import hashlib from typing import List, Set from .models import BlindedMessage, BlindedSignature, Invoice, Proof from secp256k1 import PublicKey, PrivateKey from fastapi import Query from lnbits.core.services import check_transaction_status, create_invoice class Ledger: def __init__(self, secret_key: str, MAX_ORDER: int = Query(64)): self.proofs_used: Set[str] = set() self.master_key: str = secret_key self.keys: List[PrivateKey] = self._derive_keys(self.master_key) self.pub_keys: List[PublicKey] = self._derive_pubkeys(self.keys) async def load_used_proofs(self): self.proofs_used = set(await get_proofs_used) @staticmethod def _derive_keys(master_key: str): """Deterministic derivation of keys for 2^n values.""" return { 2 ** i: PrivateKey( hashlib.sha256((str(master_key) + str(i)).encode("utf-8")) .hexdigest() .encode("utf-8")[:32], raw=True, ) for i in range(MAX_ORDER) } @staticmethod def _derive_pubkeys(keys: List[PrivateKey]): return {amt: keys[amt].pubkey for amt in [2**i for i in range(MAX_ORDER)]} async def _generate_promises(self, amounts: List[int], B_s: List[str]): """Generates promises that sum to the given amount.""" return [ await self._generate_promise(amount, PublicKey(bytes.fromhex(B_), raw=True)) for (amount, B_) in zip(amounts, B_s) ] async def _generate_promise(self, amount: int, B_: PublicKey): """Generates a promise for given amount and returns a pair (amount, C').""" secret_key = self.keys[amount] # Get the correct key C_ = step2_bob(B_, secret_key) await store_promise( amount, B_=B_.serialize().hex(), C_=C_.serialize().hex() ) return BlindedSignature(amount=amount, C_=C_.serialize().hex()) def _check_spendable(self, proof: Proof): """Checks whether the proof was already spent.""" return not proof.secret in self.proofs_used def _verify_proof(self, proof: Proof): """Verifies that the proof of promise was issued by this ledger.""" if not self._check_spendable(proof): raise Exception(f"tokens already spent. Secret: {proof.secret}") secret_key = self.keys[proof.amount] # Get the correct key to check against C = PublicKey(bytes.fromhex(proof.C), raw=True) return verify(secret_key, C, proof.secret) def _verify_outputs( self, total: int, amount: int, output_data: List[BlindedMessage] ): """Verifies the expected split was correctly computed""" fst_amt, snd_amt = total - amount, amount # we have two amounts to split to fst_outputs = amount_split(fst_amt) snd_outputs = amount_split(snd_amt) expected = fst_outputs + snd_outputs given = [o.amount for o in output_data] return given == expected def _verify_no_duplicates( self, proofs: List[Proof], output_data: List[BlindedMessage] ): secrets = [p.secret for p in proofs] if len(secrets) != len(list(set(secrets))): return False B_s = [od.B_ for od in output_data] if len(B_s) != len(list(set(B_s))): return False return True def _verify_split_amount(self, amount: int): """Split amount like output amount can't be negative or too big.""" try: self._verify_amount(amount) except: # For better error message raise Exception("invalid split amount: " + str(amount)) def _verify_amount(self, amount: int): """Any amount used should be a positive integer not larger than 2^MAX_ORDER.""" valid = isinstance(amount, int) and amount > 0 and amount < 2**MAX_ORDER if not valid: raise Exception("invalid amount: " + str(amount)) return amount def _verify_equation_balanced( self, proofs: List[Proof], outs: List[BlindedMessage] ): """Verify that Σoutputs - Σinputs = 0.""" sum_inputs = sum(self._verify_amount(p.amount) for p in proofs) sum_outputs = sum(self._verify_amount(p.amount) for p in outs) assert sum_outputs - sum_inputs == 0 def _get_output_split(self, amount: int): """Given an amount returns a list of amounts returned e.g. 13 is [1, 4, 8].""" self._verify_amount(amount) bits_amt = bin(amount)[::-1][:-2] rv = [] for (pos, bit) in enumerate(bits_amt): if bit == "1": rv.append(2**pos) return rv async def _invalidate_proofs(self, proofs: List[Proof]): """Adds secrets of proofs to the list of knwon secrets and stores them in the db.""" # Mark proofs as used and prepare new promises proof_msgs = set([p.secret for p in proofs]) self.proofs_used |= proof_msgs # store in db for p in proofs: await invalidate_proof(p) # Public methods def get_pubkeys(self): """Returns public keys for possible amounts.""" return {a: p.serialize().hex() for a, p in self.pub_keys.items()} async def request_mint(self, amount): """Returns Lightning invoice and stores it in the db.""" payment_request, payment_hash = payment_hash, payment_request = await create_invoice( wallet_id=link.wallet, amount=amount, memo=link.description, unhashed_description=link.description.encode("utf-8"), extra={ "tag": "Cashu" }, ) invoice = Invoice( amount=amount, pr=payment_request, hash=payment_hash, issued=False ) if not payment_request or not payment_hash: raise Exception(f"Could not create Lightning invoice.") await store_lightning_invoice(invoice) return payment_request, payment_hash async def mint(self, B_s: List[PublicKey], amounts: List[int], payment_hash=None): """Mints a promise for coins for B_.""" # check if lightning invoice was paid if payment_hash and not await check_transaction_status(payment_hash): raise Exception("Lightning invoice not paid yet.") for amount in amounts: if amount not in [2**i for i in range(MAX_ORDER)]: raise Exception(f"Can only mint amounts up to {2**MAX_ORDER}.") promises = [ await self._generate_promise(amount, B_) for B_, amount in zip(B_s, amounts) ] return promises async def melt(self, proofs: List[Proof], amount: int, invoice: str): """Invalidates proofs and pays a Lightning invoice.""" # if not LIGHTNING: total = sum([p["amount"] for p in proofs]) # check that lightning fees are included assert total + fee_reserve(amount * 1000) >= amount, Exception( "provided proofs not enough for Lightning payment." ) status, payment_hash = await pay_invoice( wallet_id=link.wallet, payment_request=invoice, max_sat=amount, extra={"tag": "Ecash melt"}, ) if status == True: await self._invalidate_proofs(proofs) return status, payment_hash async def check_spendable(self, proofs: List[Proof]): """Checks if all provided proofs are valid and still spendable (i.e. have not been spent).""" return {i: self._check_spendable(p) for i, p in enumerate(proofs)} async def split( self, proofs: List[Proof], amount: int, output_data: List[BlindedMessage] ): """Consumes proofs and prepares new promises based on the amount split.""" self._verify_split_amount(amount) # Verify proofs are valid if not all([self._verify_proof(p) for p in proofs]): return False total = sum([p.amount for p in proofs]) if not self._verify_no_duplicates(proofs, output_data): raise Exception("duplicate proofs or promises") if amount > total: raise Exception("split amount is higher than the total sum") if not self._verify_outputs(total, amount, output_data): raise Exception("split of promises is not as expected") # Mark proofs as used and prepare new promises await self._invalidate_proofs(proofs) outs_fst = amount_split(total - amount) outs_snd = amount_split(amount) B_fst = [od.B_ for od in output_data[: len(outs_fst)]] B_snd = [od.B_ for od in output_data[len(outs_fst) :]] prom_fst, prom_snd = await self._generate_promises( outs_fst, B_fst ), await self._generate_promises(outs_snd, B_snd) self._verify_equation_balanced(proofs, prom_fst + prom_snd) return prom_fst, prom_snd ##############FUNCTIONS############### def fee_reserve(amount_msat: int) -> int: """Function for calculating the Lightning fee reserve""" return max( int(LIGHTNING_RESERVE_FEE_MIN), int(amount_msat * LIGHTNING_FEE_PERCENT / 100.0) ) def amount_split(amount): """Given an amount returns a list of amounts returned e.g. 13 is [1, 4, 8].""" bits_amt = bin(amount)[::-1][:-2] rv = [] for (pos, bit) in enumerate(bits_amt): if bit == "1": rv.append(2**pos) return rv def hash_to_point(secret_msg): """Generates x coordinate from the message hash and checks if the point lies on the curve. If it does not, it tries computing again a new x coordinate from the hash of the coordinate.""" point = None msg = secret_msg while point is None: _hash = hashlib.sha256(msg).hexdigest().encode("utf-8") try: # We construct compressed pub which has x coordinate encoded with even y _hash = list(_hash[:33]) # take the 33 bytes and get a list of bytes _hash[0] = 0x02 # set first byte to represent even y coord _hash = bytes(_hash) point = PublicKey(_hash, raw=True) except: msg = _hash return point def step1_alice(secret_msg): secret_msg = secret_msg.encode("utf-8") Y = hash_to_point(secret_msg) r = PrivateKey() B_ = Y + r.pubkey return B_, r def step2_bob(B_, a): C_ = B_.mult(a) return C_ def step3_alice(C_, r, A): C = C_ - A.mult(r) return C def verify(a, C, secret_msg): Y = hash_to_point(secret_msg.encode("utf-8")) return C == Y.mult(a)