lnd/channeldb/payments.go

1358 lines
36 KiB
Go
Raw Normal View History

package channeldb
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"io"
"sort"
"time"
"github.com/btcsuite/btcd/wire"
2021-04-26 19:08:11 +02:00
"github.com/lightningnetwork/lnd/kvdb"
"github.com/lightningnetwork/lnd/lntypes"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/record"
"github.com/lightningnetwork/lnd/routing/route"
"github.com/lightningnetwork/lnd/tlv"
)
var (
// paymentsRootBucket is the name of the top-level bucket within the
// database that stores all data related to payments. Within this
// bucket, each payment hash its own sub-bucket keyed by its payment
// hash.
//
// Bucket hierarchy:
//
// root-bucket
// |
// |-- <paymenthash>
// | |--sequence-key: <sequence number>
// | |--creation-info-key: <creation info>
// | |--fail-info-key: <(optional) fail info>
// | |
// | |--payment-htlcs-bucket (shard-bucket)
// | | |
// | | |-- ai<htlc attempt ID>: <htlc attempt info>
// | | |-- si<htlc attempt ID>: <(optional) settle info>
// | | |-- fi<htlc attempt ID>: <(optional) fail info>
// | | |
// | | ...
// | |
// | |
// | |--duplicate-bucket (only for old, completed payments)
// | |
// | |-- <seq-num>
// | | |--sequence-key: <sequence number>
// | | |--creation-info-key: <creation info>
// | | |--ai: <attempt info>
// | | |--si: <settle info>
// | | |--fi: <fail info>
// | |
// | |-- <seq-num>
// | | |
// | ... ...
// |
// |-- <paymenthash>
// | |
// | ...
// ...
//
paymentsRootBucket = []byte("payments-root-bucket")
// paymentSequenceKey is a key used in the payment's sub-bucket to
// store the sequence number of the payment.
paymentSequenceKey = []byte("payment-sequence-key")
// paymentCreationInfoKey is a key used in the payment's sub-bucket to
// store the creation info of the payment.
paymentCreationInfoKey = []byte("payment-creation-info")
// paymentHtlcsBucket is a bucket where we'll store the information
// about the HTLCs that were attempted for a payment.
paymentHtlcsBucket = []byte("payment-htlcs-bucket")
// htlcAttemptInfoKey is the key used as the prefix of an HTLC attempt
// to store the info about the attempt that was done for the HTLC in
// question. The HTLC attempt ID is concatenated at the end.
htlcAttemptInfoKey = []byte("ai")
// htlcSettleInfoKey is the key used as the prefix of an HTLC attempt
// settle info, if any. The HTLC attempt ID is concatenated at the end.
htlcSettleInfoKey = []byte("si")
// htlcFailInfoKey is the key used as the prefix of an HTLC attempt
// failure information, if any.The HTLC attempt ID is concatenated at
// the end.
htlcFailInfoKey = []byte("fi")
// paymentFailInfoKey is a key used in the payment's sub-bucket to
// store information about the reason a payment failed.
paymentFailInfoKey = []byte("payment-fail-info")
// paymentsIndexBucket is the name of the top-level bucket within the
// database that stores an index of payment sequence numbers to its
// payment hash.
// payments-sequence-index-bucket
// |--<sequence-number>: <payment hash>
// |--...
// |--<sequence-number>: <payment hash>
paymentsIndexBucket = []byte("payments-index-bucket")
)
var (
// ErrNoSequenceNumber is returned if we lookup a payment which does
// not have a sequence number.
ErrNoSequenceNumber = errors.New("sequence number not found")
// ErrDuplicateNotFound is returned when we lookup a payment by its
// index and cannot find a payment with a matching sequence number.
ErrDuplicateNotFound = errors.New("duplicate payment not found")
// ErrNoDuplicateBucket is returned when we expect to find duplicates
// when looking up a payment from its index, but the payment does not
// have any.
ErrNoDuplicateBucket = errors.New("expected duplicate bucket")
// ErrNoDuplicateNestedBucket is returned if we do not find duplicate
// payments in their own sub-bucket.
ErrNoDuplicateNestedBucket = errors.New("nested duplicate bucket not " +
"found")
)
// FailureReason encodes the reason a payment ultimately failed.
type FailureReason byte
const (
// FailureReasonTimeout indicates that the payment did timeout before a
// successful payment attempt was made.
FailureReasonTimeout FailureReason = 0
// FailureReasonNoRoute indicates no successful route to the
// destination was found during path finding.
FailureReasonNoRoute FailureReason = 1
// FailureReasonError indicates that an unexpected error happened during
// payment.
FailureReasonError FailureReason = 2
// FailureReasonPaymentDetails indicates that either the hash is unknown
// or the final cltv delta or amount is incorrect.
FailureReasonPaymentDetails FailureReason = 3
2019-11-21 11:59:17 +01:00
// FailureReasonInsufficientBalance indicates that we didn't have enough
// balance to complete the payment.
FailureReasonInsufficientBalance FailureReason = 4
// TODO(halseth): cancel state.
// TODO(joostjager): Add failure reasons for:
// LocalLiquidityInsufficient, RemoteCapacityInsufficient.
)
2020-04-01 00:13:24 +02:00
// Error returns a human readable error string for the FailureReason.
func (r FailureReason) Error() string {
return r.String()
}
// String returns a human readable FailureReason.
func (r FailureReason) String() string {
switch r {
case FailureReasonTimeout:
return "timeout"
case FailureReasonNoRoute:
return "no_route"
case FailureReasonError:
return "error"
case FailureReasonPaymentDetails:
return "incorrect_payment_details"
2019-11-21 11:59:17 +01:00
case FailureReasonInsufficientBalance:
return "insufficient_balance"
}
return "unknown"
}
// PaymentCreationInfo is the information necessary to have ready when
// initiating a payment, moving it into state InFlight.
type PaymentCreationInfo struct {
// PaymentIdentifier is the hash this payment is paying to in case of
// non-AMP payments, and the SetID for AMP payments.
PaymentIdentifier lntypes.Hash
// Value is the amount we are paying.
Value lnwire.MilliSatoshi
// CreationTime is the time when this payment was initiated.
CreationTime time.Time
// PaymentRequest is the full payment request, if any.
PaymentRequest []byte
}
// htlcBucketKey creates a composite key from prefix and id where the result is
// simply the two concatenated.
func htlcBucketKey(prefix, id []byte) []byte {
key := make([]byte, len(prefix)+len(id))
copy(key, prefix)
copy(key[len(prefix):], id)
return key
}
// FetchPayments returns all sent payments found in the DB.
//
// nolint: dupl
func (d *DB) FetchPayments() ([]*MPPayment, error) {
var payments []*MPPayment
err := kvdb.View(d, func(tx kvdb.RTx) error {
paymentsBucket := tx.ReadBucket(paymentsRootBucket)
if paymentsBucket == nil {
return nil
}
return paymentsBucket.ForEach(func(k, v []byte) error {
bucket := paymentsBucket.NestedReadBucket(k)
if bucket == nil {
// We only expect sub-buckets to be found in
// this top-level bucket.
return fmt.Errorf("non bucket element in " +
"payments bucket")
}
p, err := fetchPayment(bucket)
if err != nil {
return err
}
payments = append(payments, p)
// For older versions of lnd, duplicate payments to a
// payment has was possible. These will be found in a
// sub-bucket indexed by their sequence number if
// available.
duplicatePayments, err := fetchDuplicatePayments(bucket)
if err != nil {
return err
}
payments = append(payments, duplicatePayments...)
return nil
})
}, func() {
payments = nil
})
if err != nil {
return nil, err
}
// Before returning, sort the payments by their sequence number.
sort.Slice(payments, func(i, j int) bool {
return payments[i].SequenceNum < payments[j].SequenceNum
})
return payments, nil
}
2020-05-07 00:48:00 +02:00
func fetchCreationInfo(bucket kvdb.RBucket) (*PaymentCreationInfo, error) {
b := bucket.Get(paymentCreationInfoKey)
if b == nil {
return nil, fmt.Errorf("creation info not found")
}
r := bytes.NewReader(b)
return deserializePaymentCreationInfo(r)
}
2020-05-07 00:48:00 +02:00
func fetchPayment(bucket kvdb.RBucket) (*MPPayment, error) {
seqBytes := bucket.Get(paymentSequenceKey)
if seqBytes == nil {
return nil, fmt.Errorf("sequence number not found")
}
sequenceNum := binary.BigEndian.Uint64(seqBytes)
// Get the PaymentCreationInfo.
creationInfo, err := fetchCreationInfo(bucket)
if err != nil {
return nil, err
}
var htlcs []HTLCAttempt
htlcsBucket := bucket.NestedReadBucket(paymentHtlcsBucket)
if htlcsBucket != nil {
// Get the payment attempts. This can be empty.
htlcs, err = fetchHtlcAttempts(htlcsBucket)
if err != nil {
return nil, err
}
}
// Get failure reason if available.
var failureReason *FailureReason
b := bucket.Get(paymentFailInfoKey)
if b != nil {
reason := FailureReason(b[0])
failureReason = &reason
}
// Go through all HTLCs for this payment, noting whether we have any
// settled HTLC, and any still in-flight.
var inflight, settled bool
for _, h := range htlcs {
if h.Failure != nil {
continue
}
if h.Settle != nil {
settled = true
continue
}
// If any of the HTLCs are not failed nor settled, we
// still have inflight HTLCs.
inflight = true
}
// Use the DB state to determine the status of the payment.
var paymentStatus PaymentStatus
switch {
// If any of the the HTLCs did succeed and there are no HTLCs in
// flight, the payment succeeded.
case !inflight && settled:
paymentStatus = StatusSucceeded
// If we have no in-flight HTLCs, and the payment failure is set, the
// payment is considered failed.
case !inflight && failureReason != nil:
paymentStatus = StatusFailed
// Otherwise it is still in flight.
default:
paymentStatus = StatusInFlight
}
return &MPPayment{
SequenceNum: sequenceNum,
Info: creationInfo,
HTLCs: htlcs,
FailureReason: failureReason,
Status: paymentStatus,
}, nil
}
2022-01-13 17:29:43 +01:00
// fetchHtlcAttempts retrieves all htlc attempts made for the payment found in
// the given bucket.
2020-05-07 00:48:00 +02:00
func fetchHtlcAttempts(bucket kvdb.RBucket) ([]HTLCAttempt, error) {
htlcsMap := make(map[uint64]*HTLCAttempt)
attemptInfoCount := 0
err := bucket.ForEach(func(k, v []byte) error {
aid := byteOrder.Uint64(k[len(k)-8:])
if _, ok := htlcsMap[aid]; !ok {
htlcsMap[aid] = &HTLCAttempt{}
}
var err error
switch {
case bytes.HasPrefix(k, htlcAttemptInfoKey):
attemptInfo, err := readHtlcAttemptInfo(v)
if err != nil {
return err
}
attemptInfo.AttemptID = aid
htlcsMap[aid].HTLCAttemptInfo = *attemptInfo
attemptInfoCount++
case bytes.HasPrefix(k, htlcSettleInfoKey):
htlcsMap[aid].Settle, err = readHtlcSettleInfo(v)
if err != nil {
return err
}
case bytes.HasPrefix(k, htlcFailInfoKey):
htlcsMap[aid].Failure, err = readHtlcFailInfo(v)
if err != nil {
return err
}
default:
return fmt.Errorf("unknown htlc attempt key")
}
return nil
})
if err != nil {
return nil, err
}
// Sanity check that all htlcs have an attempt info.
if attemptInfoCount != len(htlcsMap) {
return nil, errNoAttemptInfo
}
keys := make([]uint64, len(htlcsMap))
i := 0
for k := range htlcsMap {
keys[i] = k
i++
}
// Sort HTLC attempts by their attempt ID. This is needed because in the
// DB we store the attempts with keys prefixed by their status which
// changes order (groups them together by status).
sort.Slice(keys, func(i, j int) bool {
return keys[i] < keys[j]
})
htlcs := make([]HTLCAttempt, len(htlcsMap))
for i, key := range keys {
htlcs[i] = *htlcsMap[key]
}
return htlcs, nil
}
// readHtlcAttemptInfo reads the payment attempt info for this htlc.
func readHtlcAttemptInfo(b []byte) (*HTLCAttemptInfo, error) {
r := bytes.NewReader(b)
return deserializeHTLCAttemptInfo(r)
}
// readHtlcSettleInfo reads the settle info for the htlc. If the htlc isn't
// settled, nil is returned.
func readHtlcSettleInfo(b []byte) (*HTLCSettleInfo, error) {
r := bytes.NewReader(b)
return deserializeHTLCSettleInfo(r)
}
// readHtlcFailInfo reads the failure info for the htlc. If the htlc hasn't
// failed, nil is returned.
func readHtlcFailInfo(b []byte) (*HTLCFailInfo, error) {
r := bytes.NewReader(b)
return deserializeHTLCFailInfo(r)
}
// fetchFailedHtlcKeys retrieves the bucket keys of all failed HTLCs of a
// payment bucket.
func fetchFailedHtlcKeys(bucket kvdb.RBucket) ([][]byte, error) {
htlcsBucket := bucket.NestedReadBucket(paymentHtlcsBucket)
var htlcs []HTLCAttempt
var err error
if htlcsBucket != nil {
htlcs, err = fetchHtlcAttempts(htlcsBucket)
if err != nil {
return nil, err
}
}
// Now iterate though them and save the bucket keys for the failed
// HTLCs.
var htlcKeys [][]byte
for _, h := range htlcs {
if h.Failure == nil {
continue
}
htlcKeyBytes := make([]byte, 8)
binary.BigEndian.PutUint64(htlcKeyBytes, h.AttemptID)
htlcKeys = append(htlcKeys, htlcKeyBytes)
}
return htlcKeys, nil
}
// PaymentsQuery represents a query to the payments database starting or ending
// at a certain offset index. The number of retrieved records can be limited.
type PaymentsQuery struct {
// IndexOffset determines the starting point of the payments query and
// is always exclusive. In normal order, the query starts at the next
// higher (available) index compared to IndexOffset. In reversed order,
// the query ends at the next lower (available) index compared to the
// IndexOffset. In the case of a zero index_offset, the query will start
// with the oldest payment when paginating forwards, or will end with
// the most recent payment when paginating backwards.
IndexOffset uint64
// MaxPayments is the maximal number of payments returned in the
// payments query.
MaxPayments uint64
// Reversed gives a meaning to the IndexOffset. If reversed is set to
// true, the query will fetch payments with indices lower than the
// IndexOffset, otherwise, it will return payments with indices greater
// than the IndexOffset.
Reversed bool
// If IncludeIncomplete is true, then return payments that have not yet
// fully completed. This means that pending payments, as well as failed
// payments will show up if this field is set to true.
IncludeIncomplete bool
// CountTotal indicates that all payments currently present in the
// payment index (complete and incomplete) should be counted.
CountTotal bool
// CreationDateStart, if set, filters out all payments with a creation
// date greater than or euqal to it.
CreationDateStart time.Time
// CreationDateEnd, if set, filters out all payments with a creation
// date less than or euqal to it.
CreationDateEnd time.Time
}
// PaymentsResponse contains the result of a query to the payments database.
// It includes the set of payments that match the query and integers which
// represent the index of the first and last item returned in the series of
// payments. These integers allow callers to resume their query in the event
// that the query's response exceeds the max number of returnable events.
type PaymentsResponse struct {
// Payments is the set of payments returned from the database for the
// PaymentsQuery.
Payments []*MPPayment
// FirstIndexOffset is the index of the first element in the set of
// returned MPPayments. Callers can use this to resume their query
// in the event that the slice has too many events to fit into a single
// response. The offset can be used to continue reverse pagination.
FirstIndexOffset uint64
// LastIndexOffset is the index of the last element in the set of
// returned MPPayments. Callers can use this to resume their query
// in the event that the slice has too many events to fit into a single
// response. The offset can be used to continue forward pagination.
LastIndexOffset uint64
// TotalCount represents the total number of payments that are currently
// stored in the payment database. This will only be set if the
// CountTotal field in the query was set to true.
TotalCount uint64
}
// QueryPayments is a query to the payments database which is restricted
// to a subset of payments by the payments query, containing an offset
// index and a maximum number of returned payments.
func (d *DB) QueryPayments(query PaymentsQuery) (PaymentsResponse, error) {
var (
resp PaymentsResponse
startDateSet = !query.CreationDateStart.IsZero()
endDateSet = !query.CreationDateEnd.IsZero()
)
if err := kvdb.View(d, func(tx kvdb.RTx) error {
// Get the root payments bucket.
paymentsBucket := tx.ReadBucket(paymentsRootBucket)
if paymentsBucket == nil {
return nil
}
// Get the index bucket which maps sequence number -> payment
// hash and duplicate bool. If we have a payments bucket, we
// should have an indexes bucket as well.
indexes := tx.ReadBucket(paymentsIndexBucket)
if indexes == nil {
return fmt.Errorf("index bucket does not exist")
}
// accumulatePayments gets payments with the sequence number
// and hash provided and adds them to our list of payments if
// they meet the criteria of our query. It returns the number
// of payments that were added.
accumulatePayments := func(sequenceKey, hash []byte) (bool,
error) {
r := bytes.NewReader(hash)
paymentHash, err := deserializePaymentIndex(r)
if err != nil {
return false, err
}
payment, err := fetchPaymentWithSequenceNumber(
tx, paymentHash, sequenceKey,
)
if err != nil {
return false, err
}
// To keep compatibility with the old API, we only
// return non-succeeded payments if requested.
if payment.Status != StatusSucceeded &&
!query.IncludeIncomplete {
return false, err
}
// Skip any payments that were created before the
// specified time.
if startDateSet && payment.Info.CreationTime.Before(
query.CreationDateStart,
) {
return false, nil
}
// Skip any payments that were created after the
// specified time.
if endDateSet && payment.Info.CreationTime.After(
query.CreationDateEnd,
) {
return false, nil
}
// At this point, we've exhausted the offset, so we'll
// begin collecting invoices found within the range.
resp.Payments = append(resp.Payments, payment)
return true, nil
}
// Create a paginator which reads from our sequence index bucket
// with the parameters provided by the payments query.
paginator := newPaginator(
indexes.ReadCursor(), query.Reversed, query.IndexOffset,
query.MaxPayments,
)
// Run a paginated query, adding payments to our response.
if err := paginator.query(accumulatePayments); err != nil {
return err
}
// Counting the total number of payments is expensive, since we
// literally have to traverse the cursor linearly, which can
// take quite a while. So it's an optional query parameter.
if query.CountTotal {
var (
totalPayments uint64
err error
)
countFn := func(_, _ []byte) error {
totalPayments++
return nil
}
// In non-boltdb database backends, there's a faster
// ForAll query that allows for batch fetching items.
if fastBucket, ok := indexes.(kvdb.ExtendedRBucket); ok {
err = fastBucket.ForAll(countFn)
} else {
err = indexes.ForEach(countFn)
}
if err != nil {
return fmt.Errorf("error counting payments: %v",
err)
}
resp.TotalCount = totalPayments
}
return nil
}, func() {
resp = PaymentsResponse{}
}); err != nil {
return resp, err
}
// Need to swap the payments slice order if reversed order.
if query.Reversed {
for l, r := 0, len(resp.Payments)-1; l < r; l, r = l+1, r-1 {
resp.Payments[l], resp.Payments[r] =
resp.Payments[r], resp.Payments[l]
}
}
// Set the first and last index of the returned payments so that the
// caller can resume from this point later on.
if len(resp.Payments) > 0 {
resp.FirstIndexOffset = resp.Payments[0].SequenceNum
resp.LastIndexOffset =
resp.Payments[len(resp.Payments)-1].SequenceNum
}
return resp, nil
}
// fetchPaymentWithSequenceNumber get the payment which matches the payment hash
// *and* sequence number provided from the database. This is required because
// we previously had more than one payment per hash, so we have multiple indexes
// pointing to a single payment; we want to retrieve the correct one.
func fetchPaymentWithSequenceNumber(tx kvdb.RTx, paymentHash lntypes.Hash,
sequenceNumber []byte) (*MPPayment, error) {
// We can now lookup the payment keyed by its hash in
// the payments root bucket.
bucket, err := fetchPaymentBucket(tx, paymentHash)
if err != nil {
return nil, err
}
// A single payment hash can have multiple payments associated with it.
// We lookup our sequence number first, to determine whether this is
// the payment we are actually looking for.
seqBytes := bucket.Get(paymentSequenceKey)
if seqBytes == nil {
return nil, ErrNoSequenceNumber
}
// If this top level payment has the sequence number we are looking for,
// return it.
if bytes.Equal(seqBytes, sequenceNumber) {
return fetchPayment(bucket)
}
// If we were not looking for the top level payment, we are looking for
// one of our duplicate payments. We need to iterate through the seq
// numbers in this bucket to find the correct payments. If we do not
// find a duplicate payments bucket here, something is wrong.
dup := bucket.NestedReadBucket(duplicatePaymentsBucket)
if dup == nil {
return nil, ErrNoDuplicateBucket
}
var duplicatePayment *MPPayment
err = dup.ForEach(func(k, v []byte) error {
subBucket := dup.NestedReadBucket(k)
if subBucket == nil {
// We one bucket for each duplicate to be found.
return ErrNoDuplicateNestedBucket
}
seqBytes := subBucket.Get(duplicatePaymentSequenceKey)
if seqBytes == nil {
return err
}
// If this duplicate payment is not the sequence number we are
// looking for, we can continue.
if !bytes.Equal(seqBytes, sequenceNumber) {
return nil
}
duplicatePayment, err = fetchDuplicatePayment(subBucket)
if err != nil {
return err
}
return nil
})
if err != nil {
return nil, err
}
// If none of the duplicate payments matched our sequence number, we
// failed to find the payment with this sequence number; something is
// wrong.
if duplicatePayment == nil {
return nil, ErrDuplicateNotFound
}
return duplicatePayment, nil
}
// DeletePayment deletes a payment from the DB given its payment hash. If
// failedHtlcsOnly is set, only failed HTLC attempts of the payment will be
// deleted.
func (d *DB) DeletePayment(paymentHash lntypes.Hash,
failedHtlcsOnly bool) error {
return kvdb.Update(d, func(tx kvdb.RwTx) error {
payments := tx.ReadWriteBucket(paymentsRootBucket)
if payments == nil {
return nil
}
bucket := payments.NestedReadWriteBucket(paymentHash[:])
if bucket == nil {
return fmt.Errorf("non bucket element in payments " +
"bucket")
}
// If the status is InFlight, we cannot safely delete
// the payment information, so we return early.
paymentStatus, err := fetchPaymentStatus(bucket)
if err != nil {
return err
}
// If the status is InFlight, we cannot safely delete
// the payment information, so we return an error.
if paymentStatus == StatusInFlight {
return fmt.Errorf("payment '%v' has status InFlight "+
"and therefore cannot be deleted",
paymentHash.String())
}
// Delete the failed HTLC attempts we found.
if failedHtlcsOnly {
toDelete, err := fetchFailedHtlcKeys(bucket)
if err != nil {
return err
}
htlcsBucket := bucket.NestedReadWriteBucket(
paymentHtlcsBucket,
)
for _, htlcID := range toDelete {
err = htlcsBucket.Delete(
htlcBucketKey(htlcAttemptInfoKey, htlcID),
)
if err != nil {
return err
}
err = htlcsBucket.Delete(
htlcBucketKey(htlcFailInfoKey, htlcID),
)
if err != nil {
return err
}
err = htlcsBucket.Delete(
htlcBucketKey(htlcSettleInfoKey, htlcID),
)
if err != nil {
return err
}
}
return nil
}
seqNrs, err := fetchSequenceNumbers(bucket)
if err != nil {
return err
}
if err := payments.DeleteNestedBucket(paymentHash[:]); err != nil {
return err
}
indexBucket := tx.ReadWriteBucket(paymentsIndexBucket)
for _, k := range seqNrs {
if err := indexBucket.Delete(k); err != nil {
return err
}
}
return nil
}, func() {})
}
// DeletePayments deletes all completed and failed payments from the DB. If
// failedOnly is set, only failed payments will be considered for deletion. If
// failedHtlsOnly is set, the payment itself won't be deleted, only failed HTLC
// attempts.
func (d *DB) DeletePayments(failedOnly, failedHtlcsOnly bool) error {
return kvdb.Update(d, func(tx kvdb.RwTx) error {
payments := tx.ReadWriteBucket(paymentsRootBucket)
if payments == nil {
return nil
}
var (
// deleteBuckets is the set of payment buckets we need
// to delete.
deleteBuckets [][]byte
// deleteIndexes is the set of indexes pointing to these
// payments that need to be deleted.
deleteIndexes [][]byte
// deleteHtlcs maps a payment hash to the HTLC IDs we
// want to delete for that payment.
deleteHtlcs = make(map[lntypes.Hash][][]byte)
)
err := payments.ForEach(func(k, _ []byte) error {
bucket := payments.NestedReadBucket(k)
if bucket == nil {
// We only expect sub-buckets to be found in
// this top-level bucket.
return fmt.Errorf("non bucket element in " +
"payments bucket")
}
// If the status is InFlight, we cannot safely delete
// the payment information, so we return early.
paymentStatus, err := fetchPaymentStatus(bucket)
if err != nil {
return err
}
// If the status is InFlight, we cannot safely delete
// the payment information, so we return early.
if paymentStatus == StatusInFlight {
return nil
}
// If we requested to only delete failed payments, we
// can return if this one is not.
if failedOnly && paymentStatus != StatusFailed {
return nil
}
// If we are only deleting failed HTLCs, fetch them.
if failedHtlcsOnly {
toDelete, err := fetchFailedHtlcKeys(bucket)
if err != nil {
return err
}
hash, err := lntypes.MakeHash(k)
if err != nil {
return err
}
deleteHtlcs[hash] = toDelete
// We return, we are only deleting attempts.
return nil
}
// Add the bucket to the set of buckets we can delete.
deleteBuckets = append(deleteBuckets, k)
// Get all the sequence number associated with the
// payment, including duplicates.
seqNrs, err := fetchSequenceNumbers(bucket)
if err != nil {
return err
}
deleteIndexes = append(deleteIndexes, seqNrs...)
return nil
})
if err != nil {
return err
}
// Delete the failed HTLC attempts we found.
for hash, htlcIDs := range deleteHtlcs {
bucket := payments.NestedReadWriteBucket(hash[:])
htlcsBucket := bucket.NestedReadWriteBucket(
paymentHtlcsBucket,
)
for _, aid := range htlcIDs {
if err := htlcsBucket.Delete(
htlcBucketKey(htlcAttemptInfoKey, aid),
); err != nil {
return err
}
if err := htlcsBucket.Delete(
htlcBucketKey(htlcFailInfoKey, aid),
); err != nil {
return err
}
if err := htlcsBucket.Delete(
htlcBucketKey(htlcSettleInfoKey, aid),
); err != nil {
return err
}
}
}
for _, k := range deleteBuckets {
if err := payments.DeleteNestedBucket(k); err != nil {
return err
}
}
// Get our index bucket and delete all indexes pointing to the
// payments we are deleting.
indexBucket := tx.ReadWriteBucket(paymentsIndexBucket)
for _, k := range deleteIndexes {
if err := indexBucket.Delete(k); err != nil {
return err
}
}
return nil
}, func() {})
}
// fetchSequenceNumbers fetches all the sequence numbers associated with a
// payment, including those belonging to any duplicate payments.
func fetchSequenceNumbers(paymentBucket kvdb.RBucket) ([][]byte, error) {
seqNum := paymentBucket.Get(paymentSequenceKey)
if seqNum == nil {
return nil, errors.New("expected sequence number")
}
sequenceNumbers := [][]byte{seqNum}
// Get the duplicate payments bucket, if it has no duplicates, just
// return early with the payment sequence number.
duplicates := paymentBucket.NestedReadBucket(duplicatePaymentsBucket)
if duplicates == nil {
return sequenceNumbers, nil
}
// If we do have duplicated, they are keyed by sequence number, so we
// iterate through the duplicates bucket and add them to our set of
// sequence numbers.
if err := duplicates.ForEach(func(k, v []byte) error {
sequenceNumbers = append(sequenceNumbers, k)
return nil
}); err != nil {
return nil, err
}
return sequenceNumbers, nil
}
// nolint: dupl
func serializePaymentCreationInfo(w io.Writer, c *PaymentCreationInfo) error {
var scratch [8]byte
if _, err := w.Write(c.PaymentIdentifier[:]); err != nil {
return err
}
byteOrder.PutUint64(scratch[:], uint64(c.Value))
if _, err := w.Write(scratch[:]); err != nil {
return err
}
if err := serializeTime(w, c.CreationTime); err != nil {
return err
}
byteOrder.PutUint32(scratch[:4], uint32(len(c.PaymentRequest)))
if _, err := w.Write(scratch[:4]); err != nil {
return err
}
if _, err := w.Write(c.PaymentRequest[:]); err != nil {
return err
}
return nil
}
func deserializePaymentCreationInfo(r io.Reader) (*PaymentCreationInfo, error) {
var scratch [8]byte
c := &PaymentCreationInfo{}
if _, err := io.ReadFull(r, c.PaymentIdentifier[:]); err != nil {
return nil, err
}
if _, err := io.ReadFull(r, scratch[:]); err != nil {
return nil, err
}
c.Value = lnwire.MilliSatoshi(byteOrder.Uint64(scratch[:]))
creationTime, err := deserializeTime(r)
if err != nil {
return nil, err
}
c.CreationTime = creationTime
if _, err := io.ReadFull(r, scratch[:4]); err != nil {
return nil, err
}
reqLen := uint32(byteOrder.Uint32(scratch[:4]))
payReq := make([]byte, reqLen)
if reqLen > 0 {
if _, err := io.ReadFull(r, payReq); err != nil {
return nil, err
}
}
c.PaymentRequest = payReq
return c, nil
}
func serializeHTLCAttemptInfo(w io.Writer, a *HTLCAttemptInfo) error {
if err := WriteElements(w, a.sessionKey); err != nil {
return err
}
2019-06-14 15:01:48 +02:00
if err := SerializeRoute(w, a.Route); err != nil {
return err
}
if err := serializeTime(w, a.AttemptTime); err != nil {
return err
}
// If the hash is nil we can just return.
if a.Hash == nil {
return nil
}
if _, err := w.Write(a.Hash[:]); err != nil {
return err
}
return nil
}
func deserializeHTLCAttemptInfo(r io.Reader) (*HTLCAttemptInfo, error) {
a := &HTLCAttemptInfo{}
err := ReadElements(r, &a.sessionKey)
if err != nil {
return nil, err
}
2019-06-14 15:01:48 +02:00
a.Route, err = DeserializeRoute(r)
if err != nil {
return nil, err
}
a.AttemptTime, err = deserializeTime(r)
if err != nil {
return nil, err
}
hash := lntypes.Hash{}
_, err = io.ReadFull(r, hash[:])
switch {
// Older payment attempts wouldn't have the hash set, in which case we
// can just return.
case err == io.EOF, err == io.ErrUnexpectedEOF:
return a, nil
case err != nil:
return nil, err
default:
}
a.Hash = &hash
return a, nil
}
func serializeHop(w io.Writer, h *route.Hop) error {
if err := WriteElements(w,
h.PubKeyBytes[:],
h.ChannelID,
h.OutgoingTimeLock,
h.AmtToForward,
); err != nil {
return err
}
if err := binary.Write(w, byteOrder, h.LegacyPayload); err != nil {
return err
}
// For legacy payloads, we don't need to write any TLV records, so
// we'll write a zero indicating the our serialized TLV map has no
// records.
if h.LegacyPayload {
return WriteElements(w, uint32(0))
}
// Gather all non-primitive TLV records so that they can be serialized
// as a single blob.
//
// TODO(conner): add migration to unify all fields in a single TLV
// blobs. The split approach will cause headaches down the road as more
// fields are added, which we can avoid by having a single TLV stream
// for all payload fields.
var records []tlv.Record
if h.MPP != nil {
records = append(records, h.MPP.Record())
}
if h.Metadata != nil {
records = append(records, record.NewMetadataRecord(&h.Metadata))
}
2019-12-12 14:47:46 +01:00
// Final sanity check to absolutely rule out custom records that are not
// custom and write into the standard range.
if err := h.CustomRecords.Validate(); err != nil {
return err
}
// Convert custom records to tlv and add to the record list.
// MapToRecords sorts the list, so adding it here will keep the list
// canonical.
tlvRecords := tlv.MapToRecords(h.CustomRecords)
records = append(records, tlvRecords...)
// Otherwise, we'll transform our slice of records into a map of the
// raw bytes, then serialize them in-line with a length (number of
// elements) prefix.
mapRecords, err := tlv.RecordsToMap(records)
if err != nil {
return err
}
numRecords := uint32(len(mapRecords))
if err := WriteElements(w, numRecords); err != nil {
return err
}
for recordType, rawBytes := range mapRecords {
if err := WriteElements(w, recordType); err != nil {
return err
}
if err := wire.WriteVarBytes(w, 0, rawBytes); err != nil {
return err
}
}
return nil
}
// maxOnionPayloadSize is the largest Sphinx payload possible, so we don't need
// to read/write a TLV stream larger than this.
const maxOnionPayloadSize = 1300
func deserializeHop(r io.Reader) (*route.Hop, error) {
h := &route.Hop{}
var pub []byte
if err := ReadElements(r, &pub); err != nil {
return nil, err
}
copy(h.PubKeyBytes[:], pub)
if err := ReadElements(r,
&h.ChannelID, &h.OutgoingTimeLock, &h.AmtToForward,
); err != nil {
return nil, err
}
// TODO(roasbeef): change field to allow LegacyPayload false to be the
// legacy default?
err := binary.Read(r, byteOrder, &h.LegacyPayload)
if err != nil {
return nil, err
}
var numElements uint32
if err := ReadElements(r, &numElements); err != nil {
return nil, err
}
// If there're no elements, then we can return early.
if numElements == 0 {
return h, nil
}
tlvMap := make(map[uint64][]byte)
for i := uint32(0); i < numElements; i++ {
var tlvType uint64
if err := ReadElements(r, &tlvType); err != nil {
return nil, err
}
rawRecordBytes, err := wire.ReadVarBytes(
r, 0, maxOnionPayloadSize, "tlv",
)
if err != nil {
return nil, err
}
tlvMap[tlvType] = rawRecordBytes
}
// If the MPP type is present, remove it from the generic TLV map and
// parse it back into a proper MPP struct.
//
// TODO(conner): add migration to unify all fields in a single TLV
// blobs. The split approach will cause headaches down the road as more
// fields are added, which we can avoid by having a single TLV stream
// for all payload fields.
mppType := uint64(record.MPPOnionType)
if mppBytes, ok := tlvMap[mppType]; ok {
delete(tlvMap, mppType)
var (
mpp = &record.MPP{}
mppRec = mpp.Record()
r = bytes.NewReader(mppBytes)
)
err := mppRec.Decode(r, uint64(len(mppBytes)))
if err != nil {
return nil, err
}
h.MPP = mpp
}
metadataType := uint64(record.MetadataOnionType)
if metadata, ok := tlvMap[metadataType]; ok {
delete(tlvMap, metadataType)
h.Metadata = metadata
}
h.CustomRecords = tlvMap
return h, nil
}
2019-06-14 15:01:48 +02:00
// SerializeRoute serializes a route.
func SerializeRoute(w io.Writer, r route.Route) error {
if err := WriteElements(w,
r.TotalTimeLock, r.TotalAmount, r.SourcePubKey[:],
); err != nil {
return err
}
if err := WriteElements(w, uint32(len(r.Hops))); err != nil {
return err
}
for _, h := range r.Hops {
if err := serializeHop(w, h); err != nil {
return err
}
}
return nil
}
2019-06-14 15:01:48 +02:00
// DeserializeRoute deserializes a route.
func DeserializeRoute(r io.Reader) (route.Route, error) {
rt := route.Route{}
if err := ReadElements(r,
&rt.TotalTimeLock, &rt.TotalAmount,
); err != nil {
return rt, err
}
var pub []byte
if err := ReadElements(r, &pub); err != nil {
return rt, err
}
copy(rt.SourcePubKey[:], pub)
var numHops uint32
if err := ReadElements(r, &numHops); err != nil {
return rt, err
}
var hops []*route.Hop
for i := uint32(0); i < numHops; i++ {
hop, err := deserializeHop(r)
if err != nil {
return rt, err
}
hops = append(hops, hop)
}
rt.Hops = hops
return rt, nil
}