mirror of
https://github.com/lightningnetwork/lnd.git
synced 2025-02-23 14:40:30 +01:00
460 lines
15 KiB
Go
460 lines
15 KiB
Go
|
// Copyright 2013-2022 The btcsuite developers
|
||
|
|
||
|
package musig2
|
||
|
|
||
|
import (
|
||
|
"bytes"
|
||
|
"fmt"
|
||
|
"sort"
|
||
|
|
||
|
"github.com/btcsuite/btcd/btcec/v2"
|
||
|
"github.com/btcsuite/btcd/btcec/v2/schnorr"
|
||
|
"github.com/btcsuite/btcd/chaincfg/chainhash"
|
||
|
secp "github.com/decred/dcrd/dcrec/secp256k1/v4"
|
||
|
)
|
||
|
|
||
|
var (
|
||
|
// KeyAggTagList is the tagged hash tag used to compute the hash of the
|
||
|
// list of sorted public keys.
|
||
|
KeyAggTagList = []byte("KeyAgg list")
|
||
|
|
||
|
// KeyAggTagCoeff is the tagged hash tag used to compute the key
|
||
|
// aggregation coefficient for each key.
|
||
|
KeyAggTagCoeff = []byte("KeyAgg coefficient")
|
||
|
|
||
|
// ErrTweakedKeyIsInfinity is returned if while tweaking a key, we end
|
||
|
// up with the point at infinity.
|
||
|
ErrTweakedKeyIsInfinity = fmt.Errorf("tweaked key is infinity point")
|
||
|
|
||
|
// ErrTweakedKeyOverflows is returned if a tweaking key is larger than
|
||
|
// 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141.
|
||
|
ErrTweakedKeyOverflows = fmt.Errorf("tweaked key is to large")
|
||
|
)
|
||
|
|
||
|
// sortableKeys defines a type of slice of public keys that implements the sort
|
||
|
// interface for BIP 340 keys.
|
||
|
type sortableKeys []*btcec.PublicKey
|
||
|
|
||
|
// Less reports whether the element with index i must sort before the element
|
||
|
// with index j.
|
||
|
func (s sortableKeys) Less(i, j int) bool {
|
||
|
// TODO(roasbeef): more efficient way to compare...
|
||
|
keyIBytes := schnorr.SerializePubKey(s[i])
|
||
|
keyJBytes := schnorr.SerializePubKey(s[j])
|
||
|
|
||
|
return bytes.Compare(keyIBytes, keyJBytes) == -1
|
||
|
}
|
||
|
|
||
|
// Swap swaps the elements with indexes i and j.
|
||
|
func (s sortableKeys) Swap(i, j int) {
|
||
|
s[i], s[j] = s[j], s[i]
|
||
|
}
|
||
|
|
||
|
// Len is the number of elements in the collection.
|
||
|
func (s sortableKeys) Len() int {
|
||
|
return len(s)
|
||
|
}
|
||
|
|
||
|
// sortKeys takes a set of schnorr public keys and returns a new slice that is
|
||
|
// a copy of the keys sorted in lexicographical order bytes on the x-only
|
||
|
// pubkey serialization.
|
||
|
func sortKeys(keys []*btcec.PublicKey) []*btcec.PublicKey {
|
||
|
keySet := sortableKeys(keys)
|
||
|
if sort.IsSorted(keySet) {
|
||
|
return keys
|
||
|
}
|
||
|
|
||
|
sort.Sort(keySet)
|
||
|
return keySet
|
||
|
}
|
||
|
|
||
|
// keyHashFingerprint computes the tagged hash of the series of (sorted) public
|
||
|
// keys passed as input. This is used to compute the aggregation coefficient
|
||
|
// for each key. The final computation is:
|
||
|
// - H(tag=KeyAgg list, pk1 || pk2..)
|
||
|
func keyHashFingerprint(keys []*btcec.PublicKey, sort bool) []byte {
|
||
|
if sort {
|
||
|
keys = sortKeys(keys)
|
||
|
}
|
||
|
|
||
|
// We'll create a single buffer and slice into that so the bytes buffer
|
||
|
// doesn't continually need to grow the underlying buffer.
|
||
|
keyAggBuf := make([]byte, 32*len(keys))
|
||
|
keyBytes := bytes.NewBuffer(keyAggBuf[0:0])
|
||
|
for _, key := range keys {
|
||
|
keyBytes.Write(schnorr.SerializePubKey(key))
|
||
|
}
|
||
|
|
||
|
h := chainhash.TaggedHash(KeyAggTagList, keyBytes.Bytes())
|
||
|
return h[:]
|
||
|
}
|
||
|
|
||
|
// keyBytesEqual returns true if two keys are the same from the PoV of BIP
|
||
|
// 340's 32-byte x-only public keys.
|
||
|
func keyBytesEqual(a, b *btcec.PublicKey) bool {
|
||
|
return bytes.Equal(
|
||
|
schnorr.SerializePubKey(a),
|
||
|
schnorr.SerializePubKey(b),
|
||
|
)
|
||
|
}
|
||
|
|
||
|
// aggregationCoefficient computes the key aggregation coefficient for the
|
||
|
// specified target key. The coefficient is computed as:
|
||
|
// - H(tag=KeyAgg coefficient, keyHashFingerprint(pks) || pk)
|
||
|
func aggregationCoefficient(keySet []*btcec.PublicKey,
|
||
|
targetKey *btcec.PublicKey, keysHash []byte,
|
||
|
secondKeyIdx int) *btcec.ModNScalar {
|
||
|
|
||
|
var mu btcec.ModNScalar
|
||
|
|
||
|
// If this is the second key, then this coefficient is just one.
|
||
|
if secondKeyIdx != -1 && keyBytesEqual(keySet[secondKeyIdx], targetKey) {
|
||
|
return mu.SetInt(1)
|
||
|
}
|
||
|
|
||
|
// Otherwise, we'll compute the full finger print hash for this given
|
||
|
// key and then use that to compute the coefficient tagged hash:
|
||
|
// * H(tag=KeyAgg coefficient, keyHashFingerprint(pks, pk) || pk)
|
||
|
var coefficientBytes [64]byte
|
||
|
copy(coefficientBytes[:], keysHash[:])
|
||
|
copy(coefficientBytes[32:], schnorr.SerializePubKey(targetKey))
|
||
|
|
||
|
muHash := chainhash.TaggedHash(KeyAggTagCoeff, coefficientBytes[:])
|
||
|
|
||
|
mu.SetByteSlice(muHash[:])
|
||
|
|
||
|
return &mu
|
||
|
}
|
||
|
|
||
|
// secondUniqueKeyIndex returns the index of the second unique key. If all keys
|
||
|
// are the same, then a value of -1 is returned.
|
||
|
func secondUniqueKeyIndex(keySet []*btcec.PublicKey, sort bool) int {
|
||
|
if sort {
|
||
|
keySet = sortKeys(keySet)
|
||
|
}
|
||
|
|
||
|
// Find the first key that isn't the same as the very first key (second
|
||
|
// unique key).
|
||
|
for i := range keySet {
|
||
|
if !keyBytesEqual(keySet[i], keySet[0]) {
|
||
|
return i
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// A value of negative one is used to indicate that all the keys in the
|
||
|
// sign set are actually equal, which in practice actually makes musig2
|
||
|
// useless, but we need a value to distinguish this case.
|
||
|
return -1
|
||
|
}
|
||
|
|
||
|
// KeyTweakDesc describes a tweak to be applied to the aggregated public key
|
||
|
// generation and signing process. The IsXOnly specifies if the target key
|
||
|
// should be converted to an x-only public key before tweaking.
|
||
|
type KeyTweakDesc struct {
|
||
|
// Tweak is the 32-byte value that will modify the public key.
|
||
|
Tweak [32]byte
|
||
|
|
||
|
// IsXOnly if true, then the public key will be mapped to an x-only key
|
||
|
// before the tweaking operation is applied.
|
||
|
IsXOnly bool
|
||
|
}
|
||
|
|
||
|
// KeyAggOption is a functional option argument that allows callers to specify
|
||
|
// more or less information that has been pre-computed to the main routine.
|
||
|
type KeyAggOption func(*keyAggOption)
|
||
|
|
||
|
// keyAggOption houses the set of functional options that modify key
|
||
|
// aggregation.
|
||
|
type keyAggOption struct {
|
||
|
// keyHash is the output of keyHashFingerprint for a given set of keys.
|
||
|
keyHash []byte
|
||
|
|
||
|
// uniqueKeyIndex is the pre-computed index of the second unique key.
|
||
|
uniqueKeyIndex *int
|
||
|
|
||
|
// tweaks specifies a series of tweaks to be applied to the aggregated
|
||
|
// public key.
|
||
|
tweaks []KeyTweakDesc
|
||
|
|
||
|
// taprootTweak controls if the tweaks above should be applied in a BIP
|
||
|
// 340 style.
|
||
|
taprootTweak bool
|
||
|
|
||
|
// bip86Tweak specifies that the taproot tweak should be done in a BIP
|
||
|
// 86 style, where we don't expect an actual tweak and instead just
|
||
|
// commit to the public key itself.
|
||
|
bip86Tweak bool
|
||
|
}
|
||
|
|
||
|
// WithKeysHash allows key aggregation to be optimize, by allowing the caller
|
||
|
// to specify the hash of all the keys.
|
||
|
func WithKeysHash(keyHash []byte) KeyAggOption {
|
||
|
return func(o *keyAggOption) {
|
||
|
o.keyHash = keyHash
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// WithUniqueKeyIndex allows the caller to specify the index of the second
|
||
|
// unique key.
|
||
|
func WithUniqueKeyIndex(idx int) KeyAggOption {
|
||
|
return func(o *keyAggOption) {
|
||
|
i := idx
|
||
|
o.uniqueKeyIndex = &i
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// WithKeyTweaks allows a caller to specify a series of 32-byte tweaks that
|
||
|
// should be applied to the final aggregated public key.
|
||
|
func WithKeyTweaks(tweaks ...KeyTweakDesc) KeyAggOption {
|
||
|
return func(o *keyAggOption) {
|
||
|
o.tweaks = tweaks
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// WithTaprootKeyTweak specifies that within this context, the final key should
|
||
|
// use the taproot tweak as defined in BIP 341: outputKey = internalKey +
|
||
|
// h_tapTweak(internalKey || scriptRoot). In this case, the aggregated key
|
||
|
// before the tweak will be used as the internal key.
|
||
|
//
|
||
|
// This option should be used instead of WithKeyTweaks when the aggregated key
|
||
|
// is intended to be used as a taproot output key that commits to a script
|
||
|
// root.
|
||
|
func WithTaprootKeyTweak(scriptRoot []byte) KeyAggOption {
|
||
|
return func(o *keyAggOption) {
|
||
|
var tweak [32]byte
|
||
|
copy(tweak[:], scriptRoot[:])
|
||
|
|
||
|
o.tweaks = []KeyTweakDesc{
|
||
|
{
|
||
|
Tweak: tweak,
|
||
|
IsXOnly: true,
|
||
|
},
|
||
|
}
|
||
|
o.taprootTweak = true
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// WithBIP86KeyTweak specifies that then during key aggregation, the BIP 86
|
||
|
// tweak which just commits to the hash of the serialized public key should be
|
||
|
// used. This option should be used when signing with a key that was derived
|
||
|
// using BIP 86.
|
||
|
func WithBIP86KeyTweak() KeyAggOption {
|
||
|
return func(o *keyAggOption) {
|
||
|
o.tweaks = []KeyTweakDesc{
|
||
|
{
|
||
|
IsXOnly: true,
|
||
|
},
|
||
|
}
|
||
|
o.taprootTweak = true
|
||
|
o.bip86Tweak = true
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// defaultKeyAggOptions returns the set of default arguments for key
|
||
|
// aggregation.
|
||
|
func defaultKeyAggOptions() *keyAggOption {
|
||
|
return &keyAggOption{}
|
||
|
}
|
||
|
|
||
|
// hasEvenY returns true if the affine representation of the passed jacobian
|
||
|
// point has an even y coordinate.
|
||
|
//
|
||
|
// TODO(roasbeef): double check, can just check the y coord even not jacobian?
|
||
|
func hasEvenY(pJ btcec.JacobianPoint) bool {
|
||
|
pJ.ToAffine()
|
||
|
p := btcec.NewPublicKey(&pJ.X, &pJ.Y)
|
||
|
keyBytes := p.SerializeCompressed()
|
||
|
return keyBytes[0] == secp.PubKeyFormatCompressedEven
|
||
|
}
|
||
|
|
||
|
// tweakKey applies a tweaks to the passed public key using the specified
|
||
|
// tweak. The parityAcc and tweakAcc are returned (in that order) which
|
||
|
// includes the accumulate ration of the parity factor and the tweak multiplied
|
||
|
// by the parity factor. The xOnly bool specifies if this is to be an x-only
|
||
|
// tweak or not.
|
||
|
func tweakKey(keyJ btcec.JacobianPoint, parityAcc btcec.ModNScalar, tweak [32]byte,
|
||
|
tweakAcc btcec.ModNScalar,
|
||
|
xOnly bool) (btcec.JacobianPoint, btcec.ModNScalar, btcec.ModNScalar, error) {
|
||
|
|
||
|
// First we'll compute the new parity factor for this key. If the key has
|
||
|
// an odd y coordinate (not even), then we'll need to negate it (multiply
|
||
|
// by -1 mod n, in this case).
|
||
|
var parityFactor btcec.ModNScalar
|
||
|
if xOnly && !hasEvenY(keyJ) {
|
||
|
parityFactor.SetInt(1).Negate()
|
||
|
} else {
|
||
|
parityFactor.SetInt(1)
|
||
|
}
|
||
|
|
||
|
// Next, map the tweak into a mod n integer so we can use it for
|
||
|
// manipulations below.
|
||
|
tweakInt := new(btcec.ModNScalar)
|
||
|
overflows := tweakInt.SetBytes(&tweak)
|
||
|
if overflows == 1 {
|
||
|
return keyJ, parityAcc, tweakAcc, ErrTweakedKeyOverflows
|
||
|
}
|
||
|
|
||
|
// Next, we'll compute: Q_i = g*Q + t*G, where g is our parityFactor and t
|
||
|
// is the tweakInt above. We'll space things out a bit to make it easier to
|
||
|
// follow.
|
||
|
//
|
||
|
// First compute t*G:
|
||
|
var tweakedGenerator btcec.JacobianPoint
|
||
|
btcec.ScalarBaseMultNonConst(tweakInt, &tweakedGenerator)
|
||
|
|
||
|
// Next compute g*Q:
|
||
|
btcec.ScalarMultNonConst(&parityFactor, &keyJ, &keyJ)
|
||
|
|
||
|
// Finally add both of them together to get our final
|
||
|
// tweaked point.
|
||
|
btcec.AddNonConst(&tweakedGenerator, &keyJ, &keyJ)
|
||
|
|
||
|
// As a sanity check, make sure that we didn't just end up with the
|
||
|
// point at infinity.
|
||
|
if keyJ == infinityPoint {
|
||
|
return keyJ, parityAcc, tweakAcc, ErrTweakedKeyIsInfinity
|
||
|
}
|
||
|
|
||
|
// As a final wrap up step, we'll accumulate the parity
|
||
|
// factor and also this tweak into the final set of accumulators.
|
||
|
parityAcc.Mul(&parityFactor)
|
||
|
tweakAcc.Mul(&parityFactor).Add(tweakInt)
|
||
|
|
||
|
return keyJ, parityAcc, tweakAcc, nil
|
||
|
}
|
||
|
|
||
|
// AggregateKey is a final aggregated key along with a possible version of the
|
||
|
// key without any tweaks applied.
|
||
|
type AggregateKey struct {
|
||
|
// FinalKey is the final aggregated key which may include one or more
|
||
|
// tweaks applied to it.
|
||
|
FinalKey *btcec.PublicKey
|
||
|
|
||
|
// PreTweakedKey is the aggregated *before* any tweaks have been
|
||
|
// applied. This should be used as the internal key in taproot
|
||
|
// contexts.
|
||
|
PreTweakedKey *btcec.PublicKey
|
||
|
}
|
||
|
|
||
|
// AggregateKeys takes a list of possibly unsorted keys and returns a single
|
||
|
// aggregated key as specified by the musig2 key aggregation algorithm. A nil
|
||
|
// value can be passed for keyHash, which causes this function to re-derive it.
|
||
|
// In addition to the combined public key, the parity accumulator and the tweak
|
||
|
// accumulator are returned as well.
|
||
|
func AggregateKeys(keys []*btcec.PublicKey, sort bool,
|
||
|
keyOpts ...KeyAggOption) (
|
||
|
*AggregateKey, *btcec.ModNScalar, *btcec.ModNScalar, error) {
|
||
|
|
||
|
// First, parse the set of optional signing options.
|
||
|
opts := defaultKeyAggOptions()
|
||
|
for _, option := range keyOpts {
|
||
|
option(opts)
|
||
|
}
|
||
|
|
||
|
// Sort the set of public key so we know we're working with them in
|
||
|
// sorted order for all the routines below.
|
||
|
if sort {
|
||
|
keys = sortKeys(keys)
|
||
|
}
|
||
|
|
||
|
// The caller may provide the hash of all the keys as an optimization
|
||
|
// during signing, as it already needs to be computed.
|
||
|
if opts.keyHash == nil {
|
||
|
opts.keyHash = keyHashFingerprint(keys, sort)
|
||
|
}
|
||
|
|
||
|
// A caller may also specify the unique key index themselves so we
|
||
|
// don't need to re-compute it.
|
||
|
if opts.uniqueKeyIndex == nil {
|
||
|
idx := secondUniqueKeyIndex(keys, sort)
|
||
|
opts.uniqueKeyIndex = &idx
|
||
|
}
|
||
|
|
||
|
// For each key, we'll compute the intermediate blinded key: a_i*P_i,
|
||
|
// where a_i is the aggregation coefficient for that key, and P_i is
|
||
|
// the key itself, then accumulate that (addition) into the main final
|
||
|
// key: P = P_1 + P_2 ... P_N.
|
||
|
var finalKeyJ btcec.JacobianPoint
|
||
|
for _, key := range keys {
|
||
|
// Port the key over to Jacobian coordinates as we need it in
|
||
|
// this format for the routines below.
|
||
|
var keyJ btcec.JacobianPoint
|
||
|
key.AsJacobian(&keyJ)
|
||
|
|
||
|
// Compute the aggregation coefficient for the key, then
|
||
|
// multiply it by the key itself: P_i' = a_i*P_i.
|
||
|
var tweakedKeyJ btcec.JacobianPoint
|
||
|
a := aggregationCoefficient(
|
||
|
keys, key, opts.keyHash, *opts.uniqueKeyIndex,
|
||
|
)
|
||
|
btcec.ScalarMultNonConst(a, &keyJ, &tweakedKeyJ)
|
||
|
|
||
|
// Finally accumulate this into the final key in an incremental
|
||
|
// fashion.
|
||
|
btcec.AddNonConst(&finalKeyJ, &tweakedKeyJ, &finalKeyJ)
|
||
|
}
|
||
|
|
||
|
// We'll copy over the key at this point, since this represents the
|
||
|
// aggregated key before any tweaks have been applied. This'll be used
|
||
|
// as the internal key for script path proofs.
|
||
|
finalKeyJ.ToAffine()
|
||
|
combinedKey := btcec.NewPublicKey(&finalKeyJ.X, &finalKeyJ.Y)
|
||
|
|
||
|
// At this point, if this is a taproot tweak, then we'll modify the
|
||
|
// base tweak value to use the BIP 341 tweak value.
|
||
|
if opts.taprootTweak {
|
||
|
// Emulate the same behavior as txscript.ComputeTaprootOutputKey
|
||
|
// which only operates on the x-only public key.
|
||
|
key, _ := schnorr.ParsePubKey(schnorr.SerializePubKey(
|
||
|
combinedKey,
|
||
|
))
|
||
|
|
||
|
// We only use the actual tweak bytes if we're not committing
|
||
|
// to a BIP-0086 key only spend output. Otherwise, we just
|
||
|
// commit to the internal key and an empty byte slice as the
|
||
|
// root hash.
|
||
|
tweakBytes := []byte{}
|
||
|
if !opts.bip86Tweak {
|
||
|
tweakBytes = opts.tweaks[0].Tweak[:]
|
||
|
}
|
||
|
|
||
|
// Compute the taproot key tagged hash of:
|
||
|
// h_tapTweak(internalKey || scriptRoot). We only do this for
|
||
|
// the first one, as you can only specify a single tweak when
|
||
|
// using the taproot mode with this API.
|
||
|
tapTweakHash := chainhash.TaggedHash(
|
||
|
chainhash.TagTapTweak, schnorr.SerializePubKey(key),
|
||
|
tweakBytes,
|
||
|
)
|
||
|
opts.tweaks[0].Tweak = *tapTweakHash
|
||
|
}
|
||
|
|
||
|
var (
|
||
|
err error
|
||
|
tweakAcc btcec.ModNScalar
|
||
|
parityAcc btcec.ModNScalar
|
||
|
)
|
||
|
parityAcc.SetInt(1)
|
||
|
|
||
|
// In this case we have a set of tweaks, so we'll incrementally apply
|
||
|
// each one, until we have our final tweaked key, and the related
|
||
|
// accumulators.
|
||
|
for i := 1; i <= len(opts.tweaks); i++ {
|
||
|
finalKeyJ, parityAcc, tweakAcc, err = tweakKey(
|
||
|
finalKeyJ, parityAcc, opts.tweaks[i-1].Tweak, tweakAcc,
|
||
|
opts.tweaks[i-1].IsXOnly,
|
||
|
)
|
||
|
if err != nil {
|
||
|
return nil, nil, nil, err
|
||
|
}
|
||
|
}
|
||
|
|
||
|
finalKeyJ.ToAffine()
|
||
|
finalKey := btcec.NewPublicKey(&finalKeyJ.X, &finalKeyJ.Y)
|
||
|
|
||
|
return &AggregateKey{
|
||
|
PreTweakedKey: combinedKey,
|
||
|
FinalKey: finalKey,
|
||
|
}, &parityAcc, &tweakAcc, nil
|
||
|
}
|