There are no functional changes, but bitcoin-lib 0.19 is based on secp256k1-kmp (instead of our own fork of secp256k1's JNI wrapper) which is cleaner, easier to maintain and used in our mobile apps.
From scalatest's doc [1]:
> This minimizes or eliminates the need to search and scroll backwards
to find out what tests failed or were canceled. For large test suites,
the actual failure message could have scrolled off the top of the
buffer, making it otherwise impossible to see what failed.
[1] https://www.scalatest.org/user_guide/using_the_runner
This is almost a drop-in replacement. I had to relaxed compiler
parameters to allow deprecated features though.
Main changes:
- relaxed compiler parameters to minimize impact (e.g. allow
deprecated features)
- `scala.collection.JavaConverters` -> `scala.jdk.CollectionConverters`
- `MultiMap` -> `MultiDict`
Compilation is 25% faster on my machine, compiler is a bit more strict
(it found an "invalid comparison" bug).
Do all the changes that will be required and are already possible to
minimize the diff:
- update dependencies
- `'something` -> `Symbol("something")`
- `BigDecimal.xValue()` -> `BigDecimal.xValue`
- `Map.filterKeys` -> `Map.filterKeys.toMap` (same for `Map.mapValues`)
- `def myMethod(...)` -> `def myMethod(...): Unit`
We already have Java 7 (for Android) and Java 11. Supporting Java 8
would require crossbuilding, which we are not doing (two recent PRs
broke the build on Java 8).
There are two level of parallelization:
- between test suites (a suite = a test file)
- within a suite (depends on tests suites, some rely on sequential execution of tests, some don't)
For now:
- we only track some tasks (especially in the router, but not even
`node_announcement` and `channel_update`
- all db calls are monitored
- kamon is disabled by default
* Type all amounts used in eclair
* Add eclair.MilliSatoshi class
* Use bitcoin-lib 0.14
* Add specialized codecs for Satoshi/MilliSatoshi
* Rename 'toSatoshi' to 'truncateToSatoshi' to highlight it's a precision-losing conversion
* use 64B representation instead of DER for sigs
It is more compact, and as an added bonus it frees us from the
completely unrelated Bitcoin-specific `0x01` trailing sig hash.
Note that we already used the 64B representation for storage everywhere,
except in `ChannelCodecs.htlcTxAndSigsCodec`, which required a backward
compatibility codec. Added a nonreg test for this.
* Use updated secp256k1 JNI bindings
* Replace scalar with private key and point with public key
We now use the simplified/unified design proposed in bitcoin-lib where:
- there are no more specific types for scalar/point
- private and public keys are compressed unless explicitly requested
* Generate and use 32 bytes seeds (and not 33)
We used serialized random private keys which were represented a 33 bytes (with a 01 suffix).
Using random 32 bytes values is more consistent.
We must make sure that upgraded apps that already have a 33 bytes seed will still generate the same secrets, which is why LocalKeyManager still uses the 01 suffix when needed
* Add scoverage-maven-plugin dependency
* Update travis build to generate a scoverage report
* Add custom codecov configuration to have nice PR comments
* Add badge for test coverage in readme
* Initialize the database outside the node param constructor
* Do not create folders during StartupSpec
* Simplify syntax for instantiating test Databases
* Rework parameter passing to database initialization
* Force UTF-8 file encoding on all platform.
* Use bitcoin-lib 0.11, which embeds libsecp256k1
* Unit tests: generate dummy sig from 32 random bytes
We now use a version of bitcoin-lib which embeds JNI bindings for libsecp256k1,
and it will only sign data that is 32 bytes long (in Bitcoin and LN you always
sign data hashes, not the actual data).
* Use maven 3.6.0 and a different mirror
* RoutingSyncSpec: don't create databases at init time
We called nodeParams which created a new in-memory sqlite database everytime we created "fake" routing info