {
msg *lnwire.SingleFundingSignComplete
peer *peer
}
// fundingOpenMsg couples an lnwire.SingleFundingOpenProof message
// with the peer who sent the message. This allows the funding manager to
// queue a response directly to the peer, progressing the funding workflow.
type fundingOpenMsg struct {
msg *lnwire.SingleFundingOpenProof
peer *peer
}
// fundingErrorMsg couples an lnwire.ErrorGeneric message
// with the peer who sent the message. This allows the funding
// manager to properly process the error.
type fundingErrorMsg struct {
err *lnwire.ErrorGeneric
peer *peer
}
// pendingChannels is a map instantiated per-peer which tracks all active
// pending single funded channels indexed by their pending channel identifier.
type pendingChannels map[uint64]*reservationWithCtx
// fundingManager acts as an orchestrator/bridge between the wallet's
// 'ChannelReservation' workflow, and the wire protocol's funding initiation
// messages. Any requests to initiate the funding workflow for a channel,
// either kicked-off locally or remotely handled by the funding manager.
// Once a channel's funding workflow has been completed, any local callers, the
// local peer, and possibly the remote peer are notified of the completion of
// the channel workflow. Additionally, any temporary or permanent access
// controls between the wallet and remote peers are enforced via the funding
// manager.
type fundingManager struct {
// MUST be used atomically.
started int32
stopped int32
// channelReservations is a map which houses the state of all pending
// funding workflows.
resMtx sync.RWMutex
activeReservations map[int32]pendingChannels
// wallet is the daemon's internal Lightning enabled wallet.
wallet *lnwallet.LightningWallet
breachAribter *breachArbiter
// fundingMsgs is a channel which receives wrapped wire messages
// related to funding workflow from outside peers.
fundingMsgs chan interface{}
2016-07-06 03:57:08 +02:00
// queries is a channel which receives requests to query the internal
// state of the funding manager.
queries chan interface{}
2016-10-15 15:18:38 +02:00
// fundingRequests is a channel used to receive channel initiation
// requests from a local subsystem within the daemon.
fundingRequests chan *initFundingMsg
fakeProof *channelProof
quit chan struct{}
wg sync.WaitGroup
}
// newFundingManager creates and initializes a new instance of the
// fundingManager.
func newFundingManager(w *lnwallet.LightningWallet, b *breachArbiter) *fundingManager {
// TODO(roasbeef): remove once we actually sign the funding_locked
// stuffs
s := "30450221008ce2bc69281ce27da07e6683571319d18e949ddfa2965fb6caa" +
"1bf0314f882d70220299105481d63e0f4bc2a88121167221b6700d72a0e" +
"ad154c03be696a292d24ae"
fakeSigHex, _ := hex.DecodeString(s)
fakeSig, _ := btcec.ParseSignature(fakeSigHex, btcec.S256())
return &fundingManager{
wallet: w,
breachAribter: b,
fakeProof: &channelProof{
nodeSig: fakeSig,
bitcoinSig: fakeSig,
},
activeReservations: make(map[int32]pendingChannels),
fundingMsgs: make(chan interface{}, msgBufferSize),
fundingRequests: make(chan *initFundingMsg, msgBufferSize),
2016-07-06 03:57:08 +02:00
queries: make(chan interface{}, 1),
quit: make(chan struct{}),
}
}
// Start launches all helper goroutines required for handling requests sent
// to the funding manager.
func (f *fundingManager) Start() error {
if atomic.AddInt32(&f.started, 1) != 1 { // TODO(roasbeef): CAS instead
return nil
}
fndgLog.Tracef("Funding manager running")
f.wg.Add(1) // TODO(roasbeef): tune
go f.reservationCoordinator()
return nil
}
// Stop signals all helper goroutines to execute a graceful shutdown. This
// method will block until all goroutines have exited.
func (f *fundingManager) Stop() error {
if atomic.AddInt32(&f.stopped, 1) != 1 {
return nil
}
fndgLog.Infof("Funding manager shutting down")
close(f.quit)
f.wg.Wait()
return nil
}
2016-07-06 03:57:08 +02:00
type numPendingReq struct {
resp chan uint32
}
// NumPendingChannels returns the number of pending channels currently
// progressing through the reservation workflow.
func (f *fundingManager) NumPendingChannels() uint32 {
resp := make(chan uint32, 1)
req := &numPendingReq{resp}
f.queries <- req
return <-resp
}
type pendingChannel struct {
peerId int32
identityPub *btcec.PublicKey
channelPoint *wire.OutPoint
capacity btcutil.Amount
localBalance btcutil.Amount
remoteBalance btcutil.Amount
}
type pendingChansReq struct {
resp chan []*pendingChannel
}
// PendingChannels returns a slice describing all the channels which are
// currently pending at the last state of the funding workflow.
func (f *fundingManager) PendingChannels() []*pendingChannel {
resp := make(chan []*pendingChannel, 1)
req := &pendingChansReq{resp}
f.queries <- req
return <-resp
}
// reservationCoordinator is the primary goroutine tasked with progressing the
// funding workflow between the wallet, and any outside peers or local callers.
//
// NOTE: This MUST be run as a goroutine.
func (f *fundingManager) reservationCoordinator() {
defer f.wg.Done()
for {
select {
case msg := <-f.fundingMsgs:
switch fmsg := msg.(type) {
case *fundingRequestMsg:
f.handleFundingRequest(fmsg)
case *fundingResponseMsg:
f.handleFundingResponse(fmsg)
case *fundingCompleteMsg:
f.handleFundingComplete(fmsg)
case *fundingSignCompleteMsg:
f.handleFundingSignComplete(fmsg)
case *fundingOpenMsg:
f.handleFundingOpen(fmsg)
case *fundingErrorMsg:
f.handleErrorGenericMsg(fmsg)
}
case req := <-f.fundingRequests:
f.handleInitFundingMsg(req)
2016-07-06 03:57:08 +02:00
case req := <-f.queries:
switch msg := req.(type) {
case *numPendingReq:
f.handleNumPending(msg)
case *pendingChansReq:
f.handlePendingChannels(msg)
2016-07-06 03:57:08 +02:00
}
case <-f.quit:
return
}
}
}
// handleNumPending handles a request for the total number of pending channels.
func (f *fundingManager) handleNumPending(msg *numPendingReq) {
var numPending uint32
for _, peerChannels := range f.activeReservations {
numPending += uint32(len(peerChannels))
}
msg.resp <- numPending
}
// handlePendingChannels responds to a request for details concerning all
// currently pending channels waiting for the final phase of the funding
// workflow (funding txn confirmation).
func (f *fundingManager) handlePendingChannels(msg *pendingChansReq) {
var pendingChannels []*pendingChannel
for peerID, peerChannels := range f.activeReservations {
for _, pendingChan := range peerChannels {
peer := pendingChan.peer
res := pendingChan.reservation
localFund := res.OurContribution().FundingAmount
remoteFund := res.TheirContribution().FundingAmount
pendingChan := &pendingChannel{
peerId: peerID,
identityPub: peer.addr.IdentityKey,
channelPoint: res.FundingOutpoint(),
capacity: localFund + remoteFund,
localBalance: localFund,
remoteBalance: remoteFund,
}
pendingChannels = append(pendingChannels, pendingChan)
}
}
msg.resp <- pendingChannels
}
// processFundingRequest sends a message to the fundingManager allowing it to
2016-10-15 15:18:38 +02:00
// initiate the new funding workflow with the source peer.
func (f *fundingManager) processFundingRequest(msg *lnwire.SingleFundingRequest, peer *peer) {
f.fundingMsgs <- &fundingRequestMsg{msg, peer}
}
// handleFundingRequest creates an initial 'ChannelReservation' within
// the wallet, then responds to the source peer with a single funder response
// message progressing the funding workflow.
// TODO(roasbeef): add error chan to all, let channelManager handle
// error+propagate
func (f *fundingManager) handleFundingRequest(fmsg *fundingRequestMsg) {
// Check number of pending channels to be smaller than maximum allowed
// number and send ErrorGeneric to remote peer if condition is violated.
if len(f.activeReservations[fmsg.peer.id]) >= cfg.MaxPendingChannels {
errMsg := &lnwire.ErrorGeneric{
ChannelPoint: &wire.OutPoint{
Hash: chainhash.Hash{},
Index: 0,
},
Problem: "Number of pending channels exceed maximum",
Code: lnwire.ErrMaxPendingChannels,
PendingChannelID: fmsg.msg.ChannelID,
}
fmsg.peer.queueMsg(errMsg, nil)
return
}
// We'll also reject any requests to create channels until we're fully
// synced to the network as we won't be able to properly validate the
// confirmation of the funding transaction.
isSynced, err := f.wallet.IsSynced()
if err != nil {
fndgLog.Errorf("unable to query wallet: %v", err)
return
}
if !isSynced {
errMsg := &lnwire.ErrorGeneric{
ChannelPoint: &wire.OutPoint{
Hash: chainhash.Hash{},
Index: 0,
},
Problem: "Synchronizing blockchain",
Code: lnwire.ErrSynchronizingChain,
PendingChannelID: fmsg.msg.ChannelID,
}
fmsg.peer.queueMsg(errMsg, nil)
return
}
msg := fmsg.msg
amt := msg.FundingAmount
delay := msg.CsvDelay
// TODO(roasbeef): error if funding flow already ongoing
fndgLog.Infof("Recv'd fundingRequest(amt=%v, push=%v, delay=%v, pendingId=%v) "+
"from peerID(%v)", amt, msg.PushSatoshis, delay, msg.ChannelID,
fmsg.peer.id)
ourDustLimit := lnwallet.DefaultDustLimit()
theirDustlimit := msg.DustLimit
// Attempt to initialize a reservation within the wallet. If the wallet
// has insufficient resources to create the channel, then the reservation
// attempt may be rejected. Note that since we're on the responding
// side of a single funder workflow, we don't commit any funds to the
// channel ourselves.
// TODO(roasbeef): passing num confs 1 is irrelevant here, make signed?
// TODO(roasbeef): assuming this was an inbound connection, replace
// port with default advertised port
reservation, err := f.wallet.InitChannelReservation(amt, 0,
fmsg.peer.addr.IdentityKey, fmsg.peer.addr.Address, 1, delay,
ourDustLimit, msg.PushSatoshis)
if err != nil {
// TODO(roasbeef): push ErrorGeneric message
fndgLog.Errorf("Unable to initialize reservation: %v", err)
fmsg.peer.Disconnect()
return
}
reservation.SetTheirDustLimit(theirDustlimit)
2016-10-15 15:18:38 +02:00
// Once the reservation has been created successfully, we add it to this
// peers map of pending reservations to track this particular reservation
// until either abort or completion.
f.resMtx.Lock()
if _, ok := f.activeReservations[fmsg.peer.id]; !ok {
f.activeReservations[fmsg.peer.id] = make(pendingChannels)
}
f.activeReservations[fmsg.peer.id][msg.ChannelID] = &reservationWithCtx{
reservation: reservation,
peer: fmsg.peer,
}
f.resMtx.Unlock()
// With our portion of the reservation initialized, process the
// initiators contribution to the channel.
_, addrs, _, err := txscript.ExtractPkScriptAddrs(msg.DeliveryPkScript, activeNetParams.Params)
if err != nil {
fndgLog.Errorf("Unable to extract addresses from script: %v", err)
return
}
contribution := &lnwallet.ChannelContribution{
FundingAmount: amt,
MultiSigKey: copyPubKey(msg.ChannelDerivationPoint),
CommitKey: copyPubKey(msg.CommitmentKey),
DeliveryAddress: addrs[0],
CsvDelay: delay,
}
if err := reservation.ProcessSingleContribution(contribution); err != nil {
fndgLog.Errorf("unable to add contribution reservation: %v", err)
fmsg.peer.Disconnect()
return
}
fndgLog.Infof("Sending fundingResp for pendingID(%v)", msg.ChannelID)
// With the initiator's contribution recorded, respond with our
// contribution in the next message of the workflow.
ourContribution := reservation.OurContribution()
deliveryScript, err := txscript.PayToAddrScript(ourContribution.DeliveryAddress)
if err != nil {
fndgLog.Errorf("unable to convert address to pkscript: %v", err)
return
}
fundingResp := lnwire.NewSingleFundingResponse(msg.ChannelID,
ourContribution.RevocationKey, ourContribution.CommitKey,
ourContribution.MultiSigKey, ourContribution.CsvDelay,
deliveryScript, ourDustLimit)
fmsg.peer.queueMsg(fundingResp, nil)
}
// processFundingRequest sends a message to the fundingManager allowing it to
// continue the second phase of a funding workflow with the target peer.
func (f *fundingManager) processFundingResponse(msg *lnwire.SingleFundingResponse, peer *peer) {
f.fundingMsgs <- &fundingResponseMsg{msg, peer}
}
// handleFundingResponse processes a response to the workflow initiation sent
// by the remote peer. This message then queues a message with the funding
// outpoint, and a commitment signature to the remote peer.
func (f *fundingManager) handleFundingResponse(fmsg *fundingResponseMsg) {
msg := fmsg.msg
peerID := fmsg.peer.id
chanID := fmsg.msg.ChannelID
sourcePeer := fmsg.peer
resCtx, err := f.getReservationCtx(peerID, chanID)
if err != nil {
fndgLog.Warnf("Can't find reservation (peerID:%v, chanID:%v)",
peerID, chanID)
return
}
fndgLog.Infof("Recv'd fundingResponse for pendingID(%v)", msg.ChannelID)
resCtx.reservation.SetTheirDustLimit(msg.DustLimit)
// The remote node has responded with their portion of the channel
// contribution. At this point, we can process their contribution which
// allows us to construct and sign both the commitment transaction, and
// the funding transaction.
_, addrs, _, err := txscript.ExtractPkScriptAddrs(msg.DeliveryPkScript, activeNetParams.Params)
if err != nil {
fndgLog.Errorf("Unable to extract addresses from script: %v", err)
resCtx.err <- err
return
}
contribution := &lnwallet.ChannelContribution{
FundingAmount: 0,
MultiSigKey: copyPubKey(msg.ChannelDerivationPoint),
CommitKey: copyPubKey(msg.CommitmentKey),
DeliveryAddress: addrs[0],
RevocationKey: copyPubKey(msg.RevocationKey),
CsvDelay: msg.CsvDelay,
}
if err := resCtx.reservation.ProcessContribution(contribution); err != nil {
fndgLog.Errorf("Unable to process contribution from %v: %v",
sourcePeer, err)
fmsg.peer.Disconnect()
resCtx.err <- err
return
}
// Now that we have their contribution, we can extract, then send over
// both the funding out point and our signature for their version of
// the commitment transaction to the remote peer.
outPoint := resCtx.reservation.FundingOutpoint()
_, sig := resCtx.reservation.OurSignatures()
commitSig, err := btcec.ParseSignature(sig, btcec.S256())
if err != nil {
fndgLog.Errorf("Unable to parse signature: %v", err)
resCtx.err <- err
return
}
// Register a new barrier for this channel to properly synchronize with
// the peer's readHandler once the channel is open.
fmsg.peer.barrierInits <- *outPoint
fndgLog.Infof("Generated ChannelPoint(%v) for pendingID(%v)", outPoint,
chanID)
revocationKey := resCtx.reservation.OurContribution().RevocationKey
obsfucator := resCtx.reservation.StateNumObfuscator()
fundingComplete := lnwire.NewSingleFundingComplete(chanID, outPoint,
commitSig, revocationKey, obsfucator)
sourcePeer.queueMsg(fundingComplete, nil)
}
// processFundingComplete queues a funding complete message coupled with the
// source peer to the fundingManager.
func (f *fundingManager) processFundingComplete(msg *lnwire.SingleFundingComplete, peer *peer) {
f.fundingMsgs <- &fundingCompleteMsg{msg, peer}
}
// handleFundingComplete progresses the funding workflow when the daemon is on
// the responding side of a single funder workflow. Once this message has been
// processed, a signature is sent to the remote peer allowing it to broadcast
// the funding transaction, progressing the workflow into the final stage.
func (f *fundingManager) handleFundingComplete(fmsg *fundingCompleteMsg) {
resCtx, err := f.getReservationCtx(fmsg.peer.id, fmsg.msg.ChannelID)
if err != nil {
fndgLog.Warnf("can't find reservation (peerID:%v, chanID:%v)",
fmsg.peer.id, fmsg.msg.ChannelID)
return
}
// The channel initiator has responded with the funding outpoint of the
// final funding transaction, as well as a signature for our version of
// the commitment transaction. So at this point, we can validate the
// inititator's commitment transaction, then send our own if it's valid.
// TODO(roasbeef): make case (p vs P) consistent throughout
fundingOut := fmsg.msg.FundingOutPoint
chanID := fmsg.msg.ChannelID
fndgLog.Infof("completing pendingID(%v) with ChannelPoint(%v)",
chanID, fundingOut,
)
revokeKey := copyPubKey(fmsg.msg.RevocationKey)
obsfucator := fmsg.msg.StateHintObsfucator
commitSig := fmsg.msg.CommitSignature.Serialize()
// With all the necessary data available, attempt to advance the
// funding workflow to the next stage. If this succeeds then the
// funding transaction will broadcast after our next message.
err = resCtx.reservation.CompleteReservationSingle(revokeKey, fundingOut,
commitSig, obsfucator)
if err != nil {
// TODO(roasbeef): better error logging: peerID, channelID, etc.
fndgLog.Errorf("unable to complete single reservation: %v", err)
fmsg.peer.Disconnect()
return
}
// With their signature for our version of the commitment transaction
// verified, we can now send over our signature to the remote peer.
// TODO(roasbeef): just have raw bytes in wire msg? avoids decoding
// then decoding shortly afterwards.
_, sig := resCtx.reservation.OurSignatures()
ourCommitSig, err := btcec.ParseSignature(sig, btcec.S256())
if err != nil {
fndgLog.Errorf("unable to parse signature: %v", err)
return
}
// Register a new barrier for this channel to properly synchronize with
// the peer's readHandler once the channel is open.
fmsg.peer.barrierInits <- *fundingOut
fndgLog.Infof("sending signComplete for pendingID(%v) over ChannelPoint(%v)",
fmsg.msg.ChannelID, fundingOut)
signComplete := lnwire.NewSingleFundingSignComplete(chanID, ourCommitSig)
fmsg.peer.queueMsg(signComplete, nil)
}
// processFundingSignComplete sends a single funding sign complete message
// along with the source peer to the funding manager.
func (f *fundingManager) processFundingSignComplete(msg *lnwire.SingleFundingSignComplete, peer *peer) {
f.fundingMsgs <- &fundingSignCompleteMsg{msg, peer}
}
// channelProof is one half of the proof necessary to create an authenticated
// announcement on the network. The two signatures individually sign a
// statement of the existence of a channel.
type channelProof struct {
nodeSig *btcec.Signature
bitcoinSig *btcec.Signature
}
// chanAnnouncement encapsulates the two authenticated announcements that we
// send out to the network after a new channel has been created locally.
type chanAnnouncement struct {
chanAnn *lnwire.ChannelAnnouncement
edgeUpdate *lnwire.ChannelUpdateAnnouncement
}
// newChanAnnouncement creates the authenticated channel announcement messages
// required to broadcast a newly created channel to the network. The
// announcement is two part: the first part authenticates the existence of the
// channel and contains four signatures binding the funding pub keys and
// identity pub keys of both parties to the channel, and the second segment is
// authenticated only by us and contains our directional routing policy for the
// channel.
func newChanAnnouncement(localIdentity *btcec.PublicKey,
channel *lnwallet.LightningChannel, chanID lnwire.ChannelID,
localProof, remoteProof *channelProof) *chanAnnouncement {
// First obtain the remote party's identity public key, this will be
// used to determine the order of the keys and signatures in the
// channel announcement.
chanInfo := channel.StateSnapshot()
remotePub := chanInfo.RemoteIdentity
localPub := localIdentity
// The unconditional section of the announcement is the ChannelID
// itself which compactly encodes the location of the funding output
// within the blockchain.
chanAnn := &lnwire.ChannelAnnouncement{
ChannelID: chanID,
}
// The chanFlags field indicates which directed edge of the channel is
// being updated within the ChannelUpdateAnnouncement announcement
// below. A value of zero means it's the edge of the "first" node and 1
// being the other node.
var chanFlags uint16
// The lexicographical ordering of the two identity public keys of the
// nodes indicates which of the nodes is "first". If our serialized
// identity key is lower than theirs then we're the "first" node and
// second otherwise.
selfBytes := localIdentity.SerializeCompressed()
remoteBytes := remotePub.SerializeCompressed()
if bytes.Compare(selfBytes, remoteBytes) == -1 {
chanAnn.FirstNodeID = localPub
chanAnn.SecondNodeID = &remotePub
chanAnn.FirstNodeSig = localProof.nodeSig
chanAnn.SecondNodeSig = remoteProof.nodeSig
chanAnn.FirstBitcoinSig = localProof.nodeSig
chanAnn.SecondBitcoinSig = remoteProof.nodeSig
chanAnn.FirstBitcoinKey = channel.LocalFundingKey
chanAnn.SecondBitcoinKey = channel.RemoteFundingKey
// If we're the first node then update the chanFlags to
// indicate the "direction" of the update.
chanFlags = 0
} else {
chanAnn.FirstNodeID = &remotePub
chanAnn.SecondNodeID = localPub
chanAnn.FirstNodeSig = remoteProof.nodeSig
chanAnn.SecondNodeSig = localProof.nodeSig
chanAnn.FirstBitcoinSig = remoteProof.nodeSig
chanAnn.SecondBitcoinSig = localProof.nodeSig
chanAnn.FirstBitcoinKey = channel.RemoteFundingKey
chanAnn.SecondBitcoinKey = channel.LocalFundingKey
// If we're the second node then update the chanFlags to
// indicate the "direction" of the update.
chanFlags = 1
}
// TODO(roasbeef): add real sig, populate proper FeeSchema
chanUpdateAnn := &lnwire.ChannelUpdateAnnouncement{
Signature: localProof.nodeSig,
ChannelID: chanID,
Timestamp: uint32(time.Now().Unix()),
Flags: chanFlags,
Expiry: 1,
HtlcMinimumMstat: 0,
FeeBaseMstat: 0,
FeeProportionalMillionths: 0,
}
return &chanAnnouncement{
chanAnn: chanAnn,
edgeUpdate: chanUpdateAnn,
}
}
// handleFundingSignComplete processes the final message received in a single
// funder workflow. Once this message is processed, the funding transaction is
// broadcast. Once the funding transaction reaches a sufficient number of
// confirmations, a message is sent to the responding peer along with a compact
// encoding of the location of the channel within the blockchain.
func (f *fundingManager) handleFundingSignComplete(fmsg *fundingSignCompleteMsg) {
chanID := fmsg.msg.ChannelID
peerID := fmsg.peer.id
resCtx, err := f.getReservationCtx(peerID, chanID)
if err != nil {
fndgLog.Warnf("can't find reservation (peerID:%v, chanID:%v)",
peerID, chanID)
return
}
// The remote peer has responded with a signature for our commitment
// transaction. We'll verify the signature for validity, then commit
// the state to disk as we can now open the channel.
commitSig := fmsg.msg.CommitSignature.Serialize()
if err := resCtx.reservation.CompleteReservation(nil, commitSig); err != nil {
fndgLog.Errorf("unable to complete reservation sign complete: %v", err)
fmsg.peer.Disconnect()
resCtx.err <- err
return
}
fundingPoint := resCtx.reservation.FundingOutpoint()
fndgLog.Infof("Finalizing pendingID(%v) over ChannelPoint(%v), "+
"waiting for channel open on-chain", chanID, fundingPoint)
// Send an update to the upstream client that the negotiation process
// is over.
// TODO(roasbeef): add abstraction over updates to accommodate
// long-polling, or SSE, etc.
resCtx.updates <- &lnrpc.OpenStatusUpdate{
Update: &lnrpc.OpenStatusUpdate_ChanPending{
ChanPending: &lnrpc.PendingUpdate{
Txid: fundingPoint.Hash[:],
},
},
}
// Spawn a goroutine which will send the newly open channel to the
// source peer once the channel is open. A channel is considered "open"
// once it reaches a sufficient number of confirmations.
// TODO(roasbeef): semaphore to limit active chan open goroutines
go func() {
// TODO(roasbeef): need to persist pending broadcast channels,
// send chan open proof during scan of blocks mined while down.
openChanDetails, err := resCtx.reservation.DispatchChan()
if err != nil {
fndgLog.Errorf("Unable to dispatch "+
"ChannelPoint(%v): %v", fundingPoint, err)
return
}
// This reservation is no longer pending as the funding
// transaction has been fully confirmed.
f.deleteReservationCtx(peerID, chanID)
fndgLog.Infof("ChannelPoint(%v) with peerID(%v) is now active",
fundingPoint, peerID)
// Now that the channel is open, we need to notify a number of
// parties of this event.
// First we send the newly opened channel to the source server
// peer.
fmsg.peer.newChannels <- openChanDetails.Channel
// Afterwards we send the breach arbiter the new channel so it
// can watch for attempts to breach the channel's contract by
// the remote party.
f.breachAribter.newContracts <- openChanDetails.Channel
// With the block height and the transaction index known, we
// can construct the compact chainID which is used on the
// network to unique identify channels.
chainID := lnwire.ChannelID{
BlockHeight: openChanDetails.ConfirmationHeight,
TxIndex: openChanDetails.TransactionIndex,
TxPosition: uint16(fundingPoint.Index),
}
// Next, we queue a message to notify the remote peer that the
// channel is open. We additionally provide the compact
// channelID so they can advertise the channel.
fundingOpen := lnwire.NewSingleFundingOpenProof(chanID, chainID)
fmsg.peer.queueMsg(fundingOpen, nil)
// Register the new link with the L3 routing manager so this
// new channel can be utilized during path
// finding.
// TODO(roasbeef): should include sigs from funding
// locked
// * should be moved to after funding locked is recv'd
f.announceChannel(fmsg.peer.server, openChanDetails.Channel,
chainID, f.fakeProof, f.fakeProof)
// Finally give the caller a final update notifying them that
// the channel is now open.
// TODO(roasbeef): helper funcs for proto construction
resCtx.updates <- &lnrpc.OpenStatusUpdate{
Update: &lnrpc.OpenStatusUpdate_ChanOpen{
ChanOpen: &lnrpc.ChannelOpenUpdate{
ChannelPoint: &lnrpc.ChannelPoint{
FundingTxid: fundingPoint.Hash[:],
OutputIndex: fundingPoint.Index,
},
},
},
}
return
}()
}
// announceChannel announces a newly created channel to the rest of the network
// by crafting the two authenticated announcements required for the peers on the
// network to recognize the legitimacy of the channel. The crafted
// announcements are then send to the channel router to handle broadcasting to
// the network during its next trickle.
func (f *fundingManager) announceChannel(s *server,
channel *lnwallet.LightningChannel, chanID lnwire.ChannelID,
localProof, remoteProof *channelProof) {
// TODO(roasbeef): need a Signer.SignMessage method to finalize
// advertisements
localIdentity := s.identityPriv.PubKey()
chanAnnouncement := newChanAnnouncement(localIdentity, channel,
chanID, localProof, remoteProof)
s.chanRouter.ProcessRoutingMessage(chanAnnouncement.chanAnn, localIdentity)
s.chanRouter.ProcessRoutingMessage(chanAnnouncement.edgeUpdate, localIdentity)
}
// processFundingOpenProof sends a message to the fundingManager allowing it
// to process the final message received when the daemon is on the responding
// side of a single funder channel workflow.
func (f *fundingManager) processFundingOpenProof(msg *lnwire.SingleFundingOpenProof, peer *peer) {
f.fundingMsgs <- &fundingOpenMsg{msg, peer}
}
// handleFundingOpen processes the final message when the daemon is the
// responder to a single funder channel workflow.
func (f *fundingManager) handleFundingOpen(fmsg *fundingOpenMsg) {
chanID := fmsg.msg.ChannelID
peerID := fmsg.peer.id
resCtx, err := f.getReservationCtx(peerID, chanID)
if err != nil {
fndgLog.Warnf("can't find reservation (peerID:%v, chanID:%v)",
peerID, chanID)
return
}
// The channel initiator has claimed the channel is now open, so we'll
// verify the contained SPV proof for validity.
// TODO(roasbeef): send off to the spv proof verifier, in the routing
// submodule.
// Now that we've verified the initiator's proof, we'll commit the
// channel state to disk, and notify the source peer of a newly opened
// channel.
openChan, err := resCtx.reservation.FinalizeReservation()
if err != nil {
fndgLog.Errorf("unable to finalize reservation: %v", err)
fmsg.peer.Disconnect()
return
}
// The reservation has been completed, therefore we can stop tracking
// it within our active reservations map.
f.deleteReservationCtx(peerID, chanID)
fndgLog.Infof("FundingOpen: ChannelPoint(%v) with peerID(%v) is now open",
resCtx.reservation.FundingOutpoint(), peerID)
// Notify the L3 routing manager of the newly active channel link.
// TODO(roasbeef): should have sigs, only after funding_locked is
// recv'd
// * also ensure fault tolerance, scan opened chan on start up check
// for graph existence
f.announceChannel(fmsg.peer.server, openChan, fmsg.msg.ChanChainID,
f.fakeProof, f.fakeProof)
// Send the newly opened channel to the breach arbiter to it can watch
// for uncooperative channel breaches, potentially punishing the
// counterparty for attempting to cheat us.
f.breachAribter.newContracts <- openChan
// Finally, notify the target peer of the newly opened channel.
fmsg.peer.newChannels <- openChan
}
// initFundingWorkflow sends a message to the funding manager instructing it
// to initiate a single funder workflow with the source peer.
// TODO(roasbeef): re-visit blocking nature..
func (f *fundingManager) initFundingWorkflow(targetPeer *peer, req *openChanReq) {
f.fundingRequests <- &initFundingMsg{
peer: targetPeer,
openChanReq: req,
}
}
// handleInitFundingMsg creates a channel reservation within the daemon's
// wallet, then sends a funding request to the remote peer kicking off the
// funding workflow.
func (f *fundingManager) handleInitFundingMsg(msg *initFundingMsg) {
var (
// TODO(roasbeef): add delay
nodeID = msg.peer.addr.IdentityKey
localAmt = msg.localFundingAmt
remoteAmt = msg.remoteFundingAmt
capacity = localAmt + remoteAmt
numConfs = msg.numConfs
ourDustLimit = lnwallet.DefaultDustLimit()
)
fndgLog.Infof("Initiating fundingRequest(localAmt=%v, remoteAmt=%v, "+
"capacity=%v, numConfs=%v, addr=%v, dustLimit=%v)", localAmt,
msg.pushAmt, capacity, numConfs, msg.peer.addr.Address,
ourDustLimit)
// Initialize a funding reservation with the local wallet. If the
// wallet doesn't have enough funds to commit to this channel, then
// the request will fail, and be aborted.
reservation, err := f.wallet.InitChannelReservation(capacity, localAmt,
nodeID, msg.peer.addr.Address, uint16(numConfs), 4,
ourDustLimit, msg.pushAmt)
if err != nil {
msg.err <- err
return
}
// Obtain a new pending channel ID which is used to track this
// reservation throughout its lifetime.
msg.peer.pendingChannelMtx.Lock()
chanID := msg.peer.nextPendingChannelID
msg.peer.nextPendingChannelID++
msg.peer.pendingChannelMtx.Unlock()
// If a pending channel map for this peer isn't already created, then
// we create one, ultimately allowing us to track this pending
// reservation within the target peer.
f.resMtx.Lock()
if _, ok := f.activeReservations[msg.peer.id]; !ok {
f.activeReservations[msg.peer.id] = make(pendingChannels)
}
2016-10-15 15:18:38 +02:00
f.activeReservations[msg.peer.id][chanID] = &reservationWithCtx{
reservation: reservation,
peer: msg.peer,
updates: msg.updates,
err: msg.err,
}
f.resMtx.Unlock()
// Once the reservation has been created, and indexed, queue a funding
// request to the remote peer, kicking off the funding workflow.
contribution := reservation.OurContribution()
deliveryScript, err := txscript.PayToAddrScript(contribution.DeliveryAddress)
if err != nil {
fndgLog.Errorf("Unable to convert address to pkscript: %v", err)
msg.err <- err
return
}
fndgLog.Infof("Starting funding workflow with for pendingID(%v)", chanID)
// TODO(roasbeef): add FundingRequestFromContribution func
// TODO(roasbeef): need to set fee/kb
fundingReq := lnwire.NewSingleFundingRequest(
chanID,
msg.channelType,
msg.coinType,
0, // TODO(roasbeef): grab from fee estimation model
capacity,
contribution.CsvDelay,
contribution.CommitKey,
contribution.MultiSigKey,
deliveryScript,
ourDustLimit,
msg.pushAmt,
)
msg.peer.queueMsg(fundingReq, nil)
}
// processErrorGeneric sends a message to the fundingManager allowing it to
// process the occurred generic error.
func (f *fundingManager) processErrorGeneric(err *lnwire.ErrorGeneric,
peer *peer) {
f.fundingMsgs <- &fundingErrorMsg{err, peer}
}
// handleErrorGenericMsg process the error which was received from remote peer,
// depending on the type of error we should do different clean up steps and
// inform the user about it.
func (f *fundingManager) handleErrorGenericMsg(fmsg *fundingErrorMsg) {
e := fmsg.err
switch e.Code {
case lnwire.ErrMaxPendingChannels:
fallthrough
case lnwire.ErrSynchronizingChain:
peerID := fmsg.peer.id
chanID := fmsg.err.PendingChannelID
resCtx, err := f.cancelReservationCtx(peerID, chanID)
if err != nil {
fndgLog.Warnf("unable to delete reservation: %v", err)
return
}
fndgLog.Errorf("Received funding error from %v: %v", fmsg.peer,
newLogClosure(func() string {
return spew.Sdump(e)
}),
)
resCtx.err <- grpc.Errorf(e.Code.ToGrpcCode(), e.Problem)
return
default:
fndgLog.Warnf("unknown funding error (%v:%v)", e.Code, e.Problem)
}
}
// cancelReservationCtx do all needed work in order to securely cancel the
// reservation.
func (f *fundingManager) cancelReservationCtx(peerID int32,
chanID uint64) (*reservationWithCtx, error) {
ctx, err := f.getReservationCtx(peerID, chanID)
if err != nil {
return nil, errors.Errorf("can't find reservation: %v",
err)
}
if err := ctx.reservation.Cancel(); err != nil {
ctx.err <- err
return nil, errors.Errorf("can't cancel reservation: %v",
err)
}
f.deleteReservationCtx(peerID, chanID)
return ctx, nil
}
// deleteReservationCtx is needed in order to securely delete the reservation.
func (f *fundingManager) deleteReservationCtx(peerID int32, chanID uint64) {
// TODO(roasbeef): possibly cancel funding barrier in peer's
// channelManager?
f.resMtx.Lock()
delete(f.activeReservations[peerID], chanID)
f.resMtx.Unlock()
}
// getReservationCtx returns the reservation context by peer id and channel id.
func (f *fundingManager) getReservationCtx(peerID int32,
chanID uint64) (*reservationWithCtx, error) {
f.resMtx.RLock()
resCtx, ok := f.activeReservations[peerID][chanID]
f.resMtx.RUnlock()
if !ok {
return nil, errors.Errorf("unknown channel (id: %v)", chanID)
}
return resCtx, nil
}
func copyPubKey(pub *btcec.PublicKey) *btcec.PublicKey {
return &btcec.PublicKey{
Curve: btcec.S256(),
X: pub.X,
Y: pub.Y,
}
}