mirror of
https://github.com/ElementsProject/lightning.git
synced 2024-11-19 18:11:28 +01:00
643 lines
18 KiB
C
643 lines
18 KiB
C
#define _GNU_SOURCE 1
|
|
#include "onion_key.h"
|
|
#include "version.h"
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <err.h>
|
|
#include <stdbool.h>
|
|
#include <assert.h>
|
|
#include <ccan/build_assert/build_assert.h>
|
|
#include <ccan/tal/tal.h>
|
|
#include <ccan/mem/mem.h>
|
|
#include <ccan/crypto/sha256/sha256.h>
|
|
#include <ccan/endian/endian.h>
|
|
#include <ccan/read_write_all/read_write_all.h>
|
|
#include <ccan/opt/opt.h>
|
|
#include <ccan/str/hex/hex.h>
|
|
#include <secp256k1.h>
|
|
#include <secp256k1_ecdh.h>
|
|
#include <sodium/crypto_stream_aes128ctr.h>
|
|
#include <sodium/crypto_auth_hmacsha256.h>
|
|
#include <sodium/utils.h>
|
|
|
|
/*
|
|
* The client knows the server's public key S (which has corresponding
|
|
private key s) in advance.
|
|
* The client generates an ephemeral private key r, and its corresponding
|
|
public key R.
|
|
* The client computes K = ECDH(r, S), and sends R to the server at
|
|
connection establishing time.
|
|
* The server receives R, and computes K = ECHD(R, s).
|
|
* Both client and server compute Kenc = SHA256(K || 0) and Kmac = SHA256(K
|
|
|| 1), and now send HMAC-SHA256(key=Kmac, msg=AES(key=Kenc, msg=m)) instead
|
|
of m, for each message.
|
|
*/
|
|
|
|
struct enckey {
|
|
struct sha256 k;
|
|
};
|
|
|
|
struct hmackey {
|
|
struct sha256 k;
|
|
};
|
|
|
|
struct iv {
|
|
unsigned char iv[crypto_stream_aes128ctr_NONCEBYTES];
|
|
};
|
|
|
|
static void sha_with_seed(const unsigned char secret[32],
|
|
unsigned char seed,
|
|
struct sha256 *res)
|
|
{
|
|
struct sha256_ctx ctx;
|
|
|
|
sha256_init(&ctx);
|
|
sha256_update(&ctx, memcheck(secret, 32), 32);
|
|
sha256_u8(&ctx, seed);
|
|
sha256_done(&ctx, res);
|
|
}
|
|
|
|
static struct enckey enckey_from_secret(const unsigned char secret[32])
|
|
{
|
|
struct enckey enckey;
|
|
sha_with_seed(secret, 0, &enckey.k);
|
|
return enckey;
|
|
}
|
|
|
|
static struct hmackey hmackey_from_secret(const unsigned char secret[32])
|
|
{
|
|
struct hmackey hmackey;
|
|
sha_with_seed(secret, 1, &hmackey.k);
|
|
memcheck(&hmackey, 1);
|
|
return hmackey;
|
|
}
|
|
|
|
|
|
static void ivs_from_secret(const unsigned char secret[32],
|
|
struct iv *iv, struct iv *pad_iv)
|
|
{
|
|
struct sha256 sha;
|
|
sha_with_seed(secret, 2, &sha);
|
|
BUILD_ASSERT(sizeof(*iv) + sizeof(*pad_iv) == sizeof(sha));
|
|
memcpy(iv->iv, sha.u.u8, sizeof(iv->iv));
|
|
memcpy(pad_iv->iv, sha.u.u8 + sizeof(iv->iv), sizeof(pad_iv->iv));
|
|
}
|
|
|
|
/* Not really! */
|
|
static void random_bytes(void *dst, size_t n)
|
|
{
|
|
size_t i;
|
|
unsigned char *d = dst;
|
|
|
|
for (i = 0; i < n; i++)
|
|
d[i] = random() % 256;
|
|
}
|
|
|
|
/* Compressed key would start with 0x3? Subtract from group. Thanks
|
|
* Greg Maxwell. */
|
|
static void flip_key(struct seckey *seckey)
|
|
{
|
|
int i;
|
|
bool carry = 0;
|
|
|
|
const int64_t group[] = {
|
|
0xFFFFFFFFFFFFFFFFULL,
|
|
0xFFFFFFFFFFFFFFFEULL,
|
|
0xBAAEDCE6AF48A03BULL,
|
|
0xBFD25E8CD0364141ULL
|
|
};
|
|
|
|
for (i = 3; i >= 0; i--) {
|
|
uint64_t v = be64_to_cpu(seckey->u.be64[i]);
|
|
if (carry) {
|
|
/* Beware wrap if v == 0xFFFF.... */
|
|
carry = (group[i] <= v);
|
|
v++;
|
|
} else
|
|
carry = (group[i] < v);
|
|
|
|
v = group[i] - v;
|
|
seckey->u.be64[i] = cpu_to_be64(v);
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
int main(int argc, char *argv[])
|
|
{
|
|
struct seckey k;
|
|
|
|
k.u.be64[0] = cpu_to_be64(0xFFFFFFFFFFFFFFFFULL);
|
|
k.u.be64[1] = cpu_to_be64(0xFFFFFFFFFFFFFFFEULL);
|
|
k.u.be64[2] = cpu_to_be64(0xBAAEDCE6AF48A03BULL);
|
|
k.u.be64[3] = cpu_to_be64(0xBFD25E8CD0364141ULL);
|
|
flip_key(&k);
|
|
assert(k.u.be64[0] == 0);
|
|
assert(k.u.be64[1] == 0);
|
|
assert(k.u.be64[2] == 0);
|
|
assert(k.u.be64[3] == 0);
|
|
flip_key(&k);
|
|
assert(k.u.be64[0] == cpu_to_be64(0xFFFFFFFFFFFFFFFFULL));
|
|
assert(k.u.be64[1] == cpu_to_be64(0xFFFFFFFFFFFFFFFEULL));
|
|
assert(k.u.be64[2] == cpu_to_be64(0xBAAEDCE6AF48A03BULL));
|
|
assert(k.u.be64[3] == cpu_to_be64(0xBFD25E8CD0364141ULL));
|
|
|
|
k.u.be64[0] = cpu_to_be64(0xFFFFFFFFFFFFFFFFULL);
|
|
k.u.be64[1] = cpu_to_be64(0xFFFFFFFFFFFFFFFEULL);
|
|
k.u.be64[2] = cpu_to_be64(0xBAAEDCE6AF48A03BULL);
|
|
k.u.be64[3] = cpu_to_be64(0xBFD25E8CD0364142ULL);
|
|
flip_key(&k);
|
|
assert(k.u.be64[0] == 0xFFFFFFFFFFFFFFFFULL);
|
|
assert(k.u.be64[1] == 0xFFFFFFFFFFFFFFFFULL);
|
|
assert(k.u.be64[2] == 0xFFFFFFFFFFFFFFFFULL);
|
|
assert(k.u.be64[3] == 0xFFFFFFFFFFFFFFFFULL);
|
|
flip_key(&k);
|
|
assert(k.u.be64[0] == cpu_to_be64(0xFFFFFFFFFFFFFFFFULL));
|
|
assert(k.u.be64[1] == cpu_to_be64(0xFFFFFFFFFFFFFFFEULL));
|
|
assert(k.u.be64[2] == cpu_to_be64(0xBAAEDCE6AF48A03BULL));
|
|
assert(k.u.be64[3] == cpu_to_be64(0xBFD25E8CD0364142ULL));
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static void random_key(secp256k1_context *ctx,
|
|
struct seckey *seckey, secp256k1_pubkey *pkey)
|
|
{
|
|
do {
|
|
random_bytes(seckey->u.u8, sizeof(seckey->u));
|
|
} while (!secp256k1_ec_pubkey_create(ctx, pkey, seckey->u.u8));
|
|
}
|
|
|
|
/* We don't want to spend a byte encoding sign, so make sure it's 0x2 */
|
|
static void gen_keys(secp256k1_context *ctx,
|
|
struct seckey *seckey, struct onion_pubkey *pubkey)
|
|
{
|
|
unsigned char tmp[33];
|
|
secp256k1_pubkey pkey;
|
|
size_t len = sizeof(tmp);
|
|
|
|
random_key(ctx, seckey, &pkey);
|
|
|
|
secp256k1_ec_pubkey_serialize(ctx, tmp, &len, &pkey,
|
|
SECP256K1_EC_COMPRESSED);
|
|
assert(len == sizeof(tmp));
|
|
if (tmp[0] == 0x3)
|
|
flip_key(seckey);
|
|
memcpy(pubkey, tmp+1, sizeof(*pubkey));
|
|
}
|
|
|
|
/*
|
|
* Onion routing:
|
|
*
|
|
* Each step decrypts the payload, and removes its message. It then
|
|
* pads at the end to keep constant size, by encrypting 0 bytes (ZPAD)
|
|
*
|
|
* You can see the result of the unwrapping here:
|
|
*
|
|
* ENC1(PKT1 ENC2(PKT2 ENC3(PKT3 ENC4(PKT4 ENC5(PKT5 RPAD)))))
|
|
* After 1: ENC2(PKT2 ENC3(PKT3 ENC4(PKT4 ENC5(PKT5 RPAD))))
|
|
* ENC1(ZPAD)
|
|
* After 2: ENC3(PKT3 ENC4(PKT4 ENC5(PKT5 RPAD)))
|
|
* DEC2(ENC1(ZPAD))
|
|
* ENC2(ZPAD)
|
|
* After 3: ENC4(PKT4 ENC5(PKT5 RPAD)))
|
|
* DEC3(DEC2(ENC1(ZPAD)) ENC2(ZPAD))
|
|
* ENC3(ZPAD)
|
|
* After 4: ENC5(PKT5 RPAD)
|
|
* DEC4(DEC3(DEC2(ENC1(ZPAD)) ENC2(ZPAD)) ENC3(ZPAD))
|
|
* ENC4(ZPAD)
|
|
*
|
|
* ENC1(PKT1 ENC2(PKT2))
|
|
* => ENC2(PKT2) ENC1(ZPAD)
|
|
* => PKT2 DEC2(ENC1(ZPAD))
|
|
*/
|
|
#define MESSAGE_SIZE 128
|
|
#define MAX_HOPS 20
|
|
|
|
struct hop {
|
|
unsigned char msg[MESSAGE_SIZE];
|
|
struct onion_pubkey pubkey;
|
|
struct sha256 hmac;
|
|
};
|
|
|
|
struct onion {
|
|
struct hop hop[MAX_HOPS];
|
|
};
|
|
|
|
/* We peel from the back. */
|
|
static struct hop *myhop(const struct onion *onion)
|
|
{
|
|
return (struct hop *)&onion->hop[MAX_HOPS-1];
|
|
}
|
|
|
|
static bool aes_encrypt(void *dst, const void *src, size_t len,
|
|
const struct enckey *enckey, const struct iv *iv)
|
|
{
|
|
return crypto_stream_aes128ctr_xor(dst, src, len, iv->iv, enckey->k.u.u8) == 0;
|
|
}
|
|
|
|
static bool aes_decrypt(void *dst, const void *src, size_t len,
|
|
const struct enckey *enckey, const struct iv *iv)
|
|
{
|
|
return crypto_stream_aes128ctr_xor(dst, src, len, iv->iv, enckey->k.u.u8) == 0;
|
|
}
|
|
|
|
#if 0
|
|
static void dump_contents(const void *data, size_t n)
|
|
{
|
|
size_t i;
|
|
const unsigned char *p = memcheck(data, n);
|
|
|
|
for (i = 0; i < n; i++) {
|
|
printf("%02x", p[i]);
|
|
if (i % 16 == 15)
|
|
printf("\n");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static bool aes_encrypt_offset(size_t offset,
|
|
void *dst, const void *src, size_t len,
|
|
const struct enckey *enckey,
|
|
const struct iv *iv)
|
|
{
|
|
/*
|
|
* FIXME: This would be easier if we could set the counter; instead
|
|
* we simulate it by encrypting junk before the actual data.
|
|
*/
|
|
char tmp[offset + len];
|
|
|
|
/* Keep valgrind happy. */
|
|
memset(tmp, 0, offset);
|
|
memcpy(tmp + offset, src, len);
|
|
|
|
/* FIXME: Assumes we are allowed to encrypt in place! */
|
|
if (!aes_encrypt(tmp, tmp, offset+len, enckey, iv))
|
|
return false;
|
|
|
|
memcpy(dst, tmp + offset, len);
|
|
return true;
|
|
}
|
|
|
|
/* Padding is created by encrypting zeroes. */
|
|
static void add_padding(struct hop *padding,
|
|
const struct enckey *enckey,
|
|
const struct iv *pad_iv)
|
|
{
|
|
static struct hop zerohop;
|
|
|
|
aes_encrypt(padding, &zerohop, sizeof(zerohop), enckey, pad_iv);
|
|
}
|
|
|
|
static void make_hmac(const struct hop *hops, size_t num_hops,
|
|
const struct hop *padding,
|
|
const struct hmackey *hmackey,
|
|
struct sha256 *hmac)
|
|
{
|
|
crypto_auth_hmacsha256_state state;
|
|
size_t len, padlen = (MAX_HOPS - num_hops) * sizeof(struct hop);
|
|
len = num_hops*sizeof(struct hop) - sizeof(hops->hmac);
|
|
crypto_auth_hmacsha256_init(&state, hmackey->k.u.u8, sizeof(hmackey->k));
|
|
crypto_auth_hmacsha256_update(&state, memcheck((unsigned char *)padding, padlen), padlen);
|
|
crypto_auth_hmacsha256_update(&state, memcheck((unsigned char *)hops, len), len);
|
|
crypto_auth_hmacsha256_update(&state, memcheck((unsigned char *)padding, padlen), padlen);
|
|
crypto_auth_hmacsha256_final(&state, hmac->u.u8);
|
|
}
|
|
|
|
#if 0
|
|
static void _dump_hex(unsigned char *x, size_t s) {
|
|
printf(" ");
|
|
while (s > 0) {
|
|
printf("%02x", *x);
|
|
x++; s--;
|
|
}
|
|
}
|
|
#define dump_hex(x) _dump_hex((void*)&x, sizeof(x))
|
|
|
|
static void dump_pkey(secp256k1_context *ctx, secp256k1_pubkey pkey) {
|
|
unsigned char tmp[65];
|
|
size_t len = sizeof(tmp);
|
|
secp256k1_ec_pubkey_serialize(ctx, tmp, &len, &pkey, 0);
|
|
dump_hex(tmp);
|
|
}
|
|
#endif
|
|
|
|
static bool check_hmac(struct onion *onion, const struct hmackey *hmackey)
|
|
{
|
|
struct sha256 hmac;
|
|
|
|
make_hmac(onion->hop, MAX_HOPS, NULL, hmackey, &hmac);
|
|
return sodium_memcmp(&hmac, &myhop(onion)->hmac, sizeof(hmac)) == 0;
|
|
}
|
|
|
|
static bool create_onion(const secp256k1_pubkey pubkey[],
|
|
char *const msg[],
|
|
size_t num,
|
|
struct onion *onion)
|
|
{
|
|
int i;
|
|
struct seckey seckeys[MAX_HOPS];
|
|
struct onion_pubkey pubkeys[MAX_HOPS];
|
|
struct enckey enckeys[MAX_HOPS];
|
|
struct hmackey hmackeys[MAX_HOPS];
|
|
struct iv ivs[MAX_HOPS];
|
|
struct iv pad_ivs[MAX_HOPS];
|
|
crypto_auth_hmacsha256_state padding_hmac[MAX_HOPS];
|
|
struct hop padding[MAX_HOPS];
|
|
size_t junk_hops;
|
|
secp256k1_context *ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
|
|
bool ok = false;
|
|
|
|
if (num > MAX_HOPS)
|
|
goto fail;
|
|
|
|
/* FIXME: I think it would be safe to reuse a single disposable key
|
|
* here? */
|
|
/* First generate all the keys. */
|
|
for (i = 0; i < num; i++) {
|
|
unsigned char secret[32];
|
|
|
|
gen_keys(ctx, &seckeys[i], &pubkeys[i]);
|
|
|
|
|
|
/* Make shared secret. */
|
|
if (!secp256k1_ecdh(ctx, secret, &pubkey[i], seckeys[i].u.u8))
|
|
goto fail;
|
|
|
|
hmackeys[i] = hmackey_from_secret(memcheck(secret, 32));
|
|
enckeys[i] = enckey_from_secret(secret);
|
|
ivs_from_secret(secret, &ivs[i], &pad_ivs[i]);
|
|
}
|
|
|
|
/*
|
|
* Building the onion is a little tricky.
|
|
*
|
|
* First, there is the padding. That's generated by previous nodes,
|
|
* and "decrypted" by the others. So we have to generate that
|
|
* forwards.
|
|
*/
|
|
for (i = 0; i < num; i++) {
|
|
if (i > 0) {
|
|
/* Previous node decrypts padding before passing on. */
|
|
aes_decrypt(padding, padding, sizeof(struct hop)*(i-1),
|
|
&enckeys[i-1], &ivs[i-1]);
|
|
memmove(padding + 1, padding,
|
|
sizeof(struct hop)*(i-1));
|
|
}
|
|
/* And generates more padding for next node. */
|
|
add_padding(&padding[0], &enckeys[i-1], &pad_ivs[i-1]);
|
|
crypto_auth_hmacsha256_init(&padding_hmac[i],
|
|
hmackeys[i].k.u.u8,
|
|
sizeof(hmackeys[i].k));
|
|
crypto_auth_hmacsha256_update(&padding_hmac[i],
|
|
memcheck((unsigned char *)padding,
|
|
i * sizeof(struct hop)),
|
|
i * sizeof(struct hop));
|
|
}
|
|
|
|
/*
|
|
* Now the normal onion is generated backwards.
|
|
*/
|
|
|
|
/* Unused hops filled with random, so even recipient can't tell
|
|
* how many were used. */
|
|
junk_hops = MAX_HOPS - num;
|
|
random_bytes(onion->hop, junk_hops * sizeof(struct hop));
|
|
|
|
for (i = num - 1; i >= 0; i--) {
|
|
size_t other_hops, len;
|
|
struct hop *myhop;
|
|
|
|
other_hops = num - i - 1 + junk_hops;
|
|
|
|
/* Our entry is at tail of onion. */
|
|
myhop = onion->hop + other_hops;
|
|
|
|
/* Now populate our hop. */
|
|
myhop->pubkey = pubkeys[i];
|
|
/* Set message. */
|
|
assert(strlen(msg[i]) < MESSAGE_SIZE);
|
|
memset(myhop->msg, 0, MESSAGE_SIZE);
|
|
strcpy((char *)myhop->msg, msg[i]);
|
|
|
|
/* Encrypt whole thing, including our message, but we
|
|
* aware it will be offset by the prepended padding. */
|
|
if (!aes_encrypt_offset(i * sizeof(struct hop),
|
|
onion, onion,
|
|
other_hops * sizeof(struct hop)
|
|
+ sizeof(myhop->msg),
|
|
&enckeys[i], &ivs[i]))
|
|
goto fail;
|
|
|
|
/* HMAC covers entire thing except hmac itself. */
|
|
len = (other_hops + 1)*sizeof(struct hop) - sizeof(myhop->hmac);
|
|
crypto_auth_hmacsha256_update(&padding_hmac[i],
|
|
memcheck((unsigned char *)onion, len), len);
|
|
crypto_auth_hmacsha256_final(&padding_hmac[i], myhop->hmac.u.u8);
|
|
}
|
|
|
|
ok = true;
|
|
fail:
|
|
secp256k1_context_destroy(ctx);
|
|
return ok;
|
|
}
|
|
|
|
static bool pubkey_parse(const secp256k1_context *ctx,
|
|
secp256k1_pubkey* pubkey,
|
|
struct onion_pubkey *pkey)
|
|
{
|
|
unsigned char tmp[33];
|
|
|
|
tmp[0] = 0x2;
|
|
memcpy(tmp+1, pkey, sizeof(*pkey));
|
|
return secp256k1_ec_pubkey_parse(ctx, pubkey, tmp, sizeof(tmp));
|
|
}
|
|
|
|
/*
|
|
* Decrypt onion, return true if onion->hop[0] is valid.
|
|
*
|
|
* Returns enckey and pad_iv for use in unwrap.
|
|
*/
|
|
static bool decrypt_onion(const struct seckey *myseckey, struct onion *onion,
|
|
struct enckey *enckey, struct iv *pad_iv)
|
|
{
|
|
secp256k1_context *ctx;
|
|
unsigned char secret[32];
|
|
struct hmackey hmackey;
|
|
struct iv iv;
|
|
secp256k1_pubkey pubkey;
|
|
|
|
ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
|
|
|
|
if (!pubkey_parse(ctx, &pubkey, &myhop(onion)->pubkey))
|
|
goto fail;
|
|
|
|
/* Extract shared secret. */
|
|
if (!secp256k1_ecdh(ctx, secret, &pubkey, myseckey->u.u8))
|
|
goto fail;
|
|
|
|
hmackey = hmackey_from_secret(secret);
|
|
*enckey = enckey_from_secret(secret);
|
|
ivs_from_secret(secret, &iv, pad_iv);
|
|
|
|
/* Check HMAC. */
|
|
#if 0
|
|
printf("Checking HMAC using key%02x%02x%02x%02x%02x%02x%02x%02x (offset %u len %zu) for %02x%02x%02x%02x%02x%02x%02x%02x...%02x%02x%02x\n",
|
|
hmackey.k[0], hmackey.k[1],
|
|
hmackey.k[2], hmackey.k[3],
|
|
hmackey.k[4], hmackey.k[5],
|
|
hmackey.k[6], hmackey.k[7],
|
|
SHA256_DIGEST_LENGTH,
|
|
sizeof(*onion) - SHA256_DIGEST_LENGTH,
|
|
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[0],
|
|
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[1],
|
|
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[2],
|
|
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[3],
|
|
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[4],
|
|
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[5],
|
|
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[6],
|
|
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[7],
|
|
((unsigned char *)(onion + 1))[-3],
|
|
((unsigned char *)(onion + 1))[-2],
|
|
((unsigned char *)(onion + 1))[-1]);
|
|
dump_contents((unsigned char *)onion + SHA256_DIGEST_LENGTH,
|
|
sizeof(*onion) - SHA256_DIGEST_LENGTH);
|
|
#endif
|
|
if (!check_hmac(onion, &hmackey))
|
|
goto fail;
|
|
|
|
/* Decrypt everything up to pubkey. */
|
|
/* FIXME: Assumes we can decrypt in place! */
|
|
if (!aes_decrypt(onion, onion,
|
|
sizeof(struct hop) * (MAX_HOPS-1)
|
|
+ sizeof(myhop(onion)->msg),
|
|
enckey, &iv))
|
|
goto fail;
|
|
|
|
secp256k1_context_destroy(ctx);
|
|
return true;
|
|
|
|
fail:
|
|
secp256k1_context_destroy(ctx);
|
|
return false;
|
|
}
|
|
|
|
/* Get next layer of onion, for forwarding. */
|
|
static bool peel_onion(struct onion *onion,
|
|
const struct enckey *enckey, const struct iv *pad_iv)
|
|
{
|
|
/* Move next one to back. */
|
|
memmove(&onion->hop[1], &onion->hop[0],
|
|
sizeof(*onion) - sizeof(onion->hop[0]));
|
|
|
|
/* Add random-looking (but predictable) padding. */
|
|
memset(&onion->hop[0], 0, sizeof(onion->hop[0]));
|
|
return aes_encrypt(&onion->hop[0], &onion->hop[0],
|
|
sizeof(onion->hop[0]), enckey, pad_iv);
|
|
}
|
|
|
|
static bool parse_onion_pubkey(secp256k1_context *ctx,
|
|
const char *arg, secp256k1_pubkey *pubkey)
|
|
{
|
|
unsigned char tmp[33] = { };
|
|
|
|
if (!hex_decode(arg, strlen(arg), tmp, sizeof(tmp)))
|
|
return false;
|
|
|
|
return secp256k1_ec_pubkey_parse(ctx, pubkey, tmp, sizeof(tmp));
|
|
}
|
|
|
|
static char *make_message(secp256k1_context *ctx,
|
|
const secp256k1_pubkey *pubkey)
|
|
{
|
|
char *m;
|
|
unsigned char tmp[33];
|
|
size_t len = sizeof(tmp);
|
|
char hexstr[hex_str_size(20)];
|
|
|
|
secp256k1_ec_pubkey_serialize(ctx, tmp, &len, pubkey,
|
|
SECP256K1_EC_COMPRESSED);
|
|
hex_encode(tmp+1, 20, hexstr, sizeof(hexstr));
|
|
asprintf(&m, "Message for %s...", hexstr);
|
|
return m;
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
secp256k1_context *ctx;
|
|
struct onion onion;
|
|
bool generate = false, decode = false;
|
|
|
|
opt_register_noarg("--help|-h", opt_usage_and_exit,
|
|
"--generate <pubkey>... OR\n"
|
|
"--decode <privkey>\n"
|
|
"Either create an onion message, or decode one step",
|
|
"Print this message.");
|
|
opt_register_noarg("--generate",
|
|
opt_set_bool, &generate,
|
|
"Generate onion through the given hex pubkeys");
|
|
opt_register_noarg("--decode",
|
|
opt_set_bool, &decode,
|
|
"Decode onion given the private key");
|
|
opt_register_version();
|
|
|
|
opt_parse(&argc, argv, opt_log_stderr_exit);
|
|
|
|
ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
|
|
if (generate) {
|
|
secp256k1_pubkey pubkeys[MAX_HOPS];
|
|
char *msgs[MAX_HOPS];
|
|
size_t i;
|
|
|
|
if (argc == 1)
|
|
opt_usage_exit_fail("Expected at least one pubkey");
|
|
if (argc-1 > MAX_HOPS)
|
|
opt_usage_exit_fail("Expected at most %u pubkeys",
|
|
MAX_HOPS);
|
|
for (i = 1; i < argc; i++) {
|
|
if (!parse_onion_pubkey(ctx, argv[i], &pubkeys[i-1]))
|
|
errx(1, "Bad pubkey '%s'", argv[i]);
|
|
msgs[i-1] = make_message(ctx, &pubkeys[i-1]);
|
|
}
|
|
|
|
if (!create_onion(pubkeys, msgs, argc - 1, &onion))
|
|
errx(1, "Creating onion packet failed");
|
|
if (!write_all(STDOUT_FILENO, &onion, sizeof(onion)))
|
|
err(1, "Writing onion packet");
|
|
return 0;
|
|
} else if (decode) {
|
|
struct seckey seckey;
|
|
secp256k1_pubkey pubkey;
|
|
struct enckey enckey;
|
|
struct iv pad_iv;
|
|
|
|
if (argc != 2)
|
|
opt_usage_exit_fail("Expect a privkey with --decode");
|
|
|
|
if (!hex_decode(argv[1], strlen(argv[1]), &seckey, sizeof(seckey)))
|
|
errx(1, "Invalid private key hex '%s'", argv[1]);
|
|
if (!secp256k1_ec_pubkey_create(ctx, &pubkey, seckey.u.u8))
|
|
errx(1, "Invalid private key '%s'", argv[1]);
|
|
|
|
if (!read_all(STDIN_FILENO, &onion, sizeof(onion)))
|
|
errx(1, "Reading in onion");
|
|
|
|
if (!decrypt_onion(&seckey, &onion, &enckey, &pad_iv))
|
|
errx(1, "Failed decrypting onion for '%s'", argv[1]);
|
|
if (strncmp((char *)myhop(&onion)->msg, make_message(ctx, &pubkey),
|
|
sizeof(myhop(&onion)->msg)))
|
|
errx(1, "Bad message '%s'", (char *)myhop(&onion)->msg);
|
|
if (!peel_onion(&onion, &enckey, &pad_iv))
|
|
errx(1, "Peeling onion for '%s'", argv[1]);
|
|
if (!write_all(STDOUT_FILENO, &onion, sizeof(onion)))
|
|
err(1, "Writing onion packet");
|
|
return 0;
|
|
} else
|
|
opt_usage_exit_fail("Need --decode or --generate");
|
|
|
|
secp256k1_context_destroy(ctx);
|
|
return 0;
|
|
}
|