mirror of
https://github.com/ElementsProject/lightning.git
synced 2024-11-19 09:54:16 +01:00
3c6eec87e3
This is a bit messier than I'd like, but we want to clearly remove all dev code (not just have it uncalled), so we remove fields and functions altogether rather than stub them out. This means we put #ifdefs in callers in some places, but at least it's explicit. We still run tests, but only a subset, and we run with NO_VALGRIND under Travis to avoid increasing test times too much. See-also: #176 Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
401 lines
11 KiB
C
401 lines
11 KiB
C
#include <assert.h>
|
|
#include <ccan/build_assert/build_assert.h>
|
|
#include <ccan/crypto/hkdf_sha256/hkdf_sha256.h>
|
|
#include <ccan/crypto/sha256/sha256.h>
|
|
#include <ccan/endian/endian.h>
|
|
#include <ccan/mem/mem.h>
|
|
#include <ccan/short_types/short_types.h>
|
|
#include <ccan/take/take.h>
|
|
#include <common/cryptomsg.h>
|
|
#include <common/dev_disconnect.h>
|
|
#include <common/status.h>
|
|
#include <common/utils.h>
|
|
#include <sodium/crypto_aead_chacha20poly1305.h>
|
|
#include <wire/peer_wire.h>
|
|
#include <wire/wire.h>
|
|
#include <wire/wire_io.h>
|
|
|
|
static void hkdf_two_keys(struct secret *out1, struct secret *out2,
|
|
const struct secret *in1,
|
|
const struct secret *in2)
|
|
{
|
|
/* BOLT #8:
|
|
*
|
|
* * `HKDF(salt,ikm)`: a function is defined in [3](#reference-3),
|
|
* evaluated with a zero-length `info` field.
|
|
* * All invocations of the `HKDF` implicitly return `64-bytes`
|
|
* of cryptographic randomness using the extract-and-expand
|
|
* component of the `HKDF`.
|
|
*/
|
|
struct secret okm[2];
|
|
|
|
BUILD_ASSERT(sizeof(okm) == 64);
|
|
hkdf_sha256(okm, sizeof(okm), in1, sizeof(*in1), in2, sizeof(*in2),
|
|
NULL, 0);
|
|
*out1 = okm[0];
|
|
*out2 = okm[1];
|
|
}
|
|
|
|
static void maybe_rotate_key(u64 *n, struct secret *k, struct secret *ck)
|
|
{
|
|
struct secret new_k, new_ck;
|
|
|
|
/* BOLT #8:
|
|
*
|
|
* A key is to be rotated after a party sends or decrypts
|
|
* `1000` messages with it. This can be properly accounted
|
|
* for by rotating the key once the nonce dedicated to it
|
|
* exceeds `1000`.
|
|
*/
|
|
if (*n != 1000)
|
|
return;
|
|
|
|
/* BOLT #8:
|
|
*
|
|
* Key rotation for a key `k` is performed according to the following:
|
|
*
|
|
* * Let `ck` be the chaining key obtained at the end of `Act Three`.
|
|
* * `ck', k' = HKDF(ck, k)`
|
|
* * Reset the nonce for the key to `n = 0`.
|
|
* * `k = k'`
|
|
* * `ck = ck'`
|
|
*/
|
|
hkdf_two_keys(&new_ck, &new_k, ck, k);
|
|
#ifdef SUPERVERBOSE
|
|
status_trace("# 0x%s, 0x%s = HKDF(0x%s, 0x%s)",
|
|
tal_hexstr(trc, &new_ck, sizeof(new_ck)),
|
|
tal_hexstr(trc, &new_k, sizeof(new_k)),
|
|
tal_hexstr(trc, ck, sizeof(*ck)),
|
|
tal_hexstr(trc, k, sizeof(*k)));
|
|
#endif
|
|
*ck = new_ck;
|
|
*k = new_k;
|
|
*n = 0;
|
|
}
|
|
|
|
static void le64_nonce(unsigned char *npub, u64 nonce)
|
|
{
|
|
/* BOLT #8:
|
|
*
|
|
* ...with nonce `n` encoded as 32 zero bits followed by a
|
|
* *little-endian* 64-bit value (this follows the Noise Protocol
|
|
* convention, rather than our normal endian).
|
|
*/
|
|
le64 le_nonce = cpu_to_le64(nonce);
|
|
const size_t zerolen = crypto_aead_chacha20poly1305_ietf_NPUBBYTES - sizeof(le_nonce);
|
|
|
|
BUILD_ASSERT(crypto_aead_chacha20poly1305_ietf_NPUBBYTES >= sizeof(le_nonce));
|
|
/* First part is 0, followed by nonce. */
|
|
memset(npub, 0, zerolen);
|
|
memcpy(npub + zerolen, &le_nonce, sizeof(le_nonce));
|
|
}
|
|
|
|
u8 *cryptomsg_decrypt_body(const tal_t *ctx,
|
|
struct crypto_state *cs, const u8 *in)
|
|
{
|
|
unsigned char npub[crypto_aead_chacha20poly1305_ietf_NPUBBYTES];
|
|
unsigned long long mlen;
|
|
size_t inlen = tal_count(in);
|
|
u8 *decrypted;
|
|
|
|
if (inlen < 16)
|
|
return NULL;
|
|
decrypted = tal_arr(ctx, u8, inlen - 16);
|
|
|
|
le64_nonce(npub, cs->rn++);
|
|
|
|
/* BOLT #8:
|
|
*
|
|
* * Decrypt `c` using `ChaCha20-Poly1305`, `rn`, and `rk` to
|
|
* obtain decrypted plaintext packet `p`.
|
|
*
|
|
* * The nonce `rn` MUST be incremented after this step.
|
|
*/
|
|
if (crypto_aead_chacha20poly1305_ietf_decrypt(decrypted,
|
|
&mlen, NULL,
|
|
memcheck(in, inlen),
|
|
inlen,
|
|
NULL, 0,
|
|
npub, cs->rk.data) != 0) {
|
|
/* FIXME: Report error! */
|
|
return tal_free(decrypted);
|
|
}
|
|
assert(mlen == tal_count(decrypted));
|
|
|
|
maybe_rotate_key(&cs->rn, &cs->rk, &cs->r_ck);
|
|
return decrypted;
|
|
}
|
|
|
|
static struct io_plan *peer_decrypt_body(struct io_conn *conn,
|
|
struct peer_crypto_state *pcs)
|
|
{
|
|
struct io_plan *plan;
|
|
u8 *in, *decrypted;
|
|
|
|
pcs->reading_body = false;
|
|
|
|
decrypted = cryptomsg_decrypt_body(pcs->in, &pcs->cs, pcs->in);
|
|
if (!decrypted)
|
|
return io_close(conn);
|
|
|
|
/* BOLT #1:
|
|
*
|
|
* A node MUST ignore a received message of unknown type, if that type
|
|
* is odd.
|
|
*/
|
|
if (unlikely(is_unknown_msg_discardable(decrypted))) {
|
|
pcs->in = tal_free(pcs->in);
|
|
return peer_read_message(conn, pcs, pcs->next_in);
|
|
}
|
|
|
|
/* Steal cs->in: we free it after, and decrypted too unless
|
|
* they steal but be careful not to touch anything after
|
|
* next_in (could free itself) */
|
|
in = tal_steal(NULL, pcs->in);
|
|
pcs->in = NULL;
|
|
|
|
plan = pcs->next_in(conn, pcs->peer, decrypted);
|
|
tal_free(in);
|
|
return plan;
|
|
}
|
|
|
|
bool cryptomsg_decrypt_header(struct crypto_state *cs, u8 hdr[18], u16 *lenp)
|
|
{
|
|
unsigned char npub[crypto_aead_chacha20poly1305_ietf_NPUBBYTES];
|
|
unsigned long long mlen;
|
|
be16 len;
|
|
|
|
le64_nonce(npub, cs->rn++);
|
|
|
|
/* BOLT #8:
|
|
*
|
|
* * Let the encrypted length prefix be known as `lc`
|
|
*
|
|
* * Decrypt `lc` using `ChaCha20-Poly1305`, `rn`, and `rk` to
|
|
* obtain size of the encrypted packet `l`.
|
|
* * A zero-length byte slice is to be passed as the AD
|
|
* (associated data).
|
|
* * The nonce `rn` MUST be incremented after this step.
|
|
*/
|
|
if (crypto_aead_chacha20poly1305_ietf_decrypt((unsigned char *)&len,
|
|
&mlen, NULL,
|
|
memcheck(hdr, 18), 18,
|
|
NULL, 0,
|
|
npub, cs->rk.data) != 0) {
|
|
/* FIXME: Report error! */
|
|
return false;
|
|
}
|
|
assert(mlen == sizeof(len));
|
|
*lenp = be16_to_cpu(len);
|
|
return true;
|
|
}
|
|
|
|
static struct io_plan *peer_decrypt_header(struct io_conn *conn,
|
|
struct peer_crypto_state *pcs)
|
|
{
|
|
u16 len;
|
|
|
|
if (!cryptomsg_decrypt_header(&pcs->cs, pcs->in, &len))
|
|
return io_close(conn);
|
|
|
|
tal_free(pcs->in);
|
|
|
|
pcs->reading_body = true;
|
|
|
|
/* BOLT #8:
|
|
*
|
|
* * Read _exactly_ `l+16` bytes from the network buffer, let
|
|
* the bytes be known as `c`.
|
|
*/
|
|
pcs->in = tal_arr(conn, u8, (u32)len + 16);
|
|
return io_read(conn, pcs->in, tal_count(pcs->in), peer_decrypt_body,
|
|
pcs);
|
|
}
|
|
|
|
struct io_plan *peer_read_message(struct io_conn *conn,
|
|
struct peer_crypto_state *pcs,
|
|
struct io_plan *(*next)(struct io_conn *,
|
|
struct peer *,
|
|
u8 *msg))
|
|
{
|
|
assert(!pcs->in);
|
|
/* BOLT #8:
|
|
*
|
|
* ### Decrypting Messages
|
|
*
|
|
* In order to decrypt the _next_ message in the network
|
|
* stream, the following is done:
|
|
*
|
|
* * Read _exactly_ `18-bytes` from the network buffer.
|
|
*/
|
|
pcs->reading_body = false;
|
|
pcs->in = tal_arr(conn, u8, 18);
|
|
pcs->next_in = next;
|
|
return io_read(conn, pcs->in, 18, peer_decrypt_header, pcs);
|
|
}
|
|
|
|
static struct io_plan *peer_write_done(struct io_conn *conn,
|
|
struct peer_crypto_state *pcs)
|
|
{
|
|
pcs->out = tal_free(pcs->out);
|
|
return pcs->next_out(conn, pcs->peer);
|
|
}
|
|
|
|
u8 *cryptomsg_encrypt_msg(const tal_t *ctx,
|
|
struct crypto_state *cs,
|
|
const u8 *msg TAKES)
|
|
{
|
|
unsigned char npub[crypto_aead_chacha20poly1305_ietf_NPUBBYTES];
|
|
unsigned long long clen, mlen = tal_count(msg);
|
|
be16 l;
|
|
int ret;
|
|
u8 *out;
|
|
|
|
out = tal_arr(ctx, u8, sizeof(l) + 16 + mlen + 16);
|
|
|
|
/* BOLT #8:
|
|
*
|
|
* In order to encrypt a lightning message (`m`), given a
|
|
* sending key (`sk`), and a nonce (`sn`), the following is done:
|
|
*
|
|
*
|
|
* * let `l = len(m)`,
|
|
* where `len` obtains the length in bytes of the lightning message.
|
|
*
|
|
* * Serialize `l` into `2-bytes` encoded as a big-endian integer.
|
|
*/
|
|
l = cpu_to_be16(mlen);
|
|
|
|
/* BOLT #8:
|
|
*
|
|
* * Encrypt `l` using `ChaChaPoly-1305`, `sn`, and `sk` to obtain `lc`
|
|
* (`18-bytes`)
|
|
* * The nonce `sn` is encoded as a 96-bit little-endian number.
|
|
* As our decoded nonces a 64-bit, we encode the 96-bit nonce as
|
|
* follows: 32-bits of leading zeroes followed by a 64-bit value.
|
|
* * The nonce `sn` MUST be incremented after this step.
|
|
* * A zero-length byte slice is to be passed as the AD
|
|
*/
|
|
le64_nonce(npub, cs->sn++);
|
|
ret = crypto_aead_chacha20poly1305_ietf_encrypt(out, &clen,
|
|
(unsigned char *)
|
|
memcheck(&l, sizeof(l)),
|
|
sizeof(l),
|
|
NULL, 0,
|
|
NULL, npub,
|
|
cs->sk.data);
|
|
assert(ret == 0);
|
|
assert(clen == sizeof(l) + 16);
|
|
#ifdef SUPERVERBOSE
|
|
status_trace("# encrypt l: cleartext=0x%s, AD=NULL, sn=0x%s, sk=0x%s => 0x%s",
|
|
tal_hexstr(trc, &l, sizeof(l)),
|
|
tal_hexstr(trc, npub, sizeof(npub)),
|
|
tal_hexstr(trc, &cs->sk, sizeof(cs->sk)),
|
|
tal_hexstr(trc, out, clen));
|
|
#endif
|
|
|
|
/* BOLT #8:
|
|
*
|
|
* * Finally encrypt the message itself (`m`) using the same
|
|
* procedure used to encrypt the length prefix. Let
|
|
* encrypted ciphertext be known as `c`.
|
|
*
|
|
* * The nonce `sn` MUST be incremented after this step.
|
|
*/
|
|
le64_nonce(npub, cs->sn++);
|
|
ret = crypto_aead_chacha20poly1305_ietf_encrypt(out + clen, &clen,
|
|
memcheck(msg, mlen),
|
|
mlen,
|
|
NULL, 0,
|
|
NULL, npub,
|
|
cs->sk.data);
|
|
assert(ret == 0);
|
|
assert(clen == mlen + 16);
|
|
#ifdef SUPERVERBOSE
|
|
status_trace("# encrypt m: cleartext=0x%s, AD=NULL, sn=0x%s, sk=0x%s => 0x%s",
|
|
tal_hexstr(trc, msg, mlen),
|
|
tal_hexstr(trc, npub, sizeof(npub)),
|
|
tal_hexstr(trc, &cs->sk, sizeof(cs->sk)),
|
|
tal_hexstr(trc, out + 18, clen));
|
|
#endif
|
|
|
|
maybe_rotate_key(&cs->sn, &cs->sk, &cs->s_ck);
|
|
|
|
if (taken(msg))
|
|
tal_free(msg);
|
|
return out;
|
|
}
|
|
|
|
#if DEVELOPER
|
|
static struct io_plan *peer_write_postclose(struct io_conn *conn,
|
|
struct peer_crypto_state *pcs)
|
|
{
|
|
pcs->out = tal_free(pcs->out);
|
|
dev_sabotage_fd(io_conn_fd(conn));
|
|
return pcs->next_out(conn, pcs->peer);
|
|
}
|
|
#endif
|
|
|
|
struct io_plan *peer_write_message(struct io_conn *conn,
|
|
struct peer_crypto_state *pcs,
|
|
const u8 *msg,
|
|
struct io_plan *(*next)(struct io_conn *,
|
|
struct peer *))
|
|
{
|
|
struct io_plan *(*post)(struct io_conn *, struct peer_crypto_state *);
|
|
#if DEVELOPER
|
|
int type = fromwire_peektype(msg);
|
|
#endif
|
|
|
|
assert(!pcs->out);
|
|
|
|
pcs->out = cryptomsg_encrypt_msg(conn, &pcs->cs, msg);
|
|
pcs->next_out = next;
|
|
|
|
post = peer_write_done;
|
|
|
|
#if DEVELOPER
|
|
switch (dev_disconnect(type)) {
|
|
case DEV_DISCONNECT_BEFORE:
|
|
dev_sabotage_fd(io_conn_fd(conn));
|
|
break;
|
|
case DEV_DISCONNECT_DROPPKT:
|
|
pcs->out = NULL; /* FALL THRU */
|
|
case DEV_DISCONNECT_AFTER:
|
|
post = peer_write_postclose;
|
|
break;
|
|
case DEV_DISCONNECT_BLACKHOLE:
|
|
dev_blackhole_fd(io_conn_fd(conn));
|
|
break;
|
|
case DEV_DISCONNECT_NORMAL:
|
|
break;
|
|
}
|
|
#endif /* DEVELOPER */
|
|
|
|
/* BOLT #8:
|
|
* * Send `lc || c` over the network buffer.
|
|
*/
|
|
return io_write(conn, pcs->out, tal_count(pcs->out), post, pcs);
|
|
}
|
|
|
|
/* We write in one op, so it's all or nothing. */
|
|
bool peer_out_started(const struct io_conn *conn,
|
|
const struct peer_crypto_state *cs)
|
|
{
|
|
return io_plan_out_started(conn);
|
|
}
|
|
|
|
/* We read in two parts, so we might have started body. */
|
|
bool peer_in_started(const struct io_conn *conn,
|
|
const struct peer_crypto_state *cs)
|
|
{
|
|
return io_plan_in_started(conn) || cs->reading_body;
|
|
}
|
|
|
|
void init_peer_crypto_state(struct peer *peer, struct peer_crypto_state *pcs)
|
|
{
|
|
pcs->peer = peer;
|
|
pcs->out = pcs->in = NULL;
|
|
pcs->reading_body = false;
|
|
}
|