lnd/lnwire/query_short_chan_ids.go

372 lines
12 KiB
Go
Raw Normal View History

package lnwire
import (
"bytes"
"compress/zlib"
"fmt"
"io"
"sort"
"sync"
"github.com/btcsuite/btcd/chaincfg/chainhash"
)
// ShortChanIDEncoding is an enum-like type that represents exactly how a set
// of short channel ID's is encoded on the wire. The set of encodings allows us
// to take advantage of the structure of a list of short channel ID's to
// achieving a high degree of compression.
type ShortChanIDEncoding uint8
const (
// EncodingSortedPlain signals that the set of short channel ID's is
// encoded using the regular encoding, in a sorted order.
EncodingSortedPlain ShortChanIDEncoding = 0
// EncodingSortedZlib signals that the set of short channel ID's is
// encoded by first sorting the set of channel ID's, as then
// compressing them using zlib.
EncodingSortedZlib ShortChanIDEncoding = 1
)
const (
// maxZlibBufSize is the max number of bytes that we'll accept from a
// zlib decoding instance. We do this in order to limit the total
// amount of memory allocated during a decoding instance.
maxZlibBufSize = 67413630
)
// zlibDecodeMtx is a package level mutex that we'll use in order to ensure
// that we'll only attempt a single zlib decoding instance at a time. This
// allows us to also further bound our memory usage.
var zlibDecodeMtx sync.Mutex
// ErrUnknownShortChanIDEncoding is a parametrized error that indicates that we
// came across an unknown short channel ID encoding, and therefore were unable
// to continue parsing.
func ErrUnknownShortChanIDEncoding(encoding ShortChanIDEncoding) error {
return fmt.Errorf("unknown short chan id encoding: %v", encoding)
}
// QueryShortChanIDs is a message that allows the sender to query a set of
// channel announcement and channel update messages that correspond to the set
// of encoded short channel ID's. The encoding of the short channel ID's is
// detailed in the query message ensuring that the receiver knows how to
// properly decode each encode short channel ID which may be encoded using a
// compression format. The receiver should respond with a series of channel
// announcement and channel updates, finally sending a ReplyShortChanIDsEnd
// message.
type QueryShortChanIDs struct {
// ChainHash denotes the target chain that we're querying for the
// channel channel ID's of.
ChainHash chainhash.Hash
// EncodingType is a signal to the receiver of the message that
// indicates exactly how the set of short channel ID's that follow have
// been encoded.
EncodingType ShortChanIDEncoding
// ShortChanIDs is a slice of decoded short channel ID's.
ShortChanIDs []ShortChannelID
}
// NewQueryShortChanIDs creates a new QueryShortChanIDs message.
func NewQueryShortChanIDs(h chainhash.Hash, e ShortChanIDEncoding,
s []ShortChannelID) *QueryShortChanIDs {
return &QueryShortChanIDs{
ChainHash: h,
EncodingType: e,
ShortChanIDs: s,
}
}
// A compile time check to ensure QueryShortChanIDs implements the
// lnwire.Message interface.
var _ Message = (*QueryShortChanIDs)(nil)
// Decode deserializes a serialized QueryShortChanIDs message stored in the
// passed io.Reader observing the specified protocol version.
//
// This is part of the lnwire.Message interface.
func (q *QueryShortChanIDs) Decode(r io.Reader, pver uint32) error {
err := ReadElements(r, q.ChainHash[:])
if err != nil {
return err
}
q.EncodingType, q.ShortChanIDs, err = decodeShortChanIDs(r)
return err
}
// decodeShortChanIDs decodes a set of short channel ID's that have been
// encoded. The first byte of the body details how the short chan ID's were
// encoded. We'll use this type to govern exactly how we go about encoding the
// set of short channel ID's.
func decodeShortChanIDs(r io.Reader) (ShortChanIDEncoding, []ShortChannelID, error) {
// First, we'll attempt to read the number of bytes in the body of the
// set of encoded short channel ID's.
var numBytesResp uint16
err := ReadElements(r, &numBytesResp)
if err != nil {
return 0, nil, err
}
if numBytesResp == 0 {
return 0, nil, fmt.Errorf("No encoding type specified")
}
queryBody := make([]byte, numBytesResp)
if _, err := io.ReadFull(r, queryBody); err != nil {
return 0, nil, err
}
// The first byte is the encoding type, so we'll extract that so we can
// continue our parsing.
encodingType := ShortChanIDEncoding(queryBody[0])
// Before continuing, we'll snip off the first byte of the query body
// as that was just the encoding type.
queryBody = queryBody[1:]
// Otherwise, depending on the encoding type, we'll decode the encode
// short channel ID's in a different manner.
switch encodingType {
// In this encoding, we'll simply read a sort array of encoded short
// channel ID's from the buffer.
case EncodingSortedPlain:
// If after extracting the encoding type, then number of
// remaining bytes instead a whole multiple of the size of an
// encoded short channel ID (8 bytes), then we'll return a
// parsing error.
if len(queryBody)%8 != 0 {
return 0, nil, fmt.Errorf("whole number of short "+
"chan ID's cannot be encoded in len=%v",
len(queryBody))
}
// As each short channel ID is encoded as 8 bytes, we can
// compute the number of bytes encoded based on the size of the
// query body.
numShortChanIDs := len(queryBody) / 8
if numShortChanIDs == 0 {
return encodingType, nil, nil
}
// Finally, we'll read out the exact number of short channel
// ID's to conclude our parsing.
shortChanIDs := make([]ShortChannelID, numShortChanIDs)
bodyReader := bytes.NewReader(queryBody)
for i := 0; i < numShortChanIDs; i++ {
if err := ReadElements(bodyReader, &shortChanIDs[i]); err != nil {
return 0, nil, fmt.Errorf("unable to parse "+
"short chan ID: %v", err)
}
}
return encodingType, shortChanIDs, nil
// In this encoding, we'll use zlib to decode the compressed payload.
// However, we'll pay attention to ensure that we don't open our selves
// up to a memory exhaustion attack.
case EncodingSortedZlib:
// We'll obtain an ultimately release the zlib decode mutex.
// This guards us against allocating too much memory to decode
// each instance from concurrent peers.
zlibDecodeMtx.Lock()
defer zlibDecodeMtx.Unlock()
// Before we start to decode, we'll create a limit reader over
// the current reader. This will ensure that we can control how
// much memory we're allocating during the decoding process.
limitedDecompressor, err := zlib.NewReader(&io.LimitedReader{
R: bytes.NewReader(queryBody),
N: maxZlibBufSize,
})
if err != nil {
return 0, nil, fmt.Errorf("unable to create zlib reader: %v", err)
}
var (
shortChanIDs []ShortChannelID
lastChanID ShortChannelID
)
for {
// We'll now attempt to read the next short channel ID
// encoded in the payload.
var cid ShortChannelID
err := ReadElements(limitedDecompressor, &cid)
switch {
// If we get an EOF error, then that either means we've
// read all that's contained in the buffer, or have hit
// our limit on the number of bytes we'll read. In
// either case, we'll return what we have so far.
case err == io.ErrUnexpectedEOF || err == io.EOF:
return encodingType, shortChanIDs, nil
// Otherwise, we hit some other sort of error, possibly
// an invalid payload, so we'll exit early with the
// error.
case err != nil:
return 0, nil, fmt.Errorf("unable to "+
"deflate next short chan "+
"ID: %v", err)
}
// We successfully read the next ID, so well collect
// that in the set of final ID's to return.
shortChanIDs = append(shortChanIDs, cid)
// Finally, we'll ensure that this short chan ID is
// greater than the last one. This is a requirement
// within the encoding, and if violated can aide us in
// detecting malicious payloads.
if cid.ToUint64() <= lastChanID.ToUint64() {
return 0, nil, fmt.Errorf("current sid of %v "+
"isn't greater than last sid of %v", cid,
lastChanID)
}
lastChanID = cid
}
default:
// If we've been sent an encoding type that we don't know of,
// then we'll return a parsing error as we can't continue if
// we're unable to encode them.
return 0, nil, ErrUnknownShortChanIDEncoding(encodingType)
}
}
// Encode serializes the target QueryShortChanIDs into the passed io.Writer
// observing the protocol version specified.
//
// This is part of the lnwire.Message interface.
func (q *QueryShortChanIDs) Encode(w io.Writer, pver uint32) error {
// First, we'll write out the chain hash.
err := WriteElements(w, q.ChainHash[:])
if err != nil {
return err
}
// Base on our encoding type, we'll write out the set of short channel
// ID's.
return encodeShortChanIDs(w, q.EncodingType, q.ShortChanIDs)
}
// encodeShortChanIDs encodes the passed short channel ID's into the passed
// io.Writer, respecting the specified encoding type.
func encodeShortChanIDs(w io.Writer, encodingType ShortChanIDEncoding,
shortChanIDs []ShortChannelID) error {
// For both of the current encoding types, the channel ID's are to be
// sorted in place, so we'll do that now.
sort.Slice(shortChanIDs, func(i, j int) bool {
return shortChanIDs[i].ToUint64() <
shortChanIDs[j].ToUint64()
})
switch encodingType {
// In this encoding, we'll simply write a sorted array of encoded short
// channel ID's from the buffer.
case EncodingSortedPlain:
// First, we'll write out the number of bytes of the query
// body. We add 1 as the response will have the encoding type
// prepended to it.
numBytesBody := uint16(len(shortChanIDs)*8) + 1
if err := WriteElements(w, numBytesBody); err != nil {
return err
}
// We'll then write out the encoding that that follows the
// actual encoded short channel ID's.
if err := WriteElements(w, encodingType); err != nil {
return err
}
// Now that we know they're sorted, we can write out each short
// channel ID to the buffer.
for _, chanID := range shortChanIDs {
if err := WriteElements(w, chanID); err != nil {
return fmt.Errorf("unable to write short chan "+
"ID: %v", err)
}
}
return nil
// For this encoding we'll first write out a serialized version of all
// the channel ID's into a buffer, then zlib encode that. The final
// payload is what we'll write out to the passed io.Writer.
//
// TODO(roasbeef): assumes the caller knows the proper chunk size to
// pass to avoid bin-packing here
case EncodingSortedZlib:
// We'll make a new buffer, then wrap that with a zlib writer
// so we can write directly to the buffer and encode in a
// streaming manner.
var buf bytes.Buffer
zlibWriter := zlib.NewWriter(&buf)
// Next, we'll write out all the channel ID's directly into the
// zlib writer, which will do compressing on the fly.
for _, chanID := range shortChanIDs {
err := WriteElements(zlibWriter, chanID)
if err != nil {
return fmt.Errorf("unable to write short chan "+
"ID: %v", err)
}
}
// Now that we've written all the elements, we'll ensure the
// compressed stream is written to the underlying buffer.
if err := zlibWriter.Close(); err != nil {
return fmt.Errorf("unable to finalize "+
"compression: %v", err)
}
// Now that we have all the items compressed, we can compute
// what the total payload size will be. We add one to account
// for the byte to encode the type.
compressedPayload := buf.Bytes()
numBytesBody := len(compressedPayload) + 1
// Finally, we can write out the number of bytes, the
// compression type, and finally the buffer itself.
if err := WriteElements(w, uint16(numBytesBody)); err != nil {
return err
}
if err := WriteElements(w, encodingType); err != nil {
return err
}
_, err := w.Write(compressedPayload)
return err
default:
// If we're trying to encode with an encoding type that we
// don't know of, then we'll return a parsing error as we can't
// continue if we're unable to encode them.
return ErrUnknownShortChanIDEncoding(encodingType)
}
}
// MsgType returns the integer uniquely identifying this message type on the
// wire.
//
// This is part of the lnwire.Message interface.
func (q *QueryShortChanIDs) MsgType() MessageType {
return MsgQueryShortChanIDs
}
// MaxPayloadLength returns the maximum allowed payload size for a
// QueryShortChanIDs complete message observing the specified protocol version.
//
// This is part of the lnwire.Message interface.
func (q *QueryShortChanIDs) MaxPayloadLength(uint32) uint32 {
return MaxMessagePayload
}