lnd/channeldb/invoices.go

3403 lines
103 KiB
Go
Raw Normal View History

package channeldb
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"io"
"strings"
"time"
"github.com/lightningnetwork/lnd/feature"
"github.com/lightningnetwork/lnd/htlcswitch/hop"
2021-04-26 19:08:11 +02:00
"github.com/lightningnetwork/lnd/kvdb"
"github.com/lightningnetwork/lnd/lntypes"
"github.com/lightningnetwork/lnd/lnwire"
2019-12-12 00:01:55 +01:00
"github.com/lightningnetwork/lnd/record"
"github.com/lightningnetwork/lnd/tlv"
)
var (
// unknownPreimage is an all-zeroes preimage that indicates that the
2018-10-05 10:14:56 +02:00
// preimage for this invoice is not yet known.
unknownPreimage lntypes.Preimage
2018-10-05 10:14:56 +02:00
// BlankPayAddr is a sentinel payment address for legacy invoices.
// Invoices with this payment address are special-cased in the insertion
// logic to prevent being indexed in the payment address index,
// otherwise they would cause collisions after the first insertion.
BlankPayAddr [32]byte
// invoiceBucket is the name of the bucket within the database that
// stores all data related to invoices no matter their final state.
// Within the invoice bucket, each invoice is keyed by its invoice ID
// which is a monotonically increasing uint32.
invoiceBucket = []byte("invoices")
// paymentHashIndexBucket is the name of the sub-bucket within the
// invoiceBucket which indexes all invoices by their payment hash. The
// payment hash is the sha256 of the invoice's payment preimage. This
// index is used to detect duplicates, and also to provide a fast path
// for looking up incoming HTLCs to determine if we're able to settle
// them fully.
//
// maps: payHash => invoiceKey
invoiceIndexBucket = []byte("paymenthashes")
// payAddrIndexBucket is the name of the top-level bucket that maps
// payment addresses to their invoice number. This can be used
// to efficiently query or update non-legacy invoices. Note that legacy
// invoices will not be included in this index since they all have the
// same, all-zero payment address, however all newly generated invoices
// will end up in this index.
//
// maps: payAddr => invoiceKey
payAddrIndexBucket = []byte("pay-addr-index")
// setIDIndexBucket is the name of the top-level bucket that maps set
// ids to their invoice number. This can be used to efficiently query or
// update AMP invoice. Note that legacy or MPP invoices will not be
// included in this index, since their HTLCs do not have a set id.
//
// maps: setID => invoiceKey
setIDIndexBucket = []byte("set-id-index")
// numInvoicesKey is the name of key which houses the auto-incrementing
// invoice ID which is essentially used as a primary key. With each
// invoice inserted, the primary key is incremented by one. This key is
// stored within the invoiceIndexBucket. Within the invoiceBucket
// invoices are uniquely identified by the invoice ID.
numInvoicesKey = []byte("nik")
// addIndexBucket is an index bucket that we'll use to create a
// monotonically increasing set of add indexes. Each time we add a new
// invoice, this sequence number will be incremented and then populated
// within the new invoice.
//
// In addition to this sequence number, we map:
//
// addIndexNo => invoiceKey
addIndexBucket = []byte("invoice-add-index")
// settleIndexBucket is an index bucket that we'll use to create a
// monotonically increasing integer for tracking a "settle index". Each
// time an invoice is settled, this sequence number will be incremented
// as populate within the newly settled invoice.
//
// In addition to this sequence number, we map:
//
// settleIndexNo => invoiceKey
settleIndexBucket = []byte("invoice-settle-index")
// ErrInvoiceAlreadySettled is returned when the invoice is already
// settled.
ErrInvoiceAlreadySettled = errors.New("invoice already settled")
// ErrInvoiceAlreadyCanceled is returned when the invoice is already
// canceled.
ErrInvoiceAlreadyCanceled = errors.New("invoice already canceled")
// ErrInvoiceAlreadyAccepted is returned when the invoice is already
// accepted.
ErrInvoiceAlreadyAccepted = errors.New("invoice already accepted")
// ErrInvoiceStillOpen is returned when the invoice is still open.
ErrInvoiceStillOpen = errors.New("invoice still open")
// ErrInvoiceCannotOpen is returned when an attempt is made to move an
// invoice to the open state.
ErrInvoiceCannotOpen = errors.New("cannot move invoice to open")
// ErrInvoiceCannotAccept is returned when an attempt is made to accept
// an invoice while the invoice is not in the open state.
ErrInvoiceCannotAccept = errors.New("cannot accept invoice")
// ErrInvoicePreimageMismatch is returned when the preimage doesn't
// match the invoice hash.
ErrInvoicePreimageMismatch = errors.New("preimage does not match")
// ErrHTLCPreimageMissing is returned when trying to accept/settle an
// AMP HTLC but the HTLC-level preimage has not been set.
ErrHTLCPreimageMissing = errors.New("AMP htlc missing preimage")
// ErrHTLCPreimageMismatch is returned when trying to accept/settle an
// AMP HTLC but the HTLC-level preimage does not satisfying the
// HTLC-level payment hash.
ErrHTLCPreimageMismatch = errors.New("htlc preimage mismatch")
// ErrHTLCAlreadySettled is returned when trying to settle an invoice
// but HTLC already exists in the settled state.
ErrHTLCAlreadySettled = errors.New("htlc already settled")
// ErrInvoiceHasHtlcs is returned when attempting to insert an invoice
// that already has HTLCs.
ErrInvoiceHasHtlcs = errors.New("cannot add invoice with htlcs")
// ErrEmptyHTLCSet is returned when attempting to accept or settle and
// HTLC set that has no HTLCs.
ErrEmptyHTLCSet = errors.New("cannot settle/accept empty HTLC set")
// ErrUnexpectedInvoicePreimage is returned when an invoice-level
// preimage is provided when trying to settle an invoice that shouldn't
// have one, e.g. an AMP invoice.
ErrUnexpectedInvoicePreimage = errors.New(
"unexpected invoice preimage provided on settle",
)
// ErrHTLCPreimageAlreadyExists is returned when trying to set an
// htlc-level preimage but one is already known.
ErrHTLCPreimageAlreadyExists = errors.New(
"htlc-level preimage already exists",
)
)
// ErrDuplicateSetID is an error returned when attempting to adding an AMP HTLC
// to an invoice, but another invoice is already indexed by the same set id.
type ErrDuplicateSetID struct {
setID [32]byte
}
// Error returns a human-readable description of ErrDuplicateSetID.
func (e ErrDuplicateSetID) Error() string {
return fmt.Sprintf("invoice with set_id=%x already exists", e.setID)
}
const (
// MaxMemoSize is maximum size of the memo field within invoices stored
// in the database.
MaxMemoSize = 1024
2018-04-18 04:02:04 +02:00
// MaxPaymentRequestSize is the max size of a payment request for
// this invoice.
// TODO(halseth): determine the max length payment request when field
// lengths are final.
MaxPaymentRequestSize = 4096
// A set of tlv type definitions used to serialize invoice htlcs to the
// database.
//
// NOTE: A migration should be added whenever this list changes. This
// prevents against the database being rolled back to an older
// format where the surrounding logic might assume a different set of
// fields are known.
chanIDType tlv.Type = 1
htlcIDType tlv.Type = 3
amtType tlv.Type = 5
acceptHeightType tlv.Type = 7
acceptTimeType tlv.Type = 9
resolveTimeType tlv.Type = 11
expiryHeightType tlv.Type = 13
htlcStateType tlv.Type = 15
2019-09-03 12:23:39 +02:00
mppTotalAmtType tlv.Type = 17
htlcAMPType tlv.Type = 19
htlcHashType tlv.Type = 21
htlcPreimageType tlv.Type = 23
// A set of tlv type definitions used to serialize invoice bodiees.
//
// NOTE: A migration should be added whenever this list changes. This
// prevents against the database being rolled back to an older
// format where the surrounding logic might assume a different set of
// fields are known.
memoType tlv.Type = 0
payReqType tlv.Type = 1
createTimeType tlv.Type = 2
settleTimeType tlv.Type = 3
addIndexType tlv.Type = 4
settleIndexType tlv.Type = 5
preimageType tlv.Type = 6
valueType tlv.Type = 7
cltvDeltaType tlv.Type = 8
expiryType tlv.Type = 9
paymentAddrType tlv.Type = 10
featuresType tlv.Type = 11
invStateType tlv.Type = 12
amtPaidType tlv.Type = 13
hodlInvoiceType tlv.Type = 14
invoiceAmpStateType tlv.Type = 15
// A set of tlv type definitions used to serialize the invoice AMP
// state along-side the main invoice body.
ampStateSetIDType tlv.Type = 0
ampStateHtlcStateType tlv.Type = 1
ampStateSettleIndexType tlv.Type = 2
ampStateSettleDateType tlv.Type = 3
ampStateCircuitKeysType tlv.Type = 4
ampStateAmtPaidType tlv.Type = 5
)
// RefModifier is a modification on top of a base invoice ref. It allows the
// caller to opt to skip out on HTLCs for a given payAddr, or only return the
// set of specified HTLCs for a given setID.
type RefModifier uint8
const (
// DefaultModifier is the base modifier that doesn't change any behavior.
DefaultModifier RefModifier = iota
// HtlcSetOnlyModifier can only be used with a setID based invoice ref, and
// specifies that only the set of HTLCs related to that setID are to be
// returned.
HtlcSetOnlyModifier
// HtlcSetOnlyModifier can only be used with a payAddr based invoice ref,
// and specifies that the returned invoice shouldn't include any HTLCs at
// all.
HtlcSetBlankModifier
)
// InvoiceRef is a composite identifier for invoices. Invoices can be referenced
// by various combinations of payment hash and payment addr, in certain contexts
// only some of these are known. An InvoiceRef and its constructors thus
// encapsulate the valid combinations of query parameters that can be supplied
// to LookupInvoice and UpdateInvoice.
type InvoiceRef struct {
// payHash is the payment hash of the target invoice. All invoices are
// currently indexed by payment hash. This value will be used as a
// fallback when no payment address is known.
payHash *lntypes.Hash
// payAddr is the payment addr of the target invoice. Newer invoices
// (0.11 and up) are indexed by payment address in addition to payment
// hash, but pre 0.8 invoices do not have one at all. When this value is
// known it will be used as the primary identifier, falling back to
// payHash if no value is known.
payAddr *[32]byte
// setID is the optional set id for an AMP payment. This can be used to
// lookup or update the invoice knowing only this value. Queries by set
// id are only used to facilitate user-facing requests, e.g. lookup,
// settle or cancel an AMP invoice. The regular update flow from the
// invoice registry will always query for the invoice by
// payHash+payAddr.
setID *[32]byte
// refModifier allows an invoice ref to include or exclude specific
// HTLC sets based on the payAddr or setId.
refModifier RefModifier
}
// InvoiceRefByHash creates an InvoiceRef that queries for an invoice only by
// its payment hash.
func InvoiceRefByHash(payHash lntypes.Hash) InvoiceRef {
return InvoiceRef{
payHash: &payHash,
}
}
// InvoiceRefByHashAndAddr creates an InvoiceRef that first queries for an
// invoice by the provided payment address, falling back to the payment hash if
// the payment address is unknown.
func InvoiceRefByHashAndAddr(payHash lntypes.Hash,
payAddr [32]byte) InvoiceRef {
return InvoiceRef{
payHash: &payHash,
payAddr: &payAddr,
}
}
// InvoiceRefByAddr creates an InvoiceRef that queries the payment addr index
// for an invoice with the provided payment address.
func InvoiceRefByAddr(addr [32]byte) InvoiceRef {
return InvoiceRef{
payAddr: &addr,
}
}
// InvoiceRefByAddrBlankHtlc creates an InvoiceRef that queries the payment addr index
// for an invoice with the provided payment address, but excludes any of the
// core HTLC information.
func InvoiceRefByAddrBlankHtlc(addr [32]byte) InvoiceRef {
return InvoiceRef{
payAddr: &addr,
refModifier: HtlcSetBlankModifier,
}
}
// InvoiceRefBySetID creates an InvoiceRef that queries the set id index for an
// invoice with the provided setID. If the invoice is not found, the query will
// not fallback to payHash or payAddr.
func InvoiceRefBySetID(setID [32]byte) InvoiceRef {
return InvoiceRef{
setID: &setID,
}
}
// InvoiceRefBySetIDFiltered is similar to the InvoiceRefBySetID identifier,
// but it specifies that the returned set of HTLCs should be filtered to only
// include HTLCs that are part of that set.
func InvoiceRefBySetIDFiltered(setID [32]byte) InvoiceRef {
return InvoiceRef{
setID: &setID,
refModifier: HtlcSetOnlyModifier,
}
}
// PayHash returns the optional payment hash of the target invoice.
//
// NOTE: This value may be nil.
func (r InvoiceRef) PayHash() *lntypes.Hash {
if r.payHash != nil {
hash := *r.payHash
return &hash
}
return nil
}
// PayAddr returns the optional payment address of the target invoice.
//
// NOTE: This value may be nil.
func (r InvoiceRef) PayAddr() *[32]byte {
if r.payAddr != nil {
addr := *r.payAddr
return &addr
}
return nil
}
// SetID returns the optional set id of the target invoice.
//
// NOTE: This value may be nil.
func (r InvoiceRef) SetID() *[32]byte {
if r.setID != nil {
id := *r.setID
return &id
}
return nil
}
// Modifier defines the set of available modifications to the base invoice ref
// look up that are available.
func (r InvoiceRef) Modifier() RefModifier {
return r.refModifier
}
// String returns a human-readable representation of an InvoiceRef.
func (r InvoiceRef) String() string {
var ids []string
if r.payHash != nil {
ids = append(ids, fmt.Sprintf("pay_hash=%v", *r.payHash))
}
if r.payAddr != nil {
ids = append(ids, fmt.Sprintf("pay_addr=%x", *r.payAddr))
}
if r.setID != nil {
ids = append(ids, fmt.Sprintf("set_id=%x", *r.setID))
}
return fmt.Sprintf("(%s)", strings.Join(ids, ", "))
}
// ContractState describes the state the invoice is in.
type ContractState uint8
const (
// ContractOpen means the invoice has only been created.
ContractOpen ContractState = 0
// ContractSettled means the htlc is settled and the invoice has been paid.
ContractSettled ContractState = 1
// ContractCanceled means the invoice has been canceled.
ContractCanceled ContractState = 2
// ContractAccepted means the HTLC has been accepted but not settled yet.
ContractAccepted ContractState = 3
)
// String returns a human readable identifier for the ContractState type.
func (c ContractState) String() string {
switch c {
case ContractOpen:
return "Open"
case ContractSettled:
return "Settled"
case ContractCanceled:
return "Canceled"
case ContractAccepted:
return "Accepted"
}
return "Unknown"
}
// IsFinal returns a boolean indicating whether an invoice state is final
func (c ContractState) IsFinal() bool {
return c == ContractSettled || c == ContractCanceled
}
// ContractTerm is a companion struct to the Invoice struct. This struct houses
// the necessary conditions required before the invoice can be considered fully
// settled by the payee.
type ContractTerm struct {
// FinalCltvDelta is the minimum required number of blocks before htlc
// expiry when the invoice is accepted.
FinalCltvDelta int32
// Expiry defines how long after creation this invoice should expire.
Expiry time.Duration
// PaymentPreimage is the preimage which is to be revealed in the
// occasion that an HTLC paying to the hash of this preimage is
// extended. Set to nil if the preimage isn't known yet.
PaymentPreimage *lntypes.Preimage
// Value is the expected amount of milli-satoshis to be paid to an HTLC
// which can be satisfied by the above preimage.
Value lnwire.MilliSatoshi
// PaymentAddr is a randomly generated value include in the MPP record
// by the sender to prevent probing of the receiver.
PaymentAddr [32]byte
// Features is the feature vectors advertised on the payment request.
Features *lnwire.FeatureVector
}
// String returns a human-readable description of the prominent contract terms.
func (c ContractTerm) String() string {
return fmt.Sprintf("amt=%v, expiry=%v, final_cltv_delta=%v", c.Value,
c.Expiry, c.FinalCltvDelta)
}
// SetID is the extra unique tuple item for AMP invoices. In addition to
// setting a payment address, each repeated payment to an AMP invoice will also
// contain a set ID as well.
type SetID [32]byte
// InvoiceStateAMP is a struct that associates the current state of an AMP
// invoice identified by its set ID along with the set of invoices identified
// by the circuit key. This allows callers to easily look up the latest state
// of an AMP "sub-invoice" and also look up the invoice HLTCs themselves in the
// greater HTLC map index.
type InvoiceStateAMP struct {
// State is the state of this sub-AMP invoice.
State HtlcState
// SettleIndex indicates the location in the settle index that
// references this instance of InvoiceStateAMP, but only if
// this value is set (non-zero), and State is HtlcStateSettled.
SettleIndex uint64
// SettleDate is the date that the setID was settled.
SettleDate time.Time
// InvoiceKeys is the set of circuit keys that can be used to locate
// the invoices for a given set ID.
InvoiceKeys map[CircuitKey]struct{}
// AmtPaid is the total amount that was paid in the AMP sub-invoice.
// Fetching the full HTLC/invoice state allows one to extract the
// custom records as well as the break down of the payment splits used
// when paying.
AmtPaid lnwire.MilliSatoshi
}
// AMPInvoiceState represents a type that stores metadata related to the set of
// settled AMP "sub-invoices".
type AMPInvoiceState map[SetID]InvoiceStateAMP
// recordSize returns the amount of bytes this TLV record will occupy when
// encoded.
func (a *AMPInvoiceState) recordSize() uint64 {
var (
b bytes.Buffer
buf [8]byte
)
// We know that encoding works since the tests pass in the build this file
// is checked into, so we'll simplify things and simply encode it ourselves
// then report the total amount of bytes used.
if err := ampStateEncoder(&b, a, &buf); err != nil {
// This should never error out, but we log it just in case it
// does.
log.Errorf("encoding the amp invoice state failed: %v", err)
}
return uint64(len(b.Bytes()))
}
// Invoice is a payment invoice generated by a payee in order to request
// payment for some good or service. The inclusion of invoices within Lightning
// creates a payment work flow for merchants very similar to that of the
// existing financial system within PayPal, etc. Invoices are added to the
// database when a payment is requested, then can be settled manually once the
// payment is received at the upper layer. For record keeping purposes,
// invoices are never deleted from the database, instead a bit is toggled
// denoting the invoice has been fully settled. Within the database, all
// invoices must have a unique payment hash which is generated by taking the
// sha256 of the payment preimage.
type Invoice struct {
// Memo is an optional memo to be stored along side an invoice. The
// memo may contain further details pertaining to the invoice itself,
// or any other message which fits within the size constraints.
Memo []byte
// PaymentRequest is the encoded payment request for this invoice. For
// spontaneous (keysend) payments, this field will be empty.
PaymentRequest []byte
// CreationDate is the exact time the invoice was created.
CreationDate time.Time
// SettleDate is the exact time the invoice was settled.
SettleDate time.Time
// Terms are the contractual payment terms of the invoice. Once all the
// terms have been satisfied by the payer, then the invoice can be
// considered fully fulfilled.
//
// TODO(roasbeef): later allow for multiple terms to fulfill the final
// invoice: payment fragmentation, etc.
Terms ContractTerm
// AddIndex is an auto-incrementing integer that acts as a
// monotonically increasing sequence number for all invoices created.
// Clients can then use this field as a "checkpoint" of sorts when
// implementing a streaming RPC to notify consumers of instances where
// an invoice has been added before they re-connected.
//
// NOTE: This index starts at 1.
AddIndex uint64
// SettleIndex is an auto-incrementing integer that acts as a
// monotonically increasing sequence number for all settled invoices.
// Clients can then use this field as a "checkpoint" of sorts when
// implementing a streaming RPC to notify consumers of instances where
// an invoice has been settled before they re-connected.
//
// NOTE: This index starts at 1.
SettleIndex uint64
// State describes the state the invoice is in. This is the global
// state of the invoice which may remain open even when a series of
// sub-invoices for this invoice has been settled.
State ContractState
// AmtPaid is the final amount that we ultimately accepted for pay for
// this invoice. We specify this value independently as it's possible
// that the invoice originally didn't specify an amount, or the sender
// overpaid.
AmtPaid lnwire.MilliSatoshi
// Htlcs records all htlcs that paid to this invoice. Some of these
2019-10-03 17:22:43 +02:00
// htlcs may have been marked as canceled.
Htlcs map[CircuitKey]*InvoiceHTLC
// AMPState describes the state of any related sub-invoices AMP to this
// greater invoice. A sub-invoice is defined by a set of HTLCs with the
// same set ID that attempt to make one time or recurring payments to
// this greater invoice. It's possible for a sub-invoice to be canceled
// or settled, but the greater invoice still open.
AMPState AMPInvoiceState
// HodlInvoice indicates whether the invoice should be held in the
// Accepted state or be settled right away.
HodlInvoice bool
}
// HTLCSet returns the set of HTLCs belonging to setID and in the provided
// state. Passing a nil setID will return all HTLCs in the provided state in the
// case of legacy or MPP, and no HTLCs in the case of AMP. Otherwise, the
// returned set will be filtered by the populated setID which is used to
// retrieve AMP HTLC sets.
func (i *Invoice) HTLCSet(setID *[32]byte, state HtlcState) map[CircuitKey]*InvoiceHTLC {
htlcSet := make(map[CircuitKey]*InvoiceHTLC)
for key, htlc := range i.Htlcs {
// Only add HTLCs that are in the requested HtlcState.
if htlc.State != state {
continue
}
if !htlc.IsInHTLCSet(setID) {
continue
}
htlcSet[key] = htlc
}
return htlcSet
}
// HTLCSetCompliment returns the set of all HTLCs not belonging to setID that
// are in the target state. Passing a nil setID will return no invoices, since
// all MPP HTLCs are part of the same HTLC set.
func (i *Invoice) HTLCSetCompliment(setID *[32]byte,
state HtlcState) map[CircuitKey]*InvoiceHTLC {
htlcSet := make(map[CircuitKey]*InvoiceHTLC)
for key, htlc := range i.Htlcs {
// Only add HTLCs that are in the requested HtlcState.
if htlc.State != state {
continue
}
// We are constructing the compliment, so filter anything that
// matches this set id.
if htlc.IsInHTLCSet(setID) {
continue
}
htlcSet[key] = htlc
}
return htlcSet
}
// HtlcState defines the states an htlc paying to an invoice can be in.
type HtlcState uint8
const (
// HtlcStateAccepted indicates the htlc is locked-in, but not resolved.
HtlcStateAccepted HtlcState = iota
2019-10-03 17:22:43 +02:00
// HtlcStateCanceled indicates the htlc is canceled back to the
// sender.
2019-10-03 17:22:43 +02:00
HtlcStateCanceled
// HtlcStateSettled indicates the htlc is settled.
HtlcStateSettled
)
// InvoiceHTLC contains details about an htlc paying to this invoice.
type InvoiceHTLC struct {
// Amt is the amount that is carried by this htlc.
Amt lnwire.MilliSatoshi
2019-09-03 12:23:39 +02:00
// MppTotalAmt is a field for mpp that indicates the expected total
// amount.
MppTotalAmt lnwire.MilliSatoshi
// AcceptHeight is the block height at which the invoice registry
// decided to accept this htlc as a payment to the invoice. At this
// height, the invoice cltv delay must have been met.
AcceptHeight uint32
// AcceptTime is the wall clock time at which the invoice registry
// decided to accept the htlc.
AcceptTime time.Time
// ResolveTime is the wall clock time at which the invoice registry
// decided to settle the htlc.
ResolveTime time.Time
// Expiry is the expiry height of this htlc.
Expiry uint32
// State indicates the state the invoice htlc is currently in. A
2019-10-03 17:22:43 +02:00
// canceled htlc isn't just removed from the invoice htlcs map, because
// we need AcceptHeight to properly cancel the htlc back.
State HtlcState
// CustomRecords contains the custom key/value pairs that accompanied
// the htlc.
2019-12-12 00:01:55 +01:00
CustomRecords record.CustomSet
// AMP encapsulates additional data relevant to AMP HTLCs. This includes
// the AMP onion record, in addition to the HTLC's payment hash and
// preimage since these are unique to each AMP HTLC, and not the invoice
// as a whole.
//
// NOTE: This value will only be set for AMP HTLCs.
AMP *InvoiceHtlcAMPData
}
// Copy makes a deep copy of the target InvoiceHTLC.
func (h *InvoiceHTLC) Copy() *InvoiceHTLC {
result := *h
// Make a copy of the CustomSet map.
result.CustomRecords = make(record.CustomSet)
for k, v := range h.CustomRecords {
result.CustomRecords[k] = v
}
result.AMP = h.AMP.Copy()
return &result
}
// IsInHTLCSet returns true if this HTLC is part an HTLC set. If nil is passed,
// this method returns true if this is an MPP HTLC. Otherwise, it only returns
// true if the AMP HTLC's set id matches the populated setID.
func (h *InvoiceHTLC) IsInHTLCSet(setID *[32]byte) bool {
wantAMPSet := setID != nil
isAMPHtlc := h.AMP != nil
// Non-AMP HTLCs cannot be part of AMP HTLC sets, and vice versa.
if wantAMPSet != isAMPHtlc {
return false
}
// Skip AMP HTLCs that have differing set ids.
if isAMPHtlc && *setID != h.AMP.Record.SetID() {
return false
}
return true
}
// InvoiceHtlcAMPData is a struct hodling the additional metadata stored for
// each received AMP HTLC. This includes the AMP onion record, in addition to
// the HTLC's payment hash and preimage.
type InvoiceHtlcAMPData struct {
// AMP is a copy of the AMP record presented in the onion payload
// containing the information necessary to correlate and settle a
// spontaneous HTLC set. Newly accepted legacy keysend payments will
// also have this field set as we automatically promote them into an AMP
// payment for internal processing.
Record record.AMP
// Hash is an HTLC-level payment hash that is stored only for AMP
// payments. This is done because an AMP HTLC will carry a different
// payment hash from the invoice it might be satisfying, so we track the
// payment hashes individually to able to compute whether or not the
// reconstructed preimage correctly matches the HTLC's hash.
Hash lntypes.Hash
// Preimage is an HTLC-level preimage that satisfies the AMP HTLC's
// Hash. The preimage will be be derived either from secret share
// reconstruction of the shares in the AMP payload.
//
// NOTE: Preimage will only be present once the HTLC is in
// HtlcStateSettled.
Preimage *lntypes.Preimage
}
// Copy returns a deep copy of the InvoiceHtlcAMPData.
func (d *InvoiceHtlcAMPData) Copy() *InvoiceHtlcAMPData {
if d == nil {
return nil
}
var preimage *lntypes.Preimage
if d.Preimage != nil {
pimg := *d.Preimage
preimage = &pimg
}
return &InvoiceHtlcAMPData{
Record: d.Record,
Hash: d.Hash,
Preimage: preimage,
}
}
invoices: replay awareness Previously the invoice registry wasn't aware of replayed htlcs. This was dealt with by keeping the invoice accept/settle logic idempotent, so that a replay wouldn't have an effect. This mechanism has two limitations: 1. No accurate tracking of the total amount paid to an invoice. The total amount couldn't just be increased with every htlc received, because it could be a replay which would lead to counting the htlc amount multiple times. Therefore the total amount was set to the amount of the first htlc that was received, even though there may have been multiple htlcs paying to the invoice. 2. Impossible to check htlc expiry consistently for hodl invoices. When an htlc is new, its expiry needs to be checked against the invoice cltv delta. But for a replay, that check must be skipped. The htlc was accepted in time, the invoice was moved to the accepted state and a replay some blocks later shouldn't lead to that htlc being cancelled. Because the invoice registry couldn't recognize replays, it stopped checking htlc expiry heights when the invoice reached the accepted state. This prevents hold htlcs from being cancelled after a restart. But unfortunately this also caused additional htlcs to be accepted on an already accepted invoice without their expiry being checked. In this commit, the invoice registry starts to persistently track htlcs so that replays can be recognized. For replays, an htlc resolution action is returned early. This fixes both limitations mentioned above.
2019-08-09 15:09:57 +02:00
// HtlcAcceptDesc describes the details of a newly accepted htlc.
type HtlcAcceptDesc struct {
// AcceptHeight is the block height at which this htlc was accepted.
AcceptHeight int32
// Amt is the amount that is carried by this htlc.
Amt lnwire.MilliSatoshi
2019-09-03 12:23:39 +02:00
// MppTotalAmt is a field for mpp that indicates the expected total
// amount.
MppTotalAmt lnwire.MilliSatoshi
invoices: replay awareness Previously the invoice registry wasn't aware of replayed htlcs. This was dealt with by keeping the invoice accept/settle logic idempotent, so that a replay wouldn't have an effect. This mechanism has two limitations: 1. No accurate tracking of the total amount paid to an invoice. The total amount couldn't just be increased with every htlc received, because it could be a replay which would lead to counting the htlc amount multiple times. Therefore the total amount was set to the amount of the first htlc that was received, even though there may have been multiple htlcs paying to the invoice. 2. Impossible to check htlc expiry consistently for hodl invoices. When an htlc is new, its expiry needs to be checked against the invoice cltv delta. But for a replay, that check must be skipped. The htlc was accepted in time, the invoice was moved to the accepted state and a replay some blocks later shouldn't lead to that htlc being cancelled. Because the invoice registry couldn't recognize replays, it stopped checking htlc expiry heights when the invoice reached the accepted state. This prevents hold htlcs from being cancelled after a restart. But unfortunately this also caused additional htlcs to be accepted on an already accepted invoice without their expiry being checked. In this commit, the invoice registry starts to persistently track htlcs so that replays can be recognized. For replays, an htlc resolution action is returned early. This fixes both limitations mentioned above.
2019-08-09 15:09:57 +02:00
// Expiry is the expiry height of this htlc.
Expiry uint32
// CustomRecords contains the custom key/value pairs that accompanied
// the htlc.
2019-12-12 00:01:55 +01:00
CustomRecords record.CustomSet
// AMP encapsulates additional data relevant to AMP HTLCs. This includes
// the AMP onion record, in addition to the HTLC's payment hash and
// preimage since these are unique to each AMP HTLC, and not the invoice
// as a whole.
//
// NOTE: This value will only be set for AMP HTLCs.
AMP *InvoiceHtlcAMPData
invoices: replay awareness Previously the invoice registry wasn't aware of replayed htlcs. This was dealt with by keeping the invoice accept/settle logic idempotent, so that a replay wouldn't have an effect. This mechanism has two limitations: 1. No accurate tracking of the total amount paid to an invoice. The total amount couldn't just be increased with every htlc received, because it could be a replay which would lead to counting the htlc amount multiple times. Therefore the total amount was set to the amount of the first htlc that was received, even though there may have been multiple htlcs paying to the invoice. 2. Impossible to check htlc expiry consistently for hodl invoices. When an htlc is new, its expiry needs to be checked against the invoice cltv delta. But for a replay, that check must be skipped. The htlc was accepted in time, the invoice was moved to the accepted state and a replay some blocks later shouldn't lead to that htlc being cancelled. Because the invoice registry couldn't recognize replays, it stopped checking htlc expiry heights when the invoice reached the accepted state. This prevents hold htlcs from being cancelled after a restart. But unfortunately this also caused additional htlcs to be accepted on an already accepted invoice without their expiry being checked. In this commit, the invoice registry starts to persistently track htlcs so that replays can be recognized. For replays, an htlc resolution action is returned early. This fixes both limitations mentioned above.
2019-08-09 15:09:57 +02:00
}
// InvoiceUpdateDesc describes the changes that should be applied to the
// invoice.
type InvoiceUpdateDesc struct {
// State is the new state that this invoice should progress to. If nil,
// the state is left unchanged.
State *InvoiceStateUpdateDesc
// CancelHtlcs describes the htlcs that need to be canceled.
CancelHtlcs map[CircuitKey]struct{}
// AddHtlcs describes the newly accepted htlcs that need to be added to
// the invoice.
AddHtlcs map[CircuitKey]*HtlcAcceptDesc
// SetID is an optional set ID for AMP invoices that allows operations
// to be more efficient by ensuring we don't need to read out the
// entire HTLC set each timee an HTLC is to be cancelled.
SetID *SetID
}
// InvoiceStateUpdateDesc describes an invoice-level state transition.
type InvoiceStateUpdateDesc struct {
// NewState is the new state that this invoice should progress to.
NewState ContractState
// Preimage must be set to the preimage when NewState is settled.
Preimage *lntypes.Preimage
// HTLCPreimages set the HTLC-level preimages stored for AMP HTLCs.
// These are only learned when settling the invoice as a whole. Must be
// set when settling an invoice with non-nil SetID.
HTLCPreimages map[CircuitKey]lntypes.Preimage
// SetID identifies a specific set of HTLCs destined for the same
// invoice as part of a larger AMP payment. This value will be nil for
// legacy or MPP payments.
SetID *[32]byte
}
// InvoiceUpdateCallback is a callback used in the db transaction to update the
// invoice.
type InvoiceUpdateCallback = func(invoice *Invoice) (*InvoiceUpdateDesc, error)
func validateInvoice(i *Invoice, paymentHash lntypes.Hash) error {
// Avoid conflicts with all-zeroes magic value in the database.
if paymentHash == unknownPreimage.Hash() {
return fmt.Errorf("cannot use hash of all-zeroes preimage")
}
if len(i.Memo) > MaxMemoSize {
return fmt.Errorf("max length a memo is %v, and invoice "+
"of length %v was provided", MaxMemoSize, len(i.Memo))
}
if len(i.PaymentRequest) > MaxPaymentRequestSize {
return fmt.Errorf("max length of payment request is %v, length "+
"provided was %v", MaxPaymentRequestSize,
len(i.PaymentRequest))
}
if i.Terms.Features == nil {
return errors.New("invoice must have a feature vector")
}
err := feature.ValidateDeps(i.Terms.Features)
if err != nil {
return err
}
// AMP invoices and hodl invoices are allowed to have no preimage
// specified.
isAMP := i.Terms.Features.HasFeature(
lnwire.AMPOptional,
)
if i.Terms.PaymentPreimage == nil && !(i.HodlInvoice || isAMP) {
return errors.New("non-hodl invoices must have a preimage")
}
if len(i.Htlcs) > 0 {
return ErrInvoiceHasHtlcs
}
return nil
}
// IsPending returns ture if the invoice is in ContractOpen state.
func (i *Invoice) IsPending() bool {
return i.State == ContractOpen || i.State == ContractAccepted
}
// AddInvoice inserts the targeted invoice into the database. If the invoice has
// *any* payment hashes which already exists within the database, then the
// insertion will be aborted and rejected due to the strict policy banning any
// duplicate payment hashes. A side effect of this function is that it sets
// AddIndex on newInvoice.
2018-10-05 10:14:56 +02:00
func (d *DB) AddInvoice(newInvoice *Invoice, paymentHash lntypes.Hash) (
uint64, error) {
if err := validateInvoice(newInvoice, paymentHash); err != nil {
return 0, err
}
var invoiceAddIndex uint64
err := kvdb.Update(d, func(tx kvdb.RwTx) error {
invoices, err := tx.CreateTopLevelBucket(invoiceBucket)
if err != nil {
return err
}
invoiceIndex, err := invoices.CreateBucketIfNotExists(
invoiceIndexBucket,
)
if err != nil {
return err
}
addIndex, err := invoices.CreateBucketIfNotExists(
addIndexBucket,
)
if err != nil {
return err
}
// Ensure that an invoice an identical payment hash doesn't
// already exist within the index.
if invoiceIndex.Get(paymentHash[:]) != nil {
return ErrDuplicateInvoice
}
// Check that we aren't inserting an invoice with a duplicate
// payment address. The all-zeros payment address is
// special-cased to support legacy keysend invoices which don't
// assign one. This is safe since later we also will avoid
// indexing them and avoid collisions.
payAddrIndex := tx.ReadWriteBucket(payAddrIndexBucket)
if newInvoice.Terms.PaymentAddr != BlankPayAddr {
if payAddrIndex.Get(newInvoice.Terms.PaymentAddr[:]) != nil {
return ErrDuplicatePayAddr
}
}
// If the current running payment ID counter hasn't yet been
// created, then create it now.
var invoiceNum uint32
invoiceCounter := invoiceIndex.Get(numInvoicesKey)
if invoiceCounter == nil {
var scratch [4]byte
byteOrder.PutUint32(scratch[:], invoiceNum)
err := invoiceIndex.Put(numInvoicesKey, scratch[:])
if err != nil {
return err
}
} else {
invoiceNum = byteOrder.Uint32(invoiceCounter)
}
newIndex, err := putInvoice(
invoices, invoiceIndex, payAddrIndex, addIndex,
newInvoice, invoiceNum, paymentHash,
)
if err != nil {
return err
}
invoiceAddIndex = newIndex
return nil
}, func() {
invoiceAddIndex = 0
})
if err != nil {
return 0, err
}
return invoiceAddIndex, err
}
// InvoicesAddedSince can be used by callers to seek into the event time series
// of all the invoices added in the database. The specified sinceAddIndex
// should be the highest add index that the caller knows of. This method will
// return all invoices with an add index greater than the specified
// sinceAddIndex.
//
// NOTE: The index starts from 1, as a result. We enforce that specifying a
// value below the starting index value is a noop.
func (d *DB) InvoicesAddedSince(sinceAddIndex uint64) ([]Invoice, error) {
var newInvoices []Invoice
// If an index of zero was specified, then in order to maintain
// backwards compat, we won't send out any new invoices.
if sinceAddIndex == 0 {
return newInvoices, nil
}
var startIndex [8]byte
byteOrder.PutUint64(startIndex[:], sinceAddIndex)
2020-05-07 00:45:50 +02:00
err := kvdb.View(d, func(tx kvdb.RTx) error {
invoices := tx.ReadBucket(invoiceBucket)
if invoices == nil {
return nil
}
addIndex := invoices.NestedReadBucket(addIndexBucket)
if addIndex == nil {
return nil
}
// We'll now run through each entry in the add index starting
// at our starting index. We'll continue until we reach the
// very end of the current key space.
invoiceCursor := addIndex.ReadCursor()
// We'll seek to the starting index, then manually advance the
// cursor in order to skip the entry with the since add index.
invoiceCursor.Seek(startIndex[:])
addSeqNo, invoiceKey := invoiceCursor.Next()
for ; addSeqNo != nil && bytes.Compare(addSeqNo, startIndex[:]) > 0; addSeqNo, invoiceKey = invoiceCursor.Next() {
// For each key found, we'll look up the actual
// invoice, then accumulate it into our return value.
invoice, err := fetchInvoice(invoiceKey, invoices)
if err != nil {
return err
}
newInvoices = append(newInvoices, invoice)
}
return nil
}, func() {
newInvoices = nil
})
if err != nil {
return nil, err
}
return newInvoices, nil
}
// LookupInvoice attempts to look up an invoice according to its 32 byte
// payment hash. If an invoice which can settle the HTLC identified by the
2017-01-08 05:09:08 +01:00
// passed payment hash isn't found, then an error is returned. Otherwise, the
// full invoice is returned. Before setting the incoming HTLC, the values
// SHOULD be checked to ensure the payer meets the agreed upon contractual
// terms of the payment.
func (d *DB) LookupInvoice(ref InvoiceRef) (Invoice, error) {
var invoice Invoice
2020-05-07 00:45:50 +02:00
err := kvdb.View(d, func(tx kvdb.RTx) error {
invoices := tx.ReadBucket(invoiceBucket)
if invoices == nil {
return ErrNoInvoicesCreated
}
invoiceIndex := invoices.NestedReadBucket(invoiceIndexBucket)
if invoiceIndex == nil {
return ErrNoInvoicesCreated
}
payAddrIndex := tx.ReadBucket(payAddrIndexBucket)
setIDIndex := tx.ReadBucket(setIDIndexBucket)
// Retrieve the invoice number for this invoice using
// the provided invoice reference.
invoiceNum, err := fetchInvoiceNumByRef(
invoiceIndex, payAddrIndex, setIDIndex, ref,
)
if err != nil {
return err
}
var setID *SetID
switch {
// If this is a payment address ref, and the blank modified was
// specified, then we'll use the zero set ID to indicate that
// we won't want any HTLCs returned.
case ref.PayAddr() != nil && ref.Modifier() == HtlcSetBlankModifier:
var zeroSetID SetID
setID = &zeroSetID
// If this is a set ID ref, and the htlc set only modified was
// specified, then we'll pass through the specified setID so
// only that will be returned.
case ref.SetID() != nil && ref.Modifier() == HtlcSetOnlyModifier:
setID = (*SetID)(ref.SetID())
}
// An invoice was found, retrieve the remainder of the invoice
// body.
i, err := fetchInvoice(invoiceNum, invoices, setID)
if err != nil {
return err
}
invoice = i
return nil
}, func() {})
if err != nil {
return invoice, err
}
return invoice, nil
}
// fetchInvoiceNumByRef retrieve the invoice number for the provided invoice
// reference. The payment address will be treated as the primary key, falling
// back to the payment hash if nothing is found for the payment address. An
// error is returned if the invoice is not found.
func fetchInvoiceNumByRef(invoiceIndex, payAddrIndex, setIDIndex kvdb.RBucket,
ref InvoiceRef) ([]byte, error) {
// If the set id is present, we only consult the set id index for this
// invoice. This type of query is only used to facilitate user-facing
// requests to lookup, settle or cancel an AMP invoice.
setID := ref.SetID()
if setID != nil {
invoiceNumBySetID := setIDIndex.Get(setID[:])
if invoiceNumBySetID == nil {
return nil, ErrInvoiceNotFound
}
return invoiceNumBySetID, nil
}
payHash := ref.PayHash()
payAddr := ref.PayAddr()
getInvoiceNumByHash := func() []byte {
if payHash != nil {
return invoiceIndex.Get(payHash[:])
}
return nil
}
getInvoiceNumByAddr := func() []byte {
if payAddr != nil {
// Only allow lookups for payment address if it is not a
// blank payment address, which is a special-cased value
// for legacy keysend invoices.
if *payAddr != BlankPayAddr {
return payAddrIndex.Get(payAddr[:])
}
}
return nil
}
invoiceNumByHash := getInvoiceNumByHash()
invoiceNumByAddr := getInvoiceNumByAddr()
switch {
// If payment address and payment hash both reference an existing
// invoice, ensure they reference the _same_ invoice.
case invoiceNumByAddr != nil && invoiceNumByHash != nil:
if !bytes.Equal(invoiceNumByAddr, invoiceNumByHash) {
return nil, ErrInvRefEquivocation
}
return invoiceNumByAddr, nil
// Return invoices by payment addr only.
//
// NOTE: We constrain this lookup to only apply if the invoice ref does
// not contain a payment hash. Legacy and MPP payments depend on the
// payment hash index to enforce that the HTLCs payment hash matches the
// payment hash for the invoice, without this check we would
// inadvertently assume the invoice contains the correct preimage for
// the HTLC, which we only enforce via the lookup by the invoice index.
case invoiceNumByAddr != nil && payHash == nil:
return invoiceNumByAddr, nil
// If we were only able to reference the invoice by hash, return the
// corresponding invoice number. This can happen when no payment address
// was provided, or if it didn't match anything in our records.
case invoiceNumByHash != nil:
return invoiceNumByHash, nil
// Otherwise we don't know of the target invoice.
default:
return nil, ErrInvoiceNotFound
}
}
// ScanInvoices scans trough all invoices and calls the passed scanFunc for
// for each invoice with its respective payment hash. Additionally a reset()
// closure is passed which is used to reset/initialize partial results and also
// to signal if the kvdb.View transaction has been retried.
func (d *DB) ScanInvoices(
scanFunc func(lntypes.Hash, *Invoice) error, reset func()) error {
return kvdb.View(d, func(tx kvdb.RTx) error {
invoices := tx.ReadBucket(invoiceBucket)
if invoices == nil {
return ErrNoInvoicesCreated
}
invoiceIndex := invoices.NestedReadBucket(invoiceIndexBucket)
if invoiceIndex == nil {
// Mask the error if there's no invoice
// index as that simply means there are no
// invoices added yet to the DB. In this case
// we simply return an empty list.
return nil
}
return invoiceIndex.ForEach(func(k, v []byte) error {
// Skip the special numInvoicesKey as that does not
// point to a valid invoice.
if bytes.Equal(k, numInvoicesKey) {
return nil
}
// Skip sub-buckets.
if v == nil {
return nil
}
invoice, err := fetchInvoice(v, invoices)
if err != nil {
return err
}
var paymentHash lntypes.Hash
copy(paymentHash[:], k)
return scanFunc(paymentHash, &invoice)
})
}, reset)
}
// InvoiceQuery represents a query to the invoice database. The query allows a
// caller to retrieve all invoices starting from a particular add index and
// limit the number of results returned.
type InvoiceQuery struct {
// IndexOffset is the offset within the add indices to start at. This
// can be used to start the response at a particular invoice.
IndexOffset uint64
// NumMaxInvoices is the maximum number of invoices that should be
// starting from the add index.
NumMaxInvoices uint64
// PendingOnly, if set, returns unsettled invoices starting from the
// add index.
PendingOnly bool
// Reversed, if set, indicates that the invoices returned should start
// from the IndexOffset and go backwards.
Reversed bool
}
// InvoiceSlice is the response to a invoice query. It includes the original
// query, the set of invoices that match the query, and an integer which
// represents the offset index of the last item in the set of returned invoices.
// This integer allows callers to resume their query using this offset in the
// event that the query's response exceeds the maximum number of returnable
// invoices.
type InvoiceSlice struct {
InvoiceQuery
// Invoices is the set of invoices that matched the query above.
Invoices []Invoice
// FirstIndexOffset is the index of the first element in the set of
// returned Invoices above. Callers can use this to resume their query
// in the event that the slice has too many events to fit into a single
// response.
FirstIndexOffset uint64
// LastIndexOffset is the index of the last element in the set of
// returned Invoices above. Callers can use this to resume their query
// in the event that the slice has too many events to fit into a single
// response.
LastIndexOffset uint64
}
// QueryInvoices allows a caller to query the invoice database for invoices
// within the specified add index range.
func (d *DB) QueryInvoices(q InvoiceQuery) (InvoiceSlice, error) {
var resp InvoiceSlice
2020-05-07 00:45:50 +02:00
err := kvdb.View(d, func(tx kvdb.RTx) error {
// If the bucket wasn't found, then there aren't any invoices
// within the database yet, so we can simply exit.
invoices := tx.ReadBucket(invoiceBucket)
if invoices == nil {
return ErrNoInvoicesCreated
}
// Get the add index bucket which we will use to iterate through
// our indexed invoices.
invoiceAddIndex := invoices.NestedReadBucket(addIndexBucket)
if invoiceAddIndex == nil {
return ErrNoInvoicesCreated
}
// Create a paginator which reads from our add index bucket with
// the parameters provided by the invoice query.
paginator := newPaginator(
invoiceAddIndex.ReadCursor(), q.Reversed, q.IndexOffset,
q.NumMaxInvoices,
)
// accumulateInvoices looks up an invoice based on the index we
// are given, adds it to our set of invoices if it has the right
// characteristics for our query and returns the number of items
// we have added to our set of invoices.
accumulateInvoices := func(_, indexValue []byte) (bool, error) {
invoice, err := fetchInvoice(indexValue, invoices)
if err != nil {
return false, err
}
// Skip any settled or canceled invoices if the caller
// is only interested in pending ones.
if q.PendingOnly && !invoice.IsPending() {
return false, nil
}
// At this point, we've exhausted the offset, so we'll
// begin collecting invoices found within the range.
resp.Invoices = append(resp.Invoices, invoice)
return true, nil
}
// Query our paginator using accumulateInvoices to build up a
// set of invoices.
if err := paginator.query(accumulateInvoices); err != nil {
return err
}
// If we iterated through the add index in reverse order, then
// we'll need to reverse the slice of invoices to return them in
// forward order.
if q.Reversed {
numInvoices := len(resp.Invoices)
for i := 0; i < numInvoices/2; i++ {
opposite := numInvoices - i - 1
resp.Invoices[i], resp.Invoices[opposite] =
resp.Invoices[opposite], resp.Invoices[i]
}
}
return nil
}, func() {
resp = InvoiceSlice{
InvoiceQuery: q,
}
})
if err != nil && err != ErrNoInvoicesCreated {
return resp, err
}
// Finally, record the indexes of the first and last invoices returned
// so that the caller can resume from this point later on.
if len(resp.Invoices) > 0 {
resp.FirstIndexOffset = resp.Invoices[0].AddIndex
resp.LastIndexOffset = resp.Invoices[len(resp.Invoices)-1].AddIndex
}
return resp, nil
}
// UpdateInvoice attempts to update an invoice corresponding to the passed
// payment hash. If an invoice matching the passed payment hash doesn't exist
// within the database, then the action will fail with a "not found" error.
//
// The update is performed inside the same database transaction that fetches the
// invoice and is therefore atomic. The fields to update are controlled by the
// supplied callback.
func (d *DB) UpdateInvoice(ref InvoiceRef, setIDHint *SetID,
callback InvoiceUpdateCallback) (*Invoice, error) {
var updatedInvoice *Invoice
err := kvdb.Update(d, func(tx kvdb.RwTx) error {
invoices, err := tx.CreateTopLevelBucket(invoiceBucket)
if err != nil {
return err
}
invoiceIndex, err := invoices.CreateBucketIfNotExists(
invoiceIndexBucket,
)
if err != nil {
return err
}
settleIndex, err := invoices.CreateBucketIfNotExists(
settleIndexBucket,
)
if err != nil {
return err
}
payAddrIndex := tx.ReadBucket(payAddrIndexBucket)
setIDIndex := tx.ReadWriteBucket(setIDIndexBucket)
// Retrieve the invoice number for this invoice using the
// provided invoice reference.
invoiceNum, err := fetchInvoiceNumByRef(
invoiceIndex, payAddrIndex, setIDIndex, ref,
)
if err != nil {
return err
}
payHash := ref.PayHash()
updatedInvoice, err = d.updateInvoice(
payHash, setIDHint, invoices, settleIndex, setIDIndex,
invoiceNum, callback,
)
return err
}, func() {
updatedInvoice = nil
})
return updatedInvoice, err
}
// InvoicesSettledSince can be used by callers to catch up any settled invoices
// they missed within the settled invoice time series. We'll return all known
// settled invoice that have a settle index higher than the passed
// sinceSettleIndex.
//
// NOTE: The index starts from 1, as a result. We enforce that specifying a
// value below the starting index value is a noop.
func (d *DB) InvoicesSettledSince(sinceSettleIndex uint64) ([]Invoice, error) {
var settledInvoices []Invoice
// If an index of zero was specified, then in order to maintain
// backwards compat, we won't send out any new invoices.
if sinceSettleIndex == 0 {
return settledInvoices, nil
}
var startIndex [8]byte
byteOrder.PutUint64(startIndex[:], sinceSettleIndex)
2020-05-07 00:45:50 +02:00
err := kvdb.View(d, func(tx kvdb.RTx) error {
invoices := tx.ReadBucket(invoiceBucket)
if invoices == nil {
return nil
}
settleIndex := invoices.NestedReadBucket(settleIndexBucket)
if settleIndex == nil {
return nil
}
// We'll now run through each entry in the add index starting
// at our starting index. We'll continue until we reach the
// very end of the current key space.
invoiceCursor := settleIndex.ReadCursor()
// We'll seek to the starting index, then manually advance the
// cursor in order to skip the entry with the since add index.
invoiceCursor.Seek(startIndex[:])
seqNo, indexValue := invoiceCursor.Next()
for ; seqNo != nil && bytes.Compare(seqNo, startIndex[:]) > 0; seqNo, indexValue = invoiceCursor.Next() {
// Depending on the length of the index value, this may
// or may not be an AMP invoice, so we'll extract the
// invoice value into two components: the invoice num,
// and the setID (may not be there).
var (
invoiceKey [4]byte
setID *SetID
)
valueLen := copy(invoiceKey[:], indexValue)
if len(indexValue) == invoiceSetIDKeyLen {
setID = new(SetID)
copy(setID[:], indexValue[valueLen:])
}
// For each key found, we'll look up the actual
// invoice, then accumulate it into our return value.
invoice, err := fetchInvoice(invoiceKey[:], invoices, setID)
if err != nil {
return err
}
settledInvoices = append(settledInvoices, invoice)
}
return nil
}, func() {
settledInvoices = nil
})
if err != nil {
return nil, err
}
return settledInvoices, nil
}
func putInvoice(invoices, invoiceIndex, payAddrIndex, addIndex kvdb.RwBucket,
2018-10-05 10:14:56 +02:00
i *Invoice, invoiceNum uint32, paymentHash lntypes.Hash) (
uint64, error) {
// Create the invoice key which is just the big-endian representation
// of the invoice number.
var invoiceKey [4]byte
byteOrder.PutUint32(invoiceKey[:], invoiceNum)
// Increment the num invoice counter index so the next invoice bares
// the proper ID.
var scratch [4]byte
invoiceCounter := invoiceNum + 1
byteOrder.PutUint32(scratch[:], invoiceCounter)
if err := invoiceIndex.Put(numInvoicesKey, scratch[:]); err != nil {
return 0, err
}
// Add the payment hash to the invoice index. This will let us quickly
// identify if we can settle an incoming payment, and also to possibly
// allow a single invoice to have multiple payment installations.
err := invoiceIndex.Put(paymentHash[:], invoiceKey[:])
if err != nil {
return 0, err
}
// Add the invoice to the payment address index, but only if the invoice
// has a non-zero payment address. The all-zero payment address is still
// in use by legacy keysend, so we special-case here to avoid
// collisions.
if i.Terms.PaymentAddr != BlankPayAddr {
err = payAddrIndex.Put(i.Terms.PaymentAddr[:], invoiceKey[:])
if err != nil {
return 0, err
}
}
// Next, we'll obtain the next add invoice index (sequence
// number), so we can properly place this invoice within this
// event stream.
nextAddSeqNo, err := addIndex.NextSequence()
if err != nil {
return 0, err
}
// With the next sequence obtained, we'll updating the event series in
// the add index bucket to map this current add counter to the index of
// this new invoice.
var seqNoBytes [8]byte
byteOrder.PutUint64(seqNoBytes[:], nextAddSeqNo)
if err := addIndex.Put(seqNoBytes[:], invoiceKey[:]); err != nil {
return 0, err
}
i.AddIndex = nextAddSeqNo
// Finally, serialize the invoice itself to be written to the disk.
var buf bytes.Buffer
if err := serializeInvoice(&buf, i); err != nil {
2019-08-14 17:48:34 +02:00
return 0, err
}
if err := invoices.Put(invoiceKey[:], buf.Bytes()); err != nil {
return 0, err
}
return nextAddSeqNo, nil
}
// serializeInvoice serializes an invoice to a writer.
//
// Note: this function is in use for a migration. Before making changes that
// would modify the on disk format, make a copy of the original code and store
// it with the migration.
func serializeInvoice(w io.Writer, i *Invoice) error {
creationDateBytes, err := i.CreationDate.MarshalBinary()
if err != nil {
return err
}
settleDateBytes, err := i.SettleDate.MarshalBinary()
if err != nil {
return err
}
var fb bytes.Buffer
err = i.Terms.Features.EncodeBase256(&fb)
if err != nil {
return err
}
featureBytes := fb.Bytes()
preimage := [32]byte(unknownPreimage)
if i.Terms.PaymentPreimage != nil {
preimage = *i.Terms.PaymentPreimage
if preimage == unknownPreimage {
return errors.New("cannot use all-zeroes preimage")
}
}
value := uint64(i.Terms.Value)
cltvDelta := uint32(i.Terms.FinalCltvDelta)
expiry := uint64(i.Terms.Expiry)
amtPaid := uint64(i.AmtPaid)
state := uint8(i.State)
var hodlInvoice uint8
if i.HodlInvoice {
hodlInvoice = 1
}
tlvStream, err := tlv.NewStream(
// Memo and payreq.
tlv.MakePrimitiveRecord(memoType, &i.Memo),
tlv.MakePrimitiveRecord(payReqType, &i.PaymentRequest),
// Add/settle metadata.
tlv.MakePrimitiveRecord(createTimeType, &creationDateBytes),
tlv.MakePrimitiveRecord(settleTimeType, &settleDateBytes),
tlv.MakePrimitiveRecord(addIndexType, &i.AddIndex),
tlv.MakePrimitiveRecord(settleIndexType, &i.SettleIndex),
// Terms.
tlv.MakePrimitiveRecord(preimageType, &preimage),
tlv.MakePrimitiveRecord(valueType, &value),
tlv.MakePrimitiveRecord(cltvDeltaType, &cltvDelta),
tlv.MakePrimitiveRecord(expiryType, &expiry),
tlv.MakePrimitiveRecord(paymentAddrType, &i.Terms.PaymentAddr),
tlv.MakePrimitiveRecord(featuresType, &featureBytes),
// Invoice state.
tlv.MakePrimitiveRecord(invStateType, &state),
tlv.MakePrimitiveRecord(amtPaidType, &amtPaid),
tlv.MakePrimitiveRecord(hodlInvoiceType, &hodlInvoice),
// Invoice AMP state.
tlv.MakeDynamicRecord(
invoiceAmpStateType, &i.AMPState,
i.AMPState.recordSize,
ampStateEncoder, ampStateDecoder,
),
)
if err != nil {
return err
}
var b bytes.Buffer
if err = tlvStream.Encode(&b); err != nil {
return err
}
err = binary.Write(w, byteOrder, uint64(b.Len()))
if err != nil {
return err
}
if _, err = w.Write(b.Bytes()); err != nil {
return err
}
// Only if this is a _non_ AMP invoice do we serialize the HTLCs
// in-line with the rest of the invoice.
ampInvoice := i.Terms.Features.HasFeature(
lnwire.AMPOptional,
)
if ampInvoice {
return nil
}
return serializeHtlcs(w, i.Htlcs)
}
// serializeHtlcs serializes a map containing circuit keys and invoice htlcs to
// a writer.
func serializeHtlcs(w io.Writer, htlcs map[CircuitKey]*InvoiceHTLC) error {
for key, htlc := range htlcs {
// Encode the htlc in a tlv stream.
chanID := key.ChanID.ToUint64()
amt := uint64(htlc.Amt)
2019-09-03 12:23:39 +02:00
mppTotalAmt := uint64(htlc.MppTotalAmt)
acceptTime := putNanoTime(htlc.AcceptTime)
resolveTime := putNanoTime(htlc.ResolveTime)
state := uint8(htlc.State)
var records []tlv.Record
records = append(records,
tlv.MakePrimitiveRecord(chanIDType, &chanID),
tlv.MakePrimitiveRecord(htlcIDType, &key.HtlcID),
tlv.MakePrimitiveRecord(amtType, &amt),
tlv.MakePrimitiveRecord(
acceptHeightType, &htlc.AcceptHeight,
),
tlv.MakePrimitiveRecord(acceptTimeType, &acceptTime),
tlv.MakePrimitiveRecord(resolveTimeType, &resolveTime),
tlv.MakePrimitiveRecord(expiryHeightType, &htlc.Expiry),
tlv.MakePrimitiveRecord(htlcStateType, &state),
2019-09-03 12:23:39 +02:00
tlv.MakePrimitiveRecord(mppTotalAmtType, &mppTotalAmt),
)
if htlc.AMP != nil {
setIDRecord := tlv.MakeDynamicRecord(
htlcAMPType, &htlc.AMP.Record,
htlc.AMP.Record.PayloadSize,
record.AMPEncoder, record.AMPDecoder,
)
records = append(records, setIDRecord)
hash32 := [32]byte(htlc.AMP.Hash)
hashRecord := tlv.MakePrimitiveRecord(
htlcHashType, &hash32,
)
records = append(records, hashRecord)
if htlc.AMP.Preimage != nil {
preimage32 := [32]byte(*htlc.AMP.Preimage)
preimageRecord := tlv.MakePrimitiveRecord(
htlcPreimageType, &preimage32,
)
records = append(records, preimageRecord)
}
}
// Convert the custom records to tlv.Record types that are ready
// for serialization.
customRecords := tlv.MapToRecords(htlc.CustomRecords)
// Append the custom records. Their ids are in the experimental
// range and sorted, so there is no need to sort again.
records = append(records, customRecords...)
tlvStream, err := tlv.NewStream(records...)
if err != nil {
return err
}
var b bytes.Buffer
if err := tlvStream.Encode(&b); err != nil {
return err
}
// Write the length of the tlv stream followed by the stream
// bytes.
err = binary.Write(w, byteOrder, uint64(b.Len()))
if err != nil {
return err
}
if _, err := w.Write(b.Bytes()); err != nil {
return err
}
}
return nil
}
// putNanoTime returns the unix nano time for the passed timestamp. A zero-value
// timestamp will be mapped to 0, since calling UnixNano in that case is
// undefined.
func putNanoTime(t time.Time) uint64 {
if t.IsZero() {
return 0
}
return uint64(t.UnixNano())
}
// getNanoTime returns a timestamp for the given number of nano seconds. If zero
// is provided, an zero-value time stamp is returned.
func getNanoTime(ns uint64) time.Time {
if ns == 0 {
return time.Time{}
}
return time.Unix(0, int64(ns))
}
// fetchFilteredAmpInvoices retrieves only a select set of AMP invoices
// identified by the setID value.
func fetchFilteredAmpInvoices(invoiceBucket kvdb.RBucket,
invoiceNum []byte, setIDs ...*SetID) (map[CircuitKey]*InvoiceHTLC, error) {
htlcs := make(map[CircuitKey]*InvoiceHTLC)
for _, setID := range setIDs {
invoiceSetIDKey := makeInvoiceSetIDKey(invoiceNum, setID[:])
htlcSetBytes := invoiceBucket.Get(invoiceSetIDKey[:])
if htlcSetBytes == nil {
// A set ID was passed in, but we don't have this
// stored yet, meaning that the setID is being added
// for the first time.
return htlcs, ErrInvoiceNotFound
}
htlcSetReader := bytes.NewReader(htlcSetBytes)
htlcsBySetID, err := deserializeHtlcs(htlcSetReader)
if err != nil {
return nil, err
}
for key, htlc := range htlcsBySetID {
htlcs[key] = htlc
}
}
return htlcs, nil
}
// forEachAMPInvoice is a helper function that attempts to iterate over each of
// the HTLC sets (based on their set ID) for the given AMP invoice identified
// by its invoiceNum. The callback closure is called for each key within the
// prefix range.
func forEachAMPInvoice(invoiceBucket kvdb.RBucket, invoiceNum []byte,
callback func(key, htlcSet []byte) error) error {
invoiceCursor := invoiceBucket.ReadCursor()
// Seek to the first key that includes the invoice data itself.
invoiceCursor.Seek(invoiceNum)
// Advance to the very first key _after_ the invoice data, as this is
// where we'll encounter our first HTLC (if any are present).
cursorKey, htlcSet := invoiceCursor.Next()
// If at this point, the cursor key doesn't match the invoice num
// prefix, then we know that this HTLC doesn't have any set ID HTLCs
// associated with it.
if !bytes.HasPrefix(cursorKey, invoiceNum) {
return nil
}
// Otherwise continue to iterate until we no longer match the prefix,
// executing the call back at each step.
for ; cursorKey != nil && bytes.HasPrefix(cursorKey, invoiceNum); cursorKey, htlcSet = invoiceCursor.Next() {
err := callback(cursorKey, htlcSet)
if err != nil {
return err
}
}
return nil
}
// fetchAmpSubInvoices attempts to use the invoiceNum as a prefix within the
// AMP bucket to find all the individual HTLCs (by setID) associated with a
// given invoice. If a list of set IDs are specified, then only HTLCs
// associated with that setID will be retrieved.
func fetchAmpSubInvoices(invoiceBucket kvdb.RBucket,
invoiceNum []byte, setIDs ...*SetID) (map[CircuitKey]*InvoiceHTLC, error) {
// If a set of setIDs was specified, then we can skip the cursor and
// just read out exactly what we need.
if len(setIDs) != 0 && setIDs[0] != nil {
return fetchFilteredAmpInvoices(
invoiceBucket, invoiceNum, setIDs...,
)
}
// Otherwise, iterate over all the htlc sets that are prefixed beside
// this invoice in the main invoice bucket.
htlcs := make(map[CircuitKey]*InvoiceHTLC)
err := forEachAMPInvoice(invoiceBucket, invoiceNum, func(key, htlcSet []byte) error {
htlcSetReader := bytes.NewReader(htlcSet)
htlcsBySetID, err := deserializeHtlcs(htlcSetReader)
if err != nil {
return err
}
for key, htlc := range htlcsBySetID {
htlcs[key] = htlc
}
return nil
})
if err != nil {
return nil, err
}
return htlcs, nil
}
// fetchInvoice attempts to read out the relevant state for the invoice as
// specified by the invoice number. If the setID fields are set, then only the
// HTLC information pertaining to those set IDs is returned.
func fetchInvoice(invoiceNum []byte, invoices kvdb.RBucket, setIDs ...*SetID) (Invoice, error) {
invoiceBytes := invoices.Get(invoiceNum)
if invoiceBytes == nil {
return Invoice{}, ErrInvoiceNotFound
}
invoiceReader := bytes.NewReader(invoiceBytes)
invoice, err := deserializeInvoice(invoiceReader)
if err != nil {
return Invoice{}, err
}
// If this is an AMP invoice, then we'll also attempt to read out the
// set of HTLCs that were paid to prior set IDs. However, we'll only do
// this is the invoice didn't already have HTLCs stored in-line.
invoiceIsAMP := invoice.Terms.Features.HasFeature(
lnwire.AMPOptional,
)
switch {
case !invoiceIsAMP:
return invoice, nil
// For AMP invoice that already have HTLCs populated (created before
// recurring invoices), then we don't need to read from the prefix
// keyed section of the bucket.
case invoiceIsAMP && len(invoice.Htlcs) != 0:
return invoice, nil
// If the "zero" setID was specified, then this means that no HTLC data
// should be returned alongside of it.
case invoiceIsAMP && len(setIDs) != 0 && setIDs[0] != nil &&
*setIDs[0] == BlankPayAddr:
return invoice, nil
}
invoice.Htlcs, err = fetchAmpSubInvoices(
invoices, invoiceNum, setIDs...,
)
if err != nil {
return invoice, nil
}
return invoice, nil
}
// fetchInvoiceStateAMP retrieves the state of all the relevant sub-invoice for
// an AMP invoice. This methods only decode the relevant state vs the entire
// invoice.
func fetchInvoiceStateAMP(invoiceNum []byte,
invoices kvdb.RBucket) (AMPInvoiceState, error) {
// Fetch the raw invoice bytes.
invoiceBytes := invoices.Get(invoiceNum)
if invoiceBytes == nil {
return nil, ErrInvoiceNotFound
}
r := bytes.NewReader(invoiceBytes)
var bodyLen int64
err := binary.Read(r, byteOrder, &bodyLen)
if err != nil {
return nil, err
}
// Next, we'll make a new TLV stream that only attempts to decode the
// bytes we actually need.
ampState := make(AMPInvoiceState)
tlvStream, err := tlv.NewStream(
// Invoice AMP state.
tlv.MakeDynamicRecord(
invoiceAmpStateType, &ampState, nil,
ampStateEncoder, ampStateDecoder,
),
)
if err != nil {
return nil, err
}
invoiceReader := io.LimitReader(r, bodyLen)
if err = tlvStream.Decode(invoiceReader); err != nil {
return nil, err
}
return ampState, nil
}
func deserializeInvoice(r io.Reader) (Invoice, error) {
var (
preimageBytes [32]byte
value uint64
cltvDelta uint32
expiry uint64
amtPaid uint64
state uint8
hodlInvoice uint8
creationDateBytes []byte
settleDateBytes []byte
featureBytes []byte
)
var i Invoice
i.AMPState = make(AMPInvoiceState)
tlvStream, err := tlv.NewStream(
// Memo and payreq.
tlv.MakePrimitiveRecord(memoType, &i.Memo),
tlv.MakePrimitiveRecord(payReqType, &i.PaymentRequest),
// Add/settle metadata.
tlv.MakePrimitiveRecord(createTimeType, &creationDateBytes),
tlv.MakePrimitiveRecord(settleTimeType, &settleDateBytes),
tlv.MakePrimitiveRecord(addIndexType, &i.AddIndex),
tlv.MakePrimitiveRecord(settleIndexType, &i.SettleIndex),
// Terms.
tlv.MakePrimitiveRecord(preimageType, &preimageBytes),
tlv.MakePrimitiveRecord(valueType, &value),
tlv.MakePrimitiveRecord(cltvDeltaType, &cltvDelta),
tlv.MakePrimitiveRecord(expiryType, &expiry),
tlv.MakePrimitiveRecord(paymentAddrType, &i.Terms.PaymentAddr),
tlv.MakePrimitiveRecord(featuresType, &featureBytes),
// Invoice state.
tlv.MakePrimitiveRecord(invStateType, &state),
tlv.MakePrimitiveRecord(amtPaidType, &amtPaid),
tlv.MakePrimitiveRecord(hodlInvoiceType, &hodlInvoice),
// Invoice AMP state.
tlv.MakeDynamicRecord(
invoiceAmpStateType, &i.AMPState, nil,
ampStateEncoder, ampStateDecoder,
),
)
if err != nil {
return i, err
}
var bodyLen int64
err = binary.Read(r, byteOrder, &bodyLen)
if err != nil {
return i, err
}
lr := io.LimitReader(r, bodyLen)
if err = tlvStream.Decode(lr); err != nil {
return i, err
}
preimage := lntypes.Preimage(preimageBytes)
if preimage != unknownPreimage {
i.Terms.PaymentPreimage = &preimage
}
i.Terms.Value = lnwire.MilliSatoshi(value)
i.Terms.FinalCltvDelta = int32(cltvDelta)
i.Terms.Expiry = time.Duration(expiry)
i.AmtPaid = lnwire.MilliSatoshi(amtPaid)
i.State = ContractState(state)
if hodlInvoice != 0 {
i.HodlInvoice = true
}
err = i.CreationDate.UnmarshalBinary(creationDateBytes)
if err != nil {
return i, err
}
err = i.SettleDate.UnmarshalBinary(settleDateBytes)
if err != nil {
return i, err
}
rawFeatures := lnwire.NewRawFeatureVector()
err = rawFeatures.DecodeBase256(
bytes.NewReader(featureBytes), len(featureBytes),
)
if err != nil {
return i, err
}
i.Terms.Features = lnwire.NewFeatureVector(
rawFeatures, lnwire.Features,
)
i.Htlcs, err = deserializeHtlcs(r)
return i, err
}
func encodeCircuitKeys(w io.Writer, val interface{}, buf *[8]byte) error {
if v, ok := val.(*map[CircuitKey]struct{}); ok {
// We encode the set of circuit keys as a varint length prefix.
// followed by a series of fixed sized uint8 integers.
numKeys := uint64(len(*v))
if err := tlv.WriteVarInt(w, numKeys, buf); err != nil {
return err
}
for key := range *v {
scidInt := key.ChanID.ToUint64()
if err := tlv.EUint64(w, &scidInt, buf); err != nil {
return err
}
if err := tlv.EUint64(w, &key.HtlcID, buf); err != nil {
return err
}
}
return nil
}
return tlv.NewTypeForEncodingErr(val, "*map[CircuitKey]struct{}")
}
func decodeCircuitKeys(r io.Reader, val interface{}, buf *[8]byte, l uint64) error {
if v, ok := val.(*map[CircuitKey]struct{}); ok {
// First, we'll read out the varint that encodes the number of
// circuit keys encoded.
numKeys, err := tlv.ReadVarInt(r, buf)
if err != nil {
return err
}
// Now that we know how many keys to expect, iterate reading each
// one until we're done.
for i := uint64(0); i < numKeys; i++ {
var (
key CircuitKey
scid uint64
)
if err := tlv.DUint64(r, &scid, buf, 8); err != nil {
return err
}
key.ChanID = lnwire.NewShortChanIDFromInt(scid)
if err := tlv.DUint64(r, &key.HtlcID, buf, 8); err != nil {
return err
}
(*v)[key] = struct{}{}
}
return nil
}
return tlv.NewTypeForDecodingErr(val, "*map[CircuitKey]struct{}", l, l)
}
// ampStateEncoder is a custom TLV encoder for the AMPInvoiceState record.
func ampStateEncoder(w io.Writer, val interface{}, buf *[8]byte) error {
if v, ok := val.(*AMPInvoiceState); ok {
// We'll encode the AMP state as a series of KV pairs on the
// wire with a length prefix.
numRecords := uint64(len(*v))
// First, we'll write out the number of records as a var int.
if err := tlv.WriteVarInt(w, numRecords, buf); err != nil {
return err
}
// With that written out, we'll now encode the entries
// themselves as a sub-TLV record, which includes its _own_
// inner length prefix.
for setID, ampState := range *v {
setID := [32]byte(setID)
ampState := ampState
htlcState := uint8(ampState.State)
settleDateBytes, err := ampState.SettleDate.MarshalBinary()
if err != nil {
return err
}
amtPaid := uint64(ampState.AmtPaid)
var ampStateTlvBytes bytes.Buffer
tlvStream, err := tlv.NewStream(
tlv.MakePrimitiveRecord(
ampStateSetIDType, &setID,
),
tlv.MakePrimitiveRecord(
ampStateHtlcStateType, &htlcState,
),
tlv.MakePrimitiveRecord(
ampStateSettleIndexType, &ampState.SettleIndex,
),
tlv.MakePrimitiveRecord(
ampStateSettleDateType, &settleDateBytes,
),
tlv.MakeDynamicRecord(
ampStateCircuitKeysType,
&ampState.InvoiceKeys,
func() uint64 {
// The record takes 8 bytes to encode the
// set of circuits, 8 bytes for the scid
// for the key, and 8 bytes for the HTLC
// index.
numKeys := uint64(len(ampState.InvoiceKeys))
return tlv.VarIntSize(numKeys) + (numKeys * 16)
},
encodeCircuitKeys, decodeCircuitKeys,
),
tlv.MakePrimitiveRecord(
ampStateAmtPaidType, &amtPaid,
),
)
if err != nil {
return err
}
if err := tlvStream.Encode(&ampStateTlvBytes); err != nil {
return err
}
// We encode the record with a varint length followed by
// the _raw_ TLV bytes.
tlvLen := uint64(len(ampStateTlvBytes.Bytes()))
if err := tlv.WriteVarInt(w, tlvLen, buf); err != nil {
return err
}
if _, err := w.Write(ampStateTlvBytes.Bytes()); err != nil {
return err
}
}
return nil
}
return tlv.NewTypeForEncodingErr(val, "channeldb.AMPInvoiceState")
}
// ampStateDecoder is a custom TLV decoder for the AMPInvoiceState record.
func ampStateDecoder(r io.Reader, val interface{}, buf *[8]byte, l uint64) error {
if v, ok := val.(*AMPInvoiceState); ok {
// First, we'll decode the varint that encodes how many set IDs
// are encoded within the greater map.
numRecords, err := tlv.ReadVarInt(r, buf)
if err != nil {
return err
}
// Now that we know how many records we'll need to read, we can
// iterate and read them all out in series.
for i := uint64(0); i < numRecords; i++ {
// Read out the varint that encodes the size of this inner
// TLV record
stateRecordSize, err := tlv.ReadVarInt(r, buf)
if err != nil {
return err
}
// Using this information, we'll create a new limited
// reader that'll return an EOF once the end has been
// reached so the stream stops consuming bytes.
innerTlvReader := io.LimitedReader{
R: r,
N: int64(stateRecordSize),
}
var (
setID [32]byte
htlcState uint8
settleIndex uint64
settleDateBytes []byte
invoiceKeys = make(map[CircuitKey]struct{})
amtPaid uint64
)
tlvStream, err := tlv.NewStream(
tlv.MakePrimitiveRecord(
ampStateSetIDType, &setID,
),
tlv.MakePrimitiveRecord(
ampStateHtlcStateType, &htlcState,
),
tlv.MakePrimitiveRecord(
ampStateSettleIndexType, &settleIndex,
),
tlv.MakePrimitiveRecord(
ampStateSettleDateType, &settleDateBytes,
),
tlv.MakeDynamicRecord(
ampStateCircuitKeysType,
&invoiceKeys, nil,
encodeCircuitKeys, decodeCircuitKeys,
),
tlv.MakePrimitiveRecord(
ampStateAmtPaidType, &amtPaid,
),
)
if err != nil {
return err
}
if err := tlvStream.Decode(&innerTlvReader); err != nil {
return err
}
var settleDate time.Time
err = settleDate.UnmarshalBinary(settleDateBytes)
if err != nil {
return err
}
(*v)[setID] = InvoiceStateAMP{
State: HtlcState(htlcState),
SettleIndex: settleIndex,
SettleDate: settleDate,
InvoiceKeys: invoiceKeys,
AmtPaid: lnwire.MilliSatoshi(amtPaid),
}
}
return nil
}
return tlv.NewTypeForEncodingErr(val, "channeldb.AMPInvoiceState")
}
// deserializeHtlcs reads a list of invoice htlcs from a reader and returns it
// as a map.
func deserializeHtlcs(r io.Reader) (map[CircuitKey]*InvoiceHTLC, error) {
htlcs := make(map[CircuitKey]*InvoiceHTLC)
for {
// Read the length of the tlv stream for this htlc.
var streamLen int64
if err := binary.Read(r, byteOrder, &streamLen); err != nil {
if err == io.EOF {
break
}
return nil, err
}
// Limit the reader so that it stops at the end of this htlc's
// stream.
htlcReader := io.LimitReader(r, streamLen)
// Decode the contents into the htlc fields.
var (
htlc InvoiceHTLC
key CircuitKey
chanID uint64
state uint8
acceptTime, resolveTime uint64
2019-09-03 12:23:39 +02:00
amt, mppTotalAmt uint64
amp = &record.AMP{}
hash32 = &[32]byte{}
preimage32 = &[32]byte{}
)
tlvStream, err := tlv.NewStream(
tlv.MakePrimitiveRecord(chanIDType, &chanID),
tlv.MakePrimitiveRecord(htlcIDType, &key.HtlcID),
tlv.MakePrimitiveRecord(amtType, &amt),
tlv.MakePrimitiveRecord(
acceptHeightType, &htlc.AcceptHeight,
),
tlv.MakePrimitiveRecord(acceptTimeType, &acceptTime),
tlv.MakePrimitiveRecord(resolveTimeType, &resolveTime),
tlv.MakePrimitiveRecord(expiryHeightType, &htlc.Expiry),
tlv.MakePrimitiveRecord(htlcStateType, &state),
2019-09-03 12:23:39 +02:00
tlv.MakePrimitiveRecord(mppTotalAmtType, &mppTotalAmt),
tlv.MakeDynamicRecord(
htlcAMPType, amp, amp.PayloadSize,
record.AMPEncoder, record.AMPDecoder,
),
tlv.MakePrimitiveRecord(htlcHashType, hash32),
tlv.MakePrimitiveRecord(htlcPreimageType, preimage32),
)
if err != nil {
return nil, err
}
parsedTypes, err := tlvStream.DecodeWithParsedTypes(htlcReader)
if err != nil {
return nil, err
}
if _, ok := parsedTypes[htlcAMPType]; !ok {
amp = nil
}
var preimage *lntypes.Preimage
if _, ok := parsedTypes[htlcPreimageType]; ok {
pimg := lntypes.Preimage(*preimage32)
preimage = &pimg
}
var hash *lntypes.Hash
if _, ok := parsedTypes[htlcHashType]; ok {
h := lntypes.Hash(*hash32)
hash = &h
}
key.ChanID = lnwire.NewShortChanIDFromInt(chanID)
htlc.AcceptTime = getNanoTime(acceptTime)
htlc.ResolveTime = getNanoTime(resolveTime)
htlc.State = HtlcState(state)
htlc.Amt = lnwire.MilliSatoshi(amt)
2019-09-03 12:23:39 +02:00
htlc.MppTotalAmt = lnwire.MilliSatoshi(mppTotalAmt)
if amp != nil && hash != nil {
htlc.AMP = &InvoiceHtlcAMPData{
Record: *amp,
Hash: *hash,
Preimage: preimage,
}
}
// Reconstruct the custom records fields from the parsed types
// map return from the tlv parser.
htlc.CustomRecords = hop.NewCustomRecords(parsedTypes)
htlcs[key] = &htlc
}
return htlcs, nil
}
// copySlice allocates a new slice and copies the source into it.
func copySlice(src []byte) []byte {
dest := make([]byte, len(src))
copy(dest, src)
return dest
}
// copyInvoice makes a deep copy of the supplied invoice.
func copyInvoice(src *Invoice) *Invoice {
dest := Invoice{
Memo: copySlice(src.Memo),
PaymentRequest: copySlice(src.PaymentRequest),
CreationDate: src.CreationDate,
SettleDate: src.SettleDate,
Terms: src.Terms,
AddIndex: src.AddIndex,
SettleIndex: src.SettleIndex,
State: src.State,
AmtPaid: src.AmtPaid,
Htlcs: make(
map[CircuitKey]*InvoiceHTLC, len(src.Htlcs),
),
HodlInvoice: src.HodlInvoice,
}
dest.Terms.Features = src.Terms.Features.Clone()
if src.Terms.PaymentPreimage != nil {
preimage := *src.Terms.PaymentPreimage
dest.Terms.PaymentPreimage = &preimage
}
for k, v := range src.Htlcs {
dest.Htlcs[k] = v.Copy()
}
return &dest
}
// invoiceSetIDKeyLen is the length of the key that's used to store the
// individual HTLCs prefixed by their ID along side the main invoice within the
// invoiceBytes. We use 4 bytes for the invoice number, and 32 bytes for the
// set ID.
const invoiceSetIDKeyLen = 4 + 32
// makeInvoiceSetIDKey returns the prefix key, based on the set ID and invoice
// number where the HTLCs for this setID will be stored udner.
func makeInvoiceSetIDKey(invoiceNum, setID []byte) [invoiceSetIDKeyLen]byte {
// Construct the prefix key we need to obtain the invoice information:
// invoiceNum || setID.
var invoiceSetIDKey [invoiceSetIDKeyLen]byte
copy(invoiceSetIDKey[:], invoiceNum)
copy(invoiceSetIDKey[len(invoiceNum):], setID)
return invoiceSetIDKey
}
// updateAMPInvoices updates the set of AMP invoices in-place. For AMP, rather
// then continually write the invoices to the end of the invoice value, we
// instead write the invoices into a new key preifx that follows the main
// invoice number. This ensures that we don't need to continually decode a
// potentially massive HTLC set, and also allows us to quickly find the HLTCs
// associated with a particular HTLC set.
func updateAMPInvoices(invoiceBucket kvdb.RwBucket, invoiceNum []byte,
htlcsToUpdate map[SetID]map[CircuitKey]*InvoiceHTLC) error {
for setID, htlcSet := range htlcsToUpdate {
// First write out the set of HTLCs including all the relevant TLV
// values.
var b bytes.Buffer
if err := serializeHtlcs(&b, htlcSet); err != nil {
return err
}
// Next store each HTLC in-line, using a prefix based off the
// invoice number.
invoiceSetIDKey := makeInvoiceSetIDKey(invoiceNum, setID[:])
err := invoiceBucket.Put(invoiceSetIDKey[:], b.Bytes())
if err != nil {
return err
}
}
return nil
}
// updateHtlcsAmp takes an invoice, and a new HTLC to be added (along with its
// set ID), and update sthe internal AMP state of an invoice, and also tallies
// the set of HTLCs to be updated on disk.
func updateHtlcsAmp(invoice *Invoice,
updateMap map[SetID]map[CircuitKey]*InvoiceHTLC, htlc *InvoiceHTLC,
setID SetID, circuitKey CircuitKey) {
ampState, ok := invoice.AMPState[setID]
if !ok {
// If an entry for this set ID doesn't already exist, then
// we'll need to create it.
ampState = InvoiceStateAMP{
State: HtlcStateAccepted,
InvoiceKeys: make(map[CircuitKey]struct{}),
}
}
ampState.AmtPaid += htlc.Amt
ampState.InvoiceKeys[circuitKey] = struct{}{}
// Due to the way maps work, we need to read out the value, update it,
// then re-assign it into the map.
invoice.AMPState[setID] = ampState
// Now that we've updated the invoice state, we'll inform the caller of
// the _neitre_ HTLC set they need to write for this new set ID.
if _, ok := updateMap[setID]; !ok {
// If we're just now creating the HTLCs for this set then we'll
// also pull in the existing HTLCs are part of this set, so we
// can write them all to disk together (same value)
updateMap[setID] = invoice.HTLCSet(
(*[32]byte)(&setID), HtlcStateAccepted,
)
}
updateMap[setID][circuitKey] = htlc
}
// cancelHtlcsAmp processes a cancellation of an HTLC that belongs to an AMP
// HTLC set. We'll need to update the meta data in the main invoice, and also
// apply the new update to the update MAP, since all the HTLCs for a given HTLC
// set need to be written in-line with each other.
func cancelHtlcsAmp(invoice *Invoice,
updateMap map[SetID]map[CircuitKey]*InvoiceHTLC, htlc *InvoiceHTLC,
circuitKey CircuitKey) {
setID := htlc.AMP.Record.SetID()
// First, we'll update the state of the entire HTLC set to cancelled.
ampState := invoice.AMPState[setID]
ampState.State = HtlcStateCanceled
ampState.InvoiceKeys[circuitKey] = struct{}{}
ampState.AmtPaid -= htlc.Amt
// With the state update,d we'll set the new value so the struct
// changes are propagated.
invoice.AMPState[setID] = ampState
if _, ok := updateMap[setID]; !ok {
// Only HTLCs in the accepted state, can be cancelled, but we
// also want to merge that with HTLCs that may be canceled as
// well since it can be cancelled one by one.
updateMap[setID] = invoice.HTLCSet(&setID, HtlcStateAccepted)
cancelledHtlcs := invoice.HTLCSet(&setID, HtlcStateCanceled)
for htlcKey, htlc := range cancelledHtlcs {
updateMap[setID][htlcKey] = htlc
}
}
// Finally, include the newly cancelled HTLC in the set of HTLCs we
// need to cancel.
updateMap[setID][circuitKey] = htlc
// We'll only decrement the total amount paid if the invoice was
// already in the accepted state.
if invoice.AmtPaid != 0 {
invoice.AmtPaid -= htlc.Amt
}
}
// settleHtlcsAmp processes a new settle operation on an HTLC set for an AMP
// invoice. We'll update some meta data in the main invoice, and also signal
// that this HTLC set needs to be re-written back to disk.
func settleHtlcsAmp(invoice *Invoice,
settledSetIDs map[SetID]struct{},
updateMap map[SetID]map[CircuitKey]*InvoiceHTLC, htlc *InvoiceHTLC,
circuitKey CircuitKey) {
// First, add the set ID to the set that was settled in this invoice
// update. We'll use this later to update the settle index.
setID := htlc.AMP.Record.SetID()
settledSetIDs[setID] = struct{}{}
// Next update the main AMP meta-data to indicate that this HTLC set
// has been fully settled.
ampState := invoice.AMPState[setID]
ampState.State = HtlcStateSettled
ampState.InvoiceKeys[circuitKey] = struct{}{}
invoice.AMPState[setID] = ampState
// Finally, we'll add this to the set of HTLCs that need to be updated.
if _, ok := updateMap[setID]; !ok {
updateMap[setID] = make(map[CircuitKey]*InvoiceHTLC)
}
updateMap[setID][circuitKey] = htlc
}
// updateInvoice fetches the invoice, obtains the update descriptor from the
// callback and applies the updates in a single db transaction.
func (d *DB) updateInvoice(hash *lntypes.Hash, refSetID *SetID, invoices,
settleIndex, setIDIndex kvdb.RwBucket, invoiceNum []byte,
callback InvoiceUpdateCallback) (*Invoice, error) {
// If the set ID is non-nil, then we'll use that to filter out the
// HTLCs for AMP invoice so we don't need to read them all out to
// satisfy the invoice callback below. If it's nil, then we pass in the
// zero set ID which means no HTLCs will be read out.
var invSetID SetID
if refSetID != nil {
invSetID = *refSetID
}
invoice, err := fetchInvoice(invoiceNum, invoices, &invSetID)
if err != nil {
return nil, err
}
// Create deep copy to prevent any accidental modification in the
// callback.
invoiceCopy := copyInvoice(&invoice)
// Call the callback and obtain the update descriptor.
update, err := callback(invoiceCopy)
if err != nil {
return &invoice, err
}
// If there is nothing to update, return early.
if update == nil {
return &invoice, nil
}
var (
newState = invoice.State
setID *[32]byte
)
// We can either get the set ID from the main state update (if the
// state is changing), or via the hint passed in returned by the update
// call back.
if update.State != nil {
setID = update.State.SetID
newState = update.State.NewState
} else if update.SetID != nil {
// When we go to cancel HTLCs, there's no new state, but the
// set of HTLCs to be cancelled along with the setID affected
// will be passed in.
setID = (*[32]byte)(update.SetID)
}
now := d.clock.Now()
invoices: replay awareness Previously the invoice registry wasn't aware of replayed htlcs. This was dealt with by keeping the invoice accept/settle logic idempotent, so that a replay wouldn't have an effect. This mechanism has two limitations: 1. No accurate tracking of the total amount paid to an invoice. The total amount couldn't just be increased with every htlc received, because it could be a replay which would lead to counting the htlc amount multiple times. Therefore the total amount was set to the amount of the first htlc that was received, even though there may have been multiple htlcs paying to the invoice. 2. Impossible to check htlc expiry consistently for hodl invoices. When an htlc is new, its expiry needs to be checked against the invoice cltv delta. But for a replay, that check must be skipped. The htlc was accepted in time, the invoice was moved to the accepted state and a replay some blocks later shouldn't lead to that htlc being cancelled. Because the invoice registry couldn't recognize replays, it stopped checking htlc expiry heights when the invoice reached the accepted state. This prevents hold htlcs from being cancelled after a restart. But unfortunately this also caused additional htlcs to be accepted on an already accepted invoice without their expiry being checked. In this commit, the invoice registry starts to persistently track htlcs so that replays can be recognized. For replays, an htlc resolution action is returned early. This fixes both limitations mentioned above.
2019-08-09 15:09:57 +02:00
invoiceIsAMP := invoiceCopy.Terms.Features.HasFeature(
lnwire.AMPOptional,
)
// Process add actions from update descriptor.
htlcsAmpUpdate := make(map[SetID]map[CircuitKey]*InvoiceHTLC)
for key, htlcUpdate := range update.AddHtlcs {
if _, exists := invoice.Htlcs[key]; exists {
return nil, fmt.Errorf("duplicate add of htlc %v", key)
invoices: replay awareness Previously the invoice registry wasn't aware of replayed htlcs. This was dealt with by keeping the invoice accept/settle logic idempotent, so that a replay wouldn't have an effect. This mechanism has two limitations: 1. No accurate tracking of the total amount paid to an invoice. The total amount couldn't just be increased with every htlc received, because it could be a replay which would lead to counting the htlc amount multiple times. Therefore the total amount was set to the amount of the first htlc that was received, even though there may have been multiple htlcs paying to the invoice. 2. Impossible to check htlc expiry consistently for hodl invoices. When an htlc is new, its expiry needs to be checked against the invoice cltv delta. But for a replay, that check must be skipped. The htlc was accepted in time, the invoice was moved to the accepted state and a replay some blocks later shouldn't lead to that htlc being cancelled. Because the invoice registry couldn't recognize replays, it stopped checking htlc expiry heights when the invoice reached the accepted state. This prevents hold htlcs from being cancelled after a restart. But unfortunately this also caused additional htlcs to be accepted on an already accepted invoice without their expiry being checked. In this commit, the invoice registry starts to persistently track htlcs so that replays can be recognized. For replays, an htlc resolution action is returned early. This fixes both limitations mentioned above.
2019-08-09 15:09:57 +02:00
}
// Force caller to supply htlc without custom records in a
// consistent way.
if htlcUpdate.CustomRecords == nil {
return nil, errors.New("nil custom records map")
}
// If a newly added HTLC has an associated set id, use it to
// index this invoice in the set id index. An error is returned
// if we find the index already points to a different invoice.
var setID [32]byte
if htlcUpdate.AMP != nil {
setID = htlcUpdate.AMP.Record.SetID()
setIDInvNum := setIDIndex.Get(setID[:])
if setIDInvNum == nil {
err = setIDIndex.Put(setID[:], invoiceNum)
if err != nil {
return nil, err
}
} else if !bytes.Equal(setIDInvNum, invoiceNum) {
return nil, ErrDuplicateSetID{setID: setID}
}
}
htlc := &InvoiceHTLC{
Amt: htlcUpdate.Amt,
2019-09-03 12:23:39 +02:00
MppTotalAmt: htlcUpdate.MppTotalAmt,
Expiry: htlcUpdate.Expiry,
AcceptHeight: uint32(htlcUpdate.AcceptHeight),
AcceptTime: now,
State: HtlcStateAccepted,
CustomRecords: htlcUpdate.CustomRecords,
AMP: htlcUpdate.AMP.Copy(),
invoices: replay awareness Previously the invoice registry wasn't aware of replayed htlcs. This was dealt with by keeping the invoice accept/settle logic idempotent, so that a replay wouldn't have an effect. This mechanism has two limitations: 1. No accurate tracking of the total amount paid to an invoice. The total amount couldn't just be increased with every htlc received, because it could be a replay which would lead to counting the htlc amount multiple times. Therefore the total amount was set to the amount of the first htlc that was received, even though there may have been multiple htlcs paying to the invoice. 2. Impossible to check htlc expiry consistently for hodl invoices. When an htlc is new, its expiry needs to be checked against the invoice cltv delta. But for a replay, that check must be skipped. The htlc was accepted in time, the invoice was moved to the accepted state and a replay some blocks later shouldn't lead to that htlc being cancelled. Because the invoice registry couldn't recognize replays, it stopped checking htlc expiry heights when the invoice reached the accepted state. This prevents hold htlcs from being cancelled after a restart. But unfortunately this also caused additional htlcs to be accepted on an already accepted invoice without their expiry being checked. In this commit, the invoice registry starts to persistently track htlcs so that replays can be recognized. For replays, an htlc resolution action is returned early. This fixes both limitations mentioned above.
2019-08-09 15:09:57 +02:00
}
invoice.Htlcs[key] = htlc
// Collect the set of new HTLCs so we can write them properly
// below, but only if this is an AMP invoice.
if invoiceIsAMP {
updateHtlcsAmp(
&invoice, htlcsAmpUpdate, htlc, setID, key,
)
}
invoices: replay awareness Previously the invoice registry wasn't aware of replayed htlcs. This was dealt with by keeping the invoice accept/settle logic idempotent, so that a replay wouldn't have an effect. This mechanism has two limitations: 1. No accurate tracking of the total amount paid to an invoice. The total amount couldn't just be increased with every htlc received, because it could be a replay which would lead to counting the htlc amount multiple times. Therefore the total amount was set to the amount of the first htlc that was received, even though there may have been multiple htlcs paying to the invoice. 2. Impossible to check htlc expiry consistently for hodl invoices. When an htlc is new, its expiry needs to be checked against the invoice cltv delta. But for a replay, that check must be skipped. The htlc was accepted in time, the invoice was moved to the accepted state and a replay some blocks later shouldn't lead to that htlc being cancelled. Because the invoice registry couldn't recognize replays, it stopped checking htlc expiry heights when the invoice reached the accepted state. This prevents hold htlcs from being cancelled after a restart. But unfortunately this also caused additional htlcs to be accepted on an already accepted invoice without their expiry being checked. In this commit, the invoice registry starts to persistently track htlcs so that replays can be recognized. For replays, an htlc resolution action is returned early. This fixes both limitations mentioned above.
2019-08-09 15:09:57 +02:00
}
// Process cancel actions from update descriptor.
cancelHtlcs := update.CancelHtlcs
for key, htlc := range invoice.Htlcs {
htlc := htlc
// Check whether this htlc needs to be canceled. If it does,
// update the htlc state to Canceled.
_, cancel := cancelHtlcs[key]
if !cancel {
continue
}
// Consistency check to verify that there is no overlap between
// the add and cancel sets.
if _, added := update.AddHtlcs[key]; added {
return nil, fmt.Errorf("added htlc %v canceled", key)
}
invoices: replay awareness Previously the invoice registry wasn't aware of replayed htlcs. This was dealt with by keeping the invoice accept/settle logic idempotent, so that a replay wouldn't have an effect. This mechanism has two limitations: 1. No accurate tracking of the total amount paid to an invoice. The total amount couldn't just be increased with every htlc received, because it could be a replay which would lead to counting the htlc amount multiple times. Therefore the total amount was set to the amount of the first htlc that was received, even though there may have been multiple htlcs paying to the invoice. 2. Impossible to check htlc expiry consistently for hodl invoices. When an htlc is new, its expiry needs to be checked against the invoice cltv delta. But for a replay, that check must be skipped. The htlc was accepted in time, the invoice was moved to the accepted state and a replay some blocks later shouldn't lead to that htlc being cancelled. Because the invoice registry couldn't recognize replays, it stopped checking htlc expiry heights when the invoice reached the accepted state. This prevents hold htlcs from being cancelled after a restart. But unfortunately this also caused additional htlcs to be accepted on an already accepted invoice without their expiry being checked. In this commit, the invoice registry starts to persistently track htlcs so that replays can be recognized. For replays, an htlc resolution action is returned early. This fixes both limitations mentioned above.
2019-08-09 15:09:57 +02:00
err := cancelSingleHtlc(now, htlc, newState)
if err != nil {
return nil, err
}
// Delete processed cancel action, so that we can check later
// that there are no actions left.
delete(cancelHtlcs, key)
// Tally this into the set of HTLCs that need to be updated on
// disk, but once again, only if this is an AMP invoice.
if invoiceIsAMP {
cancelHtlcsAmp(
&invoice, htlcsAmpUpdate, htlc, key,
)
}
}
// Verify that we didn't get an action for htlcs that are not present on
// the invoice.
if len(cancelHtlcs) > 0 {
return nil, errors.New("cancel action on non-existent htlc(s)")
}
// At this point, the set of accepted HTLCs should be fully
// populated with added HTLCs or removed of canceled ones. Update
// invoice state if the update descriptor indicates an invoice state
// change, which depends on having an accurate view of the accepted
// HTLCs.
if update.State != nil {
newState, err := updateInvoiceState(
&invoice, hash, *update.State,
)
if err != nil {
return nil, err
}
// If this isn't an AMP invoice, then we'll go ahead and update
// the invoice state directly here. For AMP invoices, we
// instead will keep the top-level invoice open, and instead
// update the state of each _htlc set_ instead. However, we'll
// allow the invoice to transition to the cancelled state
// regardless.
if !invoiceIsAMP || *newState == ContractCanceled {
invoice.State = *newState
}
// If this is a non-AMP invoice, then the state can eventually
// go to ContractSettled, so we pass in nil value as part of
// setSettleMetaFields.
if !invoiceIsAMP && update.State.NewState == ContractSettled {
err := setSettleMetaFields(
settleIndex, invoiceNum, &invoice, now, nil,
)
if err != nil {
return nil, err
}
invoices: replay awareness Previously the invoice registry wasn't aware of replayed htlcs. This was dealt with by keeping the invoice accept/settle logic idempotent, so that a replay wouldn't have an effect. This mechanism has two limitations: 1. No accurate tracking of the total amount paid to an invoice. The total amount couldn't just be increased with every htlc received, because it could be a replay which would lead to counting the htlc amount multiple times. Therefore the total amount was set to the amount of the first htlc that was received, even though there may have been multiple htlcs paying to the invoice. 2. Impossible to check htlc expiry consistently for hodl invoices. When an htlc is new, its expiry needs to be checked against the invoice cltv delta. But for a replay, that check must be skipped. The htlc was accepted in time, the invoice was moved to the accepted state and a replay some blocks later shouldn't lead to that htlc being cancelled. Because the invoice registry couldn't recognize replays, it stopped checking htlc expiry heights when the invoice reached the accepted state. This prevents hold htlcs from being cancelled after a restart. But unfortunately this also caused additional htlcs to be accepted on an already accepted invoice without their expiry being checked. In this commit, the invoice registry starts to persistently track htlcs so that replays can be recognized. For replays, an htlc resolution action is returned early. This fixes both limitations mentioned above.
2019-08-09 15:09:57 +02:00
}
}
invoices: replay awareness Previously the invoice registry wasn't aware of replayed htlcs. This was dealt with by keeping the invoice accept/settle logic idempotent, so that a replay wouldn't have an effect. This mechanism has two limitations: 1. No accurate tracking of the total amount paid to an invoice. The total amount couldn't just be increased with every htlc received, because it could be a replay which would lead to counting the htlc amount multiple times. Therefore the total amount was set to the amount of the first htlc that was received, even though there may have been multiple htlcs paying to the invoice. 2. Impossible to check htlc expiry consistently for hodl invoices. When an htlc is new, its expiry needs to be checked against the invoice cltv delta. But for a replay, that check must be skipped. The htlc was accepted in time, the invoice was moved to the accepted state and a replay some blocks later shouldn't lead to that htlc being cancelled. Because the invoice registry couldn't recognize replays, it stopped checking htlc expiry heights when the invoice reached the accepted state. This prevents hold htlcs from being cancelled after a restart. But unfortunately this also caused additional htlcs to be accepted on an already accepted invoice without their expiry being checked. In this commit, the invoice registry starts to persistently track htlcs so that replays can be recognized. For replays, an htlc resolution action is returned early. This fixes both limitations mentioned above.
2019-08-09 15:09:57 +02:00
// The set of HTLC pre-images will only be set if we were actually able
// to reconstruct all the AMP pre-images.
var settleEligibleAMP bool
if update.State != nil {
settleEligibleAMP = len(update.State.HTLCPreimages) != 0
}
// With any invoice level state transitions recorded, we'll now
// finalize the process by updating the state transitions for
// individual HTLCs
var (
settledSetIDs = make(map[SetID]struct{})
amtPaid lnwire.MilliSatoshi
)
for key, htlc := range invoice.Htlcs {
// Set the HTLC preimage for any AMP HTLCs.
if setID != nil && update.State != nil {
preimage, ok := update.State.HTLCPreimages[key]
switch {
// If we don't already have a preimage for this HTLC, we
// can set it now.
case ok && htlc.AMP.Preimage == nil:
htlc.AMP.Preimage = &preimage
// Otherwise, prevent over-writing an existing
// preimage. Ignore the case where the preimage is
// identical.
case ok && *htlc.AMP.Preimage != preimage:
return nil, ErrHTLCPreimageAlreadyExists
}
}
// The invoice state may have changed and this could have
// implications for the states of the individual htlcs. Align
// the htlc state with the current invoice state.
//
// If we have all the pre-images for an AMP invoice, then we'll
// act as if we're able to settle the entire invoice. We need
// to do this since it's possible for us to settle AMP invoices
// while the contract state (on disk) is still in the accept
// state.
htlcContextState := invoice.State
if settleEligibleAMP {
htlcContextState = ContractSettled
}
htlcSettled, err := updateHtlc(
now, htlc, htlcContextState, setID,
)
if err != nil {
return nil, err
}
// If the HTLC has being settled for the first time, and this
// is an AMP invoice, then we'll need to update some additional
// meta data state.
if htlcSettled && invoiceIsAMP {
settleHtlcsAmp(
&invoice, settledSetIDs, htlcsAmpUpdate, htlc, key,
)
}
invoiceStateReady := (htlc.State == HtlcStateAccepted ||
htlc.State == HtlcStateSettled)
if !invoiceIsAMP {
// Update the running amount paid to this invoice. We
// don't include accepted htlcs when the invoice is
// still open.
if invoice.State != ContractOpen && invoiceStateReady {
amtPaid += htlc.Amt
}
} else {
// For AMP invoices, since we won't always be reading
// out the total invoice set each time, we'll instead
// accumulate newly added invoices to the total amount
// paid.
if _, ok := update.AddHtlcs[key]; !ok {
continue
}
// Update the running amount paid to this invoice. AMP
// invoices never go to the settled state, so if it's
// open, then we tally the HTLC.
if invoice.State == ContractOpen && invoiceStateReady {
amtPaid += htlc.Amt
}
}
}
// For non-AMP invoices we recalculate the amount paid from scratch
// each time, while for AMP invoices, we'll accumulate only based on
// newly added HTLCs.
if !invoiceIsAMP {
invoice.AmtPaid = amtPaid
} else {
invoice.AmtPaid += amtPaid
}
// As we don't update the settle index above for AMP invoices, we'll do
// it here for each sub-AMP invoice that was settled.
for settledSetID := range settledSetIDs {
settledSetID := settledSetID
err := setSettleMetaFields(
settleIndex, invoiceNum, &invoice, now, &settledSetID,
)
if err != nil {
return nil, err
}
}
// Reserialize and update invoice.
var buf bytes.Buffer
if err := serializeInvoice(&buf, &invoice); err != nil {
return nil, err
}
if err := invoices.Put(invoiceNum[:], buf.Bytes()); err != nil {
return nil, err
}
// If this is an AMP invoice, then we'll actually store the rest of the
// HTLCs in-line with the invoice, using the invoice ID as a prefix,
// and the AMP key as a suffix: invoiceNum || setID.
if invoiceIsAMP {
err := updateAMPInvoices(invoices, invoiceNum, htlcsAmpUpdate)
if err != nil {
return nil, err
}
}
return &invoice, nil
}
// updateInvoiceState validates and processes an invoice state update. The new
// state to transition to is returned, so the caller is able to select exactly
// how the invoice state is updated.
func updateInvoiceState(invoice *Invoice, hash *lntypes.Hash,
update InvoiceStateUpdateDesc) (*ContractState, error) {
// Returning to open is never allowed from any state.
if update.NewState == ContractOpen {
return nil, ErrInvoiceCannotOpen
}
switch invoice.State {
// Once a contract is accepted, we can only transition to settled or
// canceled. Forbid transitioning back into this state. Otherwise this
// state is identical to ContractOpen, so we fallthrough to apply the
// same checks that we apply to open invoices.
case ContractAccepted:
if update.NewState == ContractAccepted {
return nil, ErrInvoiceCannotAccept
}
fallthrough
// If a contract is open, permit a state transition to accepted, settled
// or canceled. The only restriction is on transitioning to settled
// where we ensure the preimage is valid.
case ContractOpen:
if update.NewState == ContractCanceled {
return &update.NewState, nil
}
// Sanity check that the user isn't trying to settle or accept a
// non-existent HTLC set.
if len(invoice.HTLCSet(update.SetID, HtlcStateAccepted)) == 0 {
return nil, ErrEmptyHTLCSet
}
// For AMP invoices, there are no invoice-level preimage checks.
// However, we still sanity check that we aren't trying to
// settle an AMP invoice with a preimage.
if update.SetID != nil {
if update.Preimage != nil {
return nil, errors.New("AMP set cannot have " +
"preimage")
}
return &update.NewState, nil
}
switch {
// If an invoice-level preimage was supplied, but the InvoiceRef
// doesn't specify a hash (e.g. AMP invoices) we fail.
case update.Preimage != nil && hash == nil:
return nil, ErrUnexpectedInvoicePreimage
// Validate the supplied preimage for non-AMP invoices.
case update.Preimage != nil:
if update.Preimage.Hash() != *hash {
return nil, ErrInvoicePreimageMismatch
}
invoice.Terms.PaymentPreimage = update.Preimage
// Permit non-AMP invoices to be accepted without knowing the
// preimage. When trying to settle we'll have to pass through
// the above check in order to not hit the one below.
case update.NewState == ContractAccepted:
// Fail if we still don't have a preimage when transitioning to
// settle the non-AMP invoice.
case update.NewState == ContractSettled &&
invoice.Terms.PaymentPreimage == nil:
return nil, errors.New("unknown preimage")
}
return &update.NewState, nil
// Once settled, we are in a terminal state.
case ContractSettled:
return nil, ErrInvoiceAlreadySettled
// Once canceled, we are in a terminal state.
case ContractCanceled:
return nil, ErrInvoiceAlreadyCanceled
default:
return nil, errors.New("unknown state transition")
}
}
// cancelSingleHtlc validates cancelation of a single htlc and update its state.
func cancelSingleHtlc(resolveTime time.Time, htlc *InvoiceHTLC,
invState ContractState) error {
// It is only possible to cancel individual htlcs on an open invoice.
if invState != ContractOpen {
return fmt.Errorf("htlc canceled on invoice in "+
"state %v", invState)
}
// It is only possible if the htlc is still pending.
if htlc.State != HtlcStateAccepted {
return fmt.Errorf("htlc canceled in state %v",
htlc.State)
}
htlc.State = HtlcStateCanceled
htlc.ResolveTime = resolveTime
return nil
}
// updateHtlc aligns the state of an htlc with the given invoice state. A
// boolean is returned if the HTLC was settled.
func updateHtlc(resolveTime time.Time, htlc *InvoiceHTLC,
invState ContractState, setID *[32]byte) (bool, error) {
trySettle := func(persist bool) (bool, error) {
if htlc.State != HtlcStateAccepted {
return false, nil
}
// Settle the HTLC if it matches the settled set id. If
// there're other HTLCs with distinct setIDs, then we'll leave
// them, as they may eventually be settled as we permit
// multiple settles to a single pay_addr for AMP.
var htlcState HtlcState
if htlc.IsInHTLCSet(setID) {
// Non-AMP HTLCs can be settled immediately since we
// already know the preimage is valid due to checks at
// the invoice level. For AMP HTLCs, verify that the
// per-HTLC preimage-hash pair is valid.
switch {
// Non-AMP HTLCs can be settle immediately since we
// already know the preimage is valid due to checks at
// the invoice level.
case setID == nil:
// At this point, the setID is non-nil, meaning this is
// an AMP HTLC. We know that htlc.AMP cannot be nil,
// otherwise IsInHTLCSet would have returned false.
//
// Fail if an accepted AMP HTLC has no preimage.
case htlc.AMP.Preimage == nil:
return false, ErrHTLCPreimageMissing
// Fail if the accepted AMP HTLC has an invalid
// preimage.
case !htlc.AMP.Preimage.Matches(htlc.AMP.Hash):
return false, ErrHTLCPreimageMismatch
}
htlcState = HtlcStateSettled
}
// Only persist the changes if the invoice is moving to the
// settled state, and we're actually updating the state to
// settled.
if persist && htlcState == HtlcStateSettled {
htlc.State = htlcState
htlc.ResolveTime = resolveTime
}
return persist && htlcState == HtlcStateSettled, nil
}
if invState == ContractSettled {
// Check that we can settle the HTLCs. For legacy and MPP HTLCs
// this will be a NOP, but for AMP HTLCs this asserts that we
// have a valid hash/preimage pair. Passing true permits the
// method to update the HTLC to HtlcStateSettled.
return trySettle(true)
}
// We should never find a settled HTLC on an invoice that isn't in
// ContractSettled.
if htlc.State == HtlcStateSettled {
return false, ErrHTLCAlreadySettled
}
switch invState {
case ContractCanceled:
if htlc.State == HtlcStateAccepted {
htlc.State = HtlcStateCanceled
htlc.ResolveTime = resolveTime
}
return false, nil
// TODO(roasbeef): never fully passed thru now?
case ContractAccepted:
// Check that we can settle the HTLCs. For legacy and MPP HTLCs
// this will be a NOP, but for AMP HTLCs this asserts that we
// have a valid hash/preimage pair. Passing false prevents the
// method from putting the HTLC in HtlcStateSettled, leaving it
// in HtlcStateAccepted.
return trySettle(false)
case ContractOpen:
return false, nil
default:
return false, errors.New("unknown state transition")
}
}
// setSettleMetaFields updates the metadata associated with settlement of an
// invoice. If a non-nil setID is passed in, then the value will be append to
// the invoice number as well, in order to allow us to detect repeated payments
// to the same AMP invoices "across time".
func setSettleMetaFields(settleIndex kvdb.RwBucket, invoiceNum []byte,
invoice *Invoice, now time.Time, setID *SetID) error {
// Now that we know the invoice hasn't already been settled, we'll
// update the settle index so we can place this settle event in the
// proper location within our time series.
nextSettleSeqNo, err := settleIndex.NextSequence()
if err != nil {
return err
}
// Make a new byte array on the stack that can potentially store the 4
// byte invoice number along w/ the 32 byte set ID. We capture valueLen
// here which is the number of bytes copied so we can only store the 4
// bytes if this is a non-AMP invoice.
var indexKey [invoiceSetIDKeyLen]byte
valueLen := copy(indexKey[:], invoiceNum)
if setID != nil {
valueLen += copy(indexKey[valueLen:], setID[:])
}
var seqNoBytes [8]byte
byteOrder.PutUint64(seqNoBytes[:], nextSettleSeqNo)
if err := settleIndex.Put(seqNoBytes[:], indexKey[:valueLen]); err != nil {
return err
}
// If the setID is nil, then this means that this is a non-AMP settle,
// so we'll update the invoice settle index directly.
if setID == nil {
invoice.SettleDate = now
invoice.SettleIndex = nextSettleSeqNo
} else {
// If the set ID isn't blank, we'll update the AMP state map
// which tracks when each of the setIDs associated with a given
// AMP invoice are settled.
ampState := invoice.AMPState[*setID]
ampState.SettleDate = now
ampState.SettleIndex = nextSettleSeqNo
invoice.AMPState[*setID] = ampState
}
return nil
}
// delAMPInvoices attempts to delete all the "sub" invoices associated with a
// greater AMP invoices. We do this by deleting the set of keys that share the
// invoice number as a prefix.
func delAMPInvoices(invoiceNum []byte, invoiceBucket kvdb.RwBucket) error {
// Since it isn't safe to delete using an active cursor, we'll use the
// cursor simply to collect the set of keys we need to delete, _then_
// delete them in another pass.
var keysToDel [][]byte
err := forEachAMPInvoice(invoiceBucket, invoiceNum, func(cursorKey, v []byte) error {
keysToDel = append(keysToDel, cursorKey)
return nil
})
if err != nil {
return err
}
// In this next phase, we'll then delete all the relevant invoices.
for _, keyToDel := range keysToDel {
if err := invoiceBucket.Delete(keyToDel); err != nil {
return err
}
}
return nil
}
// delAMPSettleIndex removes all the entries in the settle index associated
// with a given AMP invoice.
func delAMPSettleIndex(invoiceNum []byte, invoices, settleIndex kvdb.RwBucket) error {
// First, we need to grab the AMP invoice state to see if there's
// anything that we even need to delete.
ampState, err := fetchInvoiceStateAMP(invoiceNum, invoices)
if err != nil {
return err
}
// If there's no AMP state at all (non-AMP invoice), then we can return early.
if len(ampState) == 0 {
return nil
}
// Otherwise, we'll need to iterate and delete each settle index within
// the set of returned entries.
var settleIndexKey [8]byte
for _, subState := range ampState {
byteOrder.PutUint64(
settleIndexKey[:], subState.SettleIndex,
)
if err := settleIndex.Delete(settleIndexKey[:]); err != nil {
return err
}
}
return nil
}
// InvoiceDeleteRef holds a reference to an invoice to be deleted.
type InvoiceDeleteRef struct {
// PayHash is the payment hash of the target invoice. All invoices are
// currently indexed by payment hash.
PayHash lntypes.Hash
// PayAddr is the payment addr of the target invoice. Newer invoices
// (0.11 and up) are indexed by payment address in addition to payment
// hash, but pre 0.8 invoices do not have one at all.
PayAddr *[32]byte
// AddIndex is the add index of the invoice.
AddIndex uint64
// SettleIndex is the settle index of the invoice.
SettleIndex uint64
}
// DeleteInvoice attempts to delete the passed invoices from the database in
// one transaction. The passed delete references hold all keys required to
// delete the invoices without also needing to deserialze them.
func (d *DB) DeleteInvoice(invoicesToDelete []InvoiceDeleteRef) error {
err := kvdb.Update(d, func(tx kvdb.RwTx) error {
invoices := tx.ReadWriteBucket(invoiceBucket)
if invoices == nil {
return ErrNoInvoicesCreated
}
invoiceIndex := invoices.NestedReadWriteBucket(
invoiceIndexBucket,
)
if invoiceIndex == nil {
return ErrNoInvoicesCreated
}
invoiceAddIndex := invoices.NestedReadWriteBucket(
addIndexBucket,
)
if invoiceAddIndex == nil {
return ErrNoInvoicesCreated
}
// settleIndex can be nil, as the bucket is created lazily
// when the first invoice is settled.
settleIndex := invoices.NestedReadWriteBucket(settleIndexBucket)
payAddrIndex := tx.ReadWriteBucket(payAddrIndexBucket)
for _, ref := range invoicesToDelete {
// Fetch the invoice key for using it to check for
// consistency and also to delete from the invoice index.
invoiceKey := invoiceIndex.Get(ref.PayHash[:])
if invoiceKey == nil {
return ErrInvoiceNotFound
}
err := invoiceIndex.Delete(ref.PayHash[:])
if err != nil {
return err
}
// Delete payment address index reference if there's a
// valid payment address passed.
if ref.PayAddr != nil {
// To ensure consistency check that the already
// fetched invoice key matches the one in the
// payment address index.
key := payAddrIndex.Get(ref.PayAddr[:])
if bytes.Equal(key, invoiceKey) {
// Delete from the payment address index.
// Note that since the payment address
// index has been introduced with an
// empty migration it may be possible
// that the index doesn't have an entry
// for this invoice.
// ref: https://github.com/lightningnetwork/lnd/pull/4285/commits/cbf71b5452fa1d3036a43309e490787c5f7f08dc#r426368127
if err := payAddrIndex.Delete(
ref.PayAddr[:],
); err != nil {
return err
}
}
}
var addIndexKey [8]byte
byteOrder.PutUint64(addIndexKey[:], ref.AddIndex)
// To ensure consistency check that the key stored in
// the add index also matches the previously fetched
// invoice key.
key := invoiceAddIndex.Get(addIndexKey[:])
if !bytes.Equal(key, invoiceKey) {
return fmt.Errorf("unknown invoice " +
"in add index")
}
// Remove from the add index.
err = invoiceAddIndex.Delete(addIndexKey[:])
if err != nil {
return err
}
// Remove from the settle index if available and
// if the invoice is settled.
if settleIndex != nil && ref.SettleIndex > 0 {
var settleIndexKey [8]byte
byteOrder.PutUint64(
settleIndexKey[:], ref.SettleIndex,
)
// To ensure consistency check that the already
// fetched invoice key matches the one in the
// settle index
key := settleIndex.Get(settleIndexKey[:])
if !bytes.Equal(key, invoiceKey) {
return fmt.Errorf("unknown invoice " +
"in settle index")
}
err = settleIndex.Delete(settleIndexKey[:])
if err != nil {
return err
}
}
// In addition to deleting the main invoice state, if
// this is an AMP invoice, then we'll also need to
// delete the set HTLC set stored as a key prefix. For
// non-AMP invoices, this'll be a noop.
err = delAMPSettleIndex(
invoiceKey, invoices, settleIndex,
)
if err != nil {
return err
}
err = delAMPInvoices(invoiceKey, invoices)
if err != nil {
return err
}
// Finally remove the serialized invoice from the
// invoice bucket.
err = invoices.Delete(invoiceKey)
if err != nil {
return err
}
}
return nil
}, func() {})
return err
}