lnd/watchtower/wtclient/session_queue.go

810 lines
23 KiB
Go
Raw Normal View History

package wtclient
import (
"container/list"
"fmt"
"sync"
"time"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btclog/v2"
"github.com/lightningnetwork/lnd/input"
"github.com/lightningnetwork/lnd/keychain"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/watchtower/wtdb"
"github.com/lightningnetwork/lnd/watchtower/wtserver"
"github.com/lightningnetwork/lnd/watchtower/wtwire"
)
// sessionQueueStatus is an enum that signals how full a particular session is.
type sessionQueueStatus uint8
const (
// sessionQueueAvailable indicates that the session has space for at
// least one more backup.
sessionQueueAvailable sessionQueueStatus = iota
// sessionQueueExhausted indicates that all slots in the session have
// been allocated.
sessionQueueExhausted
// sessionQueueShuttingDown indicates that the session queue is
// shutting down and so is no longer accepting any more backups.
sessionQueueShuttingDown
)
// sessionQueueConfig bundles the resources required by the sessionQueue to
// perform its duties. All entries MUST be non-nil.
type sessionQueueConfig struct {
// ClientSession provides access to the negotiated session parameters
// and updating its persistent storage.
ClientSession *ClientSession
// ChainHash identifies the chain for which the session's justice
// transactions are targeted.
ChainHash chainhash.Hash
// Dial allows the client to dial the tower using it's public key and
// net address.
Dial func(keychain.SingleKeyECDH, *lnwire.NetAddress) (wtserver.Peer,
error)
// SendMessage encodes, encrypts, and writes a message to the given
// peer.
SendMessage func(wtserver.Peer, wtwire.Message) error
// ReadMessage receives, decypts, and decodes a message from the given
// peer.
ReadMessage func(wtserver.Peer) (wtwire.Message, error)
// Signer facilitates signing of inputs, used to construct the witnesses
// for justice transaction inputs.
Signer input.Signer
// BuildBreachRetribution is a function closure that allows the client
// to fetch the breach retribution info for a certain channel at a
// certain revoked commitment height.
BuildBreachRetribution BreachRetributionBuilder
// TaskPipeline is a pipeline which the sessionQueue should use to send
// any unhandled tasks on shutdown of the queue.
TaskPipeline *DiskOverflowQueue[*wtdb.BackupID]
// DB provides access to the client's stable storage.
DB DB
// MinBackoff defines the initial backoff applied by the session
// queue before reconnecting to the tower after a failed or partially
// successful batch is sent. Subsequent backoff durations will grow
// exponentially up until MaxBackoff.
MinBackoff time.Duration
// MaxBackoff defines the maximum backoff applied by the session
// queue before reconnecting to the tower after a failed or partially
// successful batch is sent. If the exponential backoff produces a
// timeout greater than this value, the backoff duration will be clamped
// to MaxBackoff.
MaxBackoff time.Duration
// Log specifies the desired log output, which should be prefixed by the
// client type, e.g. anchor or legacy.
Log btclog.Logger
}
// sessionQueue implements a reliable queue that will encrypt and send accepted
// backups to the watchtower specified in the config's ClientSession. Calling
// Stop will attempt to perform a clean shutdown replaying any un-committed
// pending updates to the client's main task pipeline.
type sessionQueue struct {
started sync.Once
stopped sync.Once
forced sync.Once
cfg *sessionQueueConfig
log btclog.Logger
commitQueue *list.List
pendingQueue *list.List
queueMtx sync.Mutex
queueCond *sync.Cond
localInit *wtwire.Init
tower *Tower
seqNum uint16
retryBackoff time.Duration
quit chan struct{}
wg sync.WaitGroup
}
// newSessionQueue initializes a fresh sessionQueue.
func newSessionQueue(cfg *sessionQueueConfig,
updates []wtdb.CommittedUpdate) *sessionQueue {
localInit := wtwire.NewInitMessage(
lnwire.NewRawFeatureVector(wtwire.AltruistSessionsRequired),
cfg.ChainHash,
)
sq := &sessionQueue{
cfg: cfg,
log: cfg.Log,
commitQueue: list.New(),
pendingQueue: list.New(),
localInit: localInit,
tower: cfg.ClientSession.Tower,
seqNum: cfg.ClientSession.SeqNum,
retryBackoff: cfg.MinBackoff,
quit: make(chan struct{}),
}
sq.queueCond = sync.NewCond(&sq.queueMtx)
// The database should return them in sorted order, and session queue's
// sequence number will be equal to that of the last committed update.
for _, update := range updates {
sq.commitQueue.PushBack(update)
}
return sq
}
// Start idempotently starts the sessionQueue so that it can begin accepting
// backups.
func (q *sessionQueue) Start() {
q.started.Do(func() {
q.wg.Add(1)
go q.sessionManager()
})
}
// Stop idempotently stops the sessionQueue by initiating a clean shutdown that
// will clear all pending tasks in the queue before returning to the caller.
// The final param should only be set to true if this is the last time that
// this session will be used. Otherwise, during normal shutdown, the final param
// should be false.
func (q *sessionQueue) Stop(final bool) error {
var returnErr error
q.stopped.Do(func() {
q.log.Debugf("SessionQueue(%s) stopping ...", q.ID())
close(q.quit)
shutdown := make(chan struct{})
go func() {
for {
select {
case <-time.After(time.Millisecond):
q.queueCond.Signal()
case <-shutdown:
return
}
}
}()
q.wg.Wait()
close(shutdown)
// Now, for any task in the pending queue that we have not yet
// created a CommittedUpdate for, re-add the task to the main
// task pipeline.
updates, err := q.cfg.DB.FetchSessionCommittedUpdates(q.ID())
if err != nil {
returnErr = err
return
}
unAckedUpdates := make(map[wtdb.BackupID]bool)
for _, update := range updates {
unAckedUpdates[update.BackupID] = true
if !final {
continue
}
err := q.cfg.TaskPipeline.QueueBackupID(
&update.BackupID,
)
if err != nil {
log.Errorf("could not re-queue %s: %v",
update.BackupID, err)
continue
}
}
if final {
err = q.cfg.DB.DeleteCommittedUpdates(q.ID())
if err != nil {
log.Errorf("could not delete committed "+
"updates for session %s", q.ID())
}
}
// Push any task that was on the pending queue that there is
// not yet a committed update for back to the main task
// pipeline.
q.queueCond.L.Lock()
for q.pendingQueue.Len() > 0 {
next := q.pendingQueue.Front()
q.pendingQueue.Remove(next)
//nolint:forcetypeassert
task := next.Value.(*backupTask)
if unAckedUpdates[task.id] {
continue
}
err := q.cfg.TaskPipeline.QueueBackupID(&task.id)
if err != nil {
log.Errorf("could not re-queue backup task: "+
"%v", err)
continue
}
}
q.queueCond.L.Unlock()
q.log.Debugf("SessionQueue(%s) stopped", q.ID())
})
return returnErr
}
// ID returns the wtdb.SessionID for the queue, which can be used to uniquely
// identify this a particular queue.
func (q *sessionQueue) ID() *wtdb.SessionID {
return &q.cfg.ClientSession.ID
}
// AcceptTask attempts to queue a backupTask for delivery to the sessionQueue's
// tower. The session will only be accepted if the queue is not already
// exhausted or shutting down and the task is successfully bound to the
// ClientSession.
func (q *sessionQueue) AcceptTask(task *backupTask) (sessionQueueStatus, bool) {
// Exit early if the queue has started shutting down.
select {
case <-q.quit:
return sessionQueueShuttingDown, false
default:
}
q.queueCond.L.Lock()
// There is a chance that sessionQueue started shutting down between
// the last quit channel check and waiting for the lock. So check one
// more time here.
select {
case <-q.quit:
q.queueCond.L.Unlock()
return sessionQueueShuttingDown, false
default:
}
numPending := uint32(q.pendingQueue.Len())
maxUpdates := q.cfg.ClientSession.Policy.MaxUpdates
q.log.Debugf("SessionQueue(%s) deciding to accept %v seqnum=%d "+
"pending=%d max-updates=%d",
q.ID(), task.id, q.seqNum, numPending, maxUpdates)
// Examine the current reserve status of the session queue.
curStatus := q.status()
switch curStatus {
// The session queue is exhausted, and cannot accept the task because it
// is full. Reject the task such that it can be tried against a
// different session.
case sessionQueueExhausted:
q.queueCond.L.Unlock()
return curStatus, false
// The session queue is not exhausted. Compute the sweep and reward
// outputs as a function of the session parameters. If the outputs are
// dusty or uneconomical to backup, the task is rejected and will not be
// tried again.
//
// TODO(conner): queue backups and retry with different session params.
case sessionQueueAvailable:
err := task.bindSession(
&q.cfg.ClientSession.ClientSessionBody,
q.cfg.BuildBreachRetribution,
)
if err != nil {
q.queueCond.L.Unlock()
q.log.Debugf("SessionQueue(%s) rejected %v: %v ",
q.ID(), task.id, err)
return curStatus, false
}
}
// The sweep and reward outputs satisfy the session's policy, queue the
// task for final signing and delivery.
q.pendingQueue.PushBack(task)
// Finally, compute the session's *new* reserve status. This will be
// used by the client to determine if it can continue using this session
// queue, or if it should negotiate a new one.
newStatus := q.status()
q.queueCond.L.Unlock()
q.queueCond.Signal()
return newStatus, true
}
// sessionManager is the primary event loop for the sessionQueue, and is
// responsible for encrypting and sending accepted tasks to the tower.
func (q *sessionQueue) sessionManager() {
defer q.wg.Done()
for {
q.queueCond.L.Lock()
for q.commitQueue.Len() == 0 &&
q.pendingQueue.Len() == 0 {
q.queueCond.Wait()
select {
case <-q.quit:
q.queueCond.L.Unlock()
return
default:
}
}
q.queueCond.L.Unlock()
// Exit immediately if the sessionQueue has been stopped.
select {
case <-q.quit:
return
default:
}
// Initiate a new connection to the watchtower and attempt to
// drain all pending tasks.
q.drainBackups()
}
}
// drainBackups attempts to send all pending updates in the queue to the tower.
func (q *sessionQueue) drainBackups() {
var (
conn wtserver.Peer
err error
towerAddr = q.tower.Addresses.Peek()
)
for {
q.log.Infof("SessionQueue(%s) attempting to dial tower at %v",
q.ID(), towerAddr)
// First, check that we are able to dial this session's tower.
conn, err = q.cfg.Dial(
q.cfg.ClientSession.SessionKeyECDH, &lnwire.NetAddress{
IdentityKey: q.tower.IdentityKey,
Address: towerAddr,
},
)
if err != nil {
// If there are more addrs available, immediately try
// those.
nextAddr, iteratorErr := q.tower.Addresses.Next()
if iteratorErr == nil {
towerAddr = nextAddr
continue
}
// Otherwise, if we have exhausted the address list,
// back off and try again later.
q.tower.Addresses.Reset()
q.log.Errorf("SessionQueue(%s) unable to dial tower "+
"at any available Addresses: %v", q.ID(), err)
q.increaseBackoff()
select {
case <-time.After(q.retryBackoff):
case <-q.quit:
}
return
}
break
}
defer conn.Close()
// Begin draining the queue of pending state updates. Before the first
// update is sent, we will precede it with an Init message. If the first
// is successful, subsequent updates can be streamed without sending an
// Init.
for sendInit := true; ; sendInit = false {
// Generate the next state update to upload to the tower. This
// method will first proceed in dequeuing committed updates
// before attempting to dequeue any pending updates.
stateUpdate, isPending, backupID, err := q.nextStateUpdate()
if err != nil {
q.log.Errorf("SessionQueue(%v) unable to get next "+
"state update: %v", q.ID(), err)
return
}
// Now, send the state update to the tower and wait for a reply.
err = q.sendStateUpdate(conn, stateUpdate, sendInit, isPending)
if err != nil {
q.log.Errorf("SessionQueue(%s) unable to send state "+
"update: %v", q.ID(), err)
q.increaseBackoff()
select {
case <-time.After(q.retryBackoff):
case <-q.quit:
}
return
}
q.log.Infof("SessionQueue(%s) uploaded %v seqnum=%d",
q.ID(), backupID, stateUpdate.SeqNum)
// If the last task was backed up successfully, we'll exit and
// continue once more tasks are added to the queue. We'll also
// clear any accumulated backoff as this batch was able to be
// sent reliably.
if stateUpdate.IsComplete == 1 {
q.resetBackoff()
return
}
// Always apply a small delay between sends, which makes the
// unit tests more reliable. If we were requested to back off,
// when we will do so.
select {
case <-time.After(time.Millisecond):
case <-q.quit:
return
}
}
}
// nextStateUpdate returns the next wtwire.StateUpdate to upload to the tower.
// If any committed updates are present, this method will reconstruct the state
// update from the committed update using the current last applied value found
// in the database. Otherwise, it will select the next pending update, craft the
// payload, and commit an update before returning the state update to send. The
// boolean value in the response is true if the state update is taken from the
// pending queue, allowing the caller to remove the update from either the
// commit or pending queue if the update is successfully acked.
func (q *sessionQueue) nextStateUpdate() (*wtwire.StateUpdate, bool,
wtdb.BackupID, error) {
var (
seqNum uint16
update wtdb.CommittedUpdate
isLast bool
isPending bool
)
q.queueCond.L.Lock()
switch {
// If the commit queue is non-empty, parse the next committed update.
case q.commitQueue.Len() > 0:
next := q.commitQueue.Front()
update = next.Value.(wtdb.CommittedUpdate)
seqNum = update.SeqNum
// If this is the last item in the commit queue and no items
// exist in the pending queue, we will use the IsComplete flag
// in the StateUpdate to signal that the tower can release the
// connection after replying to free up resources.
isLast = q.commitQueue.Len() == 1 && q.pendingQueue.Len() == 0
q.queueCond.L.Unlock()
q.log.Debugf("SessionQueue(%s) reprocessing committed state "+
"update for %v seqnum=%d",
q.ID(), update.BackupID, seqNum)
// Otherwise, craft and commit the next update from the pending queue.
default:
isPending = true
// Determine the current sequence number to apply for this
// pending update.
seqNum = q.seqNum + 1
// Obtain the next task from the queue.
next := q.pendingQueue.Front()
task := next.Value.(*backupTask)
// If this is the last item in the pending queue, we will use
// the IsComplete flag in the StateUpdate to signal that the
// tower can release the connection after replying to free up
// resources.
isLast = q.pendingQueue.Len() == 1
q.queueCond.L.Unlock()
hint, encBlob, err := task.craftSessionPayload(q.cfg.Signer)
if err != nil {
// TODO(conner): mark will not send
2024-03-07 13:19:28 +01:00
err := fmt.Errorf("unable to craft session payload: %w",
err)
return nil, false, wtdb.BackupID{}, err
}
// TODO(conner): special case other obscure errors
update = wtdb.CommittedUpdate{
SeqNum: seqNum,
CommittedUpdateBody: wtdb.CommittedUpdateBody{
BackupID: task.id,
Hint: hint,
EncryptedBlob: encBlob,
},
}
q.log.Debugf("SessionQueue(%s) committing state update "+
"%v seqnum=%d", q.ID(), update.BackupID, seqNum)
}
// Before sending the task to the tower, commit the state update
// to disk using the assigned sequence number. If this task has already
// been committed, the call will succeed and only be used for the
// purpose of obtaining the last applied value to send to the tower.
//
// This step ensures that if we crash before receiving an ack that we
// will retransmit the same update. If the tower successfully received
// the update from before, it will reply with an ACK regardless of what
// we send the next time. This step ensures that if we reliably send the
// same update for a given sequence number, to prevent us from thinking
// we backed up a state when we instead backed up another.
lastApplied, err := q.cfg.DB.CommitUpdate(q.ID(), &update)
if err != nil {
// TODO(conner): mark failed/reschedule
err := fmt.Errorf("unable to commit state update for "+
"%v seqnum=%d: %v", update.BackupID, seqNum, err)
return nil, false, wtdb.BackupID{}, err
}
stateUpdate := &wtwire.StateUpdate{
SeqNum: update.SeqNum,
LastApplied: lastApplied,
Hint: update.Hint,
EncryptedBlob: update.EncryptedBlob,
}
// Set the IsComplete flag if this is the last queued item.
if isLast {
stateUpdate.IsComplete = 1
}
return stateUpdate, isPending, update.BackupID, nil
}
// sendStateUpdate sends a wtwire.StateUpdate to the watchtower and processes
// the ACK before returning. If sendInit is true, this method will first send
// the localInit message and verify that the tower supports our required feature
// bits. And error is returned if any part of the send fails. The boolean return
// variable indicates whether we should back off before attempting to send the
// next state update.
func (q *sessionQueue) sendStateUpdate(conn wtserver.Peer,
stateUpdate *wtwire.StateUpdate, sendInit, isPending bool) error {
towerAddr := &lnwire.NetAddress{
IdentityKey: conn.RemotePub(),
Address: conn.RemoteAddr(),
}
// If this is the first message being sent to the tower, we must send an
// Init message to establish that server supports the features we
// require.
if sendInit {
// Send Init to tower.
err := q.cfg.SendMessage(conn, q.localInit)
if err != nil {
return err
}
// Receive Init from tower.
remoteMsg, err := q.cfg.ReadMessage(conn)
if err != nil {
return err
}
remoteInit, ok := remoteMsg.(*wtwire.Init)
if !ok {
return fmt.Errorf("watchtower %s responded with %T "+
"to Init", towerAddr, remoteMsg)
}
// Validate Init.
err = q.localInit.CheckRemoteInit(
remoteInit, wtwire.FeatureNames,
)
if err != nil {
return err
}
}
// Send StateUpdate to tower.
err := q.cfg.SendMessage(conn, stateUpdate)
if err != nil {
return err
}
// Receive StateUpdate from tower.
remoteMsg, err := q.cfg.ReadMessage(conn)
if err != nil {
return err
}
stateUpdateReply, ok := remoteMsg.(*wtwire.StateUpdateReply)
if !ok {
return fmt.Errorf("watchtower %s responded with %T to "+
"StateUpdate", towerAddr, remoteMsg)
}
// Process the reply from the tower.
switch stateUpdateReply.Code {
// The tower reported a successful update, validate the response and
// record the last applied returned.
case wtwire.CodeOK:
// TODO(conner): handle other error cases properly, ban towers, etc.
default:
2019-03-20 01:03:17 +01:00
err := fmt.Errorf("received error code %v in "+
"StateUpdateReply for seqnum=%d",
stateUpdateReply.Code, stateUpdate.SeqNum)
q.log.Warnf("SessionQueue(%s) unable to upload state update "+
"to tower=%s: %v", q.ID(), towerAddr, err)
return err
}
lastApplied := stateUpdateReply.LastApplied
err = q.cfg.DB.AckUpdate(q.ID(), stateUpdate.SeqNum, lastApplied)
switch {
case err == wtdb.ErrUnallocatedLastApplied:
// TODO(conner): borked watchtower
2024-03-07 13:19:28 +01:00
err = fmt.Errorf("unable to ack seqnum=%d: %w",
stateUpdate.SeqNum, err)
q.log.Errorf("SessionQueue(%v) failed to ack update: %v",
q.ID(), err)
return err
case err == wtdb.ErrLastAppliedReversion:
// TODO(conner): borked watchtower
2024-03-07 13:19:28 +01:00
err = fmt.Errorf("unable to ack seqnum=%d: %w",
stateUpdate.SeqNum, err)
q.log.Errorf("SessionQueue(%s) failed to ack update: %v",
q.ID(), err)
return err
case err != nil:
2024-03-07 13:19:28 +01:00
err = fmt.Errorf("unable to ack seqnum=%d: %w",
stateUpdate.SeqNum, err)
q.log.Errorf("SessionQueue(%s) failed to ack update: %v",
q.ID(), err)
return err
}
q.queueCond.L.Lock()
if isPending {
// If a pending update was successfully sent, increment the
// sequence number and remove the item from the queue. This
// ensures the total number of backups in the session remains
// unchanged, which maintains the external view of the session's
// reserve status.
q.seqNum++
q.pendingQueue.Remove(q.pendingQueue.Front())
} else {
// Otherwise, simply remove the update from the committed queue.
// This has no effect on the queues reserve status since the
// update had already been committed.
q.commitQueue.Remove(q.commitQueue.Front())
}
q.queueCond.L.Unlock()
return nil
}
// status returns a sessionQueueStatus indicating whether the sessionQueue can
// accept another task. sessionQueueAvailable is returned when a task can be
// accepted, and sessionQueueExhausted is returned if the all slots in the
// session have been allocated.
//
// NOTE: This method MUST be called with queueCond's exclusive lock held.
func (q *sessionQueue) status() sessionQueueStatus {
numPending := uint32(q.pendingQueue.Len())
maxUpdates := uint32(q.cfg.ClientSession.Policy.MaxUpdates)
if uint32(q.seqNum)+numPending < maxUpdates {
return sessionQueueAvailable
}
return sessionQueueExhausted
}
// resetBackoff returns the connection backoff the minimum configured backoff.
func (q *sessionQueue) resetBackoff() {
q.retryBackoff = q.cfg.MinBackoff
}
// increaseBackoff doubles the current connection backoff, clamping to the
// configured maximum backoff if it would exceed the limit.
func (q *sessionQueue) increaseBackoff() {
q.retryBackoff *= 2
if q.retryBackoff > q.cfg.MaxBackoff {
q.retryBackoff = q.cfg.MaxBackoff
}
}
// sessionQueueSet maintains a mapping of SessionIDs to their corresponding
// sessionQueue.
type sessionQueueSet struct {
queues map[wtdb.SessionID]*sessionQueue
mu sync.Mutex
}
// newSessionQueueSet constructs a new sessionQueueSet.
func newSessionQueueSet() *sessionQueueSet {
return &sessionQueueSet{
queues: make(map[wtdb.SessionID]*sessionQueue),
}
}
// AddAndStart inserts a sessionQueue into the sessionQueueSet and starts it.
func (s *sessionQueueSet) AddAndStart(sessionQueue *sessionQueue) {
s.mu.Lock()
defer s.mu.Unlock()
s.queues[*sessionQueue.ID()] = sessionQueue
sessionQueue.Start()
}
// StopAndRemove stops the given session queue and removes it from the
// sessionQueueSet.
func (s *sessionQueueSet) StopAndRemove(id wtdb.SessionID, final bool) error {
s.mu.Lock()
defer s.mu.Unlock()
queue, ok := s.queues[id]
if !ok {
return nil
}
delete(s.queues, id)
return queue.Stop(final)
}
// Get fetches and returns the sessionQueue with the given ID.
func (s *sessionQueueSet) Get(id wtdb.SessionID) (*sessionQueue, bool) {
s.mu.Lock()
defer s.mu.Unlock()
q, ok := s.queues[id]
return q, ok
}
// ApplyAndWait executes the nil-adic function returned from getApply for each
// sessionQueue in the set in parallel, then waits for all of them to finish
// before returning to the caller.
func (s *sessionQueueSet) ApplyAndWait(getApply func(*sessionQueue) func()) {
s.mu.Lock()
defer s.mu.Unlock()
var wg sync.WaitGroup
for _, sessionq := range s.queues {
wg.Add(1)
go func(sq *sessionQueue) {
defer wg.Done()
getApply(sq)()
}(sessionq)
}
wg.Wait()
}