core-lightning/gossipd/gossipd.c
Rusty Russell 1f08cfb3e3 gossipd: use file offset within store as broadcast index.
Instead of an arbitrary counter, we can use the file offset for our
partial ordering, removing a field.  It takes some care when we compact
the store, however, as this field changes.

MCP results from 5 runs, min-max(mean +/- stddev):
	store_load_msec:34271-35283(34789.6+/-3.3e+02)
	vsz_kb:2288784
	store_rewrite_sec:38.060000-39.130000(38.426+/-0.39)
	listnodes_sec:0.750000-0.850000(0.794+/-0.042)
	listchannels_sec:30.740000-31.760000(31.096+/-0.35)
	routing_sec:29.600000-33.560000(30.472+/-1.5)
	peer_write_all_sec:49.220000-52.690000(50.892+/-1.3)

MCP notable changes from previous patch (>1 stddev):
	-store_load_msec:35685-38538(37090.4+/-9.1e+02)
	+store_load_msec:34271-35283(34789.6+/-3.3e+02)
	-vsz_kb:2288768
	+vsz_kb:2288784
	-peer_write_all_sec:51.140000-58.350000(55.69+/-2.4)
	+peer_write_all_sec:49.220000-52.690000(50.892+/-1.3)

Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2019-04-11 18:31:34 -07:00

2838 lines
90 KiB
C

#include <bitcoin/chainparams.h>
#include <ccan/array_size/array_size.h>
/*~ Welcome to the gossip daemon: keeper of maps!
*
* This is the last "global" daemon; it has three purposes.
*
* 1. To determine routes for payments when lightningd asks.
* 2. The second purpose is to receive gossip from peers (via their
* per-peer daemons) and send it out to them.
* 3. Talk to `connectd` to to answer address queries for nodes.
*
* The gossip protocol itself is fairly simple, but has some twists which
* add complexity to this daemon.
*/
#include <ccan/asort/asort.h>
#include <ccan/bitmap/bitmap.h>
#include <ccan/build_assert/build_assert.h>
#include <ccan/cast/cast.h>
#include <ccan/container_of/container_of.h>
#include <ccan/crypto/hkdf_sha256/hkdf_sha256.h>
#include <ccan/crypto/siphash24/siphash24.h>
#include <ccan/endian/endian.h>
#include <ccan/fdpass/fdpass.h>
#include <ccan/io/fdpass/fdpass.h>
#include <ccan/io/io.h>
#include <ccan/list/list.h>
#include <ccan/mem/mem.h>
#include <ccan/noerr/noerr.h>
#include <ccan/take/take.h>
#include <ccan/tal/str/str.h>
#include <ccan/timer/timer.h>
#include <common/bech32.h>
#include <common/bech32_util.h>
#include <common/cryptomsg.h>
#include <common/daemon_conn.h>
#include <common/decode_short_channel_ids.h>
#include <common/features.h>
#include <common/memleak.h>
#include <common/ping.h>
#include <common/pseudorand.h>
#include <common/status.h>
#include <common/subdaemon.h>
#include <common/timeout.h>
#include <common/type_to_string.h>
#include <common/utils.h>
#include <common/version.h>
#include <common/wire_error.h>
#include <common/wireaddr.h>
#include <connectd/gen_connect_gossip_wire.h>
#include <errno.h>
#include <fcntl.h>
#include <gossipd/broadcast.h>
#include <gossipd/gen_gossip_peerd_wire.h>
#include <gossipd/gen_gossip_wire.h>
#include <gossipd/routing.h>
#include <hsmd/gen_hsm_wire.h>
#include <inttypes.h>
#include <lightningd/gossip_msg.h>
#include <netdb.h>
#include <netinet/in.h>
#include <secp256k1_ecdh.h>
#include <sodium/randombytes.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/un.h>
#include <unistd.h>
#include <wire/gen_peer_wire.h>
#include <wire/wire_io.h>
#include <wire/wire_sync.h>
#include <zlib.h>
/* We talk to `hsmd` to sign our gossip messages with the node key */
#define HSM_FD 3
/* connectd asks us for help finding nodes, and gossip fds for new peers */
#define CONNECTD_FD 4
/* In developer mode we provide hooks for whitebox testing */
#if DEVELOPER
static u32 max_scids_encode_bytes = -1U;
static bool suppress_gossip = false;
#endif
/*~ The core daemon structure: */
struct daemon {
/* Who am I? Helps us find ourself in the routing map. */
struct node_id id;
/* Peers we are gossiping to: id is unique */
struct list_head peers;
/* Connection to lightningd. */
struct daemon_conn *master;
/* Connection to connect daemon. */
struct daemon_conn *connectd;
/* Routing information */
struct routing_state *rstate;
/* chainhash for checking/making gossip msgs */
struct bitcoin_blkid chain_hash;
/* Timers: we batch gossip, and also refresh announcements */
struct timers timers;
/* How often we flush gossip (60 seconds unless DEVELOPER override) */
u32 broadcast_interval_msec;
/* Global features to list in node_announcement. */
u8 *globalfeatures;
/* Alias (not NUL terminated) and favorite color for node_announcement */
u8 alias[32];
u8 rgb[3];
/* What addresses we can actually announce. */
struct wireaddr *announcable;
};
/* This represents each peer we're gossiping with */
struct peer {
/* daemon->peers */
struct list_node list;
/* parent pointer. */
struct daemon *daemon;
/* The ID of the peer (always unique) */
struct node_id id;
/* The two features gossip cares about (so far) */
bool gossip_queries_feature, initial_routing_sync_feature;
/* High water mark for the staggered broadcast */
u32 broadcast_index;
/* Timestamp range the peer asked us to filter gossip by */
u32 gossip_timestamp_min, gossip_timestamp_max;
/* Are there outstanding queries on short_channel_ids? */
const struct short_channel_id *scid_queries;
size_t scid_query_idx;
/* Are there outstanding node_announcements from scid_queries? */
struct node_id *scid_query_nodes;
size_t scid_query_nodes_idx;
/* If this is NULL, we're syncing gossip now. */
struct oneshot *gossip_timer;
/* How many query responses are we expecting? */
size_t num_scid_queries_outstanding;
/* How many pongs are we expecting? */
size_t num_pings_outstanding;
/* Map of outstanding channel_range requests. */
bitmap *query_channel_blocks;
/* What we're querying: [range_first_blocknum, range_end_blocknum) */
u32 range_first_blocknum, range_end_blocknum;
u32 range_blocks_remaining;
struct short_channel_id *query_channel_scids;
/* The daemon_conn used to queue messages to/from the peer. */
struct daemon_conn *dc;
};
/*~ A channel consists of a `struct half_chan` for each direction, each of
* which has a `flags` word from the `channel_update`; bit 1 is
* ROUTING_FLAGS_DISABLED in the `channel_update`. But we also keep a local
* whole-channel flag which indicates it's not available; we use this when a
* peer disconnects, and generate a `channel_update` to tell the world lazily
* when someone asks. */
static void peer_disable_channels(struct daemon *daemon, struct node *node)
{
/* If this peer had a channel with us, mark it disabled. */
struct chan_map_iter i;
struct chan *c;
for (c = first_chan(node, &i); c; c = next_chan(node, &i)) {
if (node_id_eq(&other_node(node, c)->id, &daemon->id))
c->local_disabled = true;
}
}
/*~ Destroy a peer, usually because the per-peer daemon has exited.
*
* Were you wondering why we call this "destroy_peer" and not "peer_destroy"?
* I thought not! But while CCAN modules are required to keep to their own
* prefix namespace, leading to unnatural word order, we couldn't stomach that
* for our own internal use. We use 'find_foo', 'destroy_foo' and 'new_foo'.
*/
static void destroy_peer(struct peer *peer)
{
struct node *node;
/* Remove it from the peers list */
list_del_from(&peer->daemon->peers, &peer->list);
/* If we have a channel with this peer, disable it. */
node = get_node(peer->daemon->rstate, &peer->id);
if (node)
peer_disable_channels(peer->daemon, node);
/* This is tricky: our lifetime is tied to the daemon_conn; it's our
* parent, so we are freed if it is, but we need to free it if we're
* freed manually. tal_free() treats this as a noop if it's already
* being freed */
tal_free(peer->dc);
}
/* Search for a peer. */
static struct peer *find_peer(struct daemon *daemon, const struct node_id *id)
{
struct peer *peer;
list_for_each(&daemon->peers, peer, list)
if (node_id_eq(&peer->id, id))
return peer;
return NULL;
}
/* Queue a gossip message for the peer: we wrap every gossip message; the
* subdaemon simply unwraps and sends. Note that we don't wrap messages
* coming from the subdaemon to gossipd, because gossipd has to process the
* messages anyway (and it doesn't trust the subdaemon); the subdaemon
* trusts gossipd and will forward whatever it's told to. */
static void queue_peer_msg(struct peer *peer, const u8 *msg TAKES)
{
const u8 *send = towire_gossipd_send_gossip(NULL, msg);
/* Autogenerated functions don't take(), so we do here */
if (taken(msg))
tal_free(msg);
daemon_conn_send(peer->dc, take(send));
}
/* This pokes daemon_conn, which calls dump_gossip: the NULL gossip_timer
* tells it that the gossip timer has expired and it should send any queued
* gossip messages. */
static void wake_gossip_out(struct peer *peer)
{
/* If we were waiting, we're not any more */
peer->gossip_timer = tal_free(peer->gossip_timer);
/* Notify the daemon_conn-write loop */
daemon_conn_wake(peer->dc);
}
/* BOLT #7:
*
* There are several messages which contain a long array of
* `short_channel_id`s (called `encoded_short_ids`) so we utilize a
* simple compression scheme: the first byte indicates the encoding, the
* rest contains the data.
*/
static u8 *encode_short_channel_ids_start(const tal_t *ctx)
{
u8 *encoded = tal_arr(ctx, u8, 0);
towire_u8(&encoded, SHORTIDS_ZLIB);
return encoded;
}
/* Marshal a single short_channel_id */
static void encode_add_short_channel_id(u8 **encoded,
const struct short_channel_id *scid)
{
towire_short_channel_id(encoded, scid);
}
/* Greg Maxwell asked me privately about using zlib for communicating a set,
* and suggested that we'd be better off using Golomb-Rice coding a-la BIP
* 158. However, naively using Rice encoding isn't a win: we have to get
* more complex and use separate streams. The upside is that it's between
* 2 and 5 times smaller (assuming optimal Rice encoding + gzip). We can add
* that later. */
static u8 *zencode_scids(const tal_t *ctx, const u8 *scids, size_t len)
{
u8 *z;
int err;
unsigned long compressed_len = len;
/* Prefer to fail if zlib makes it larger */
z = tal_arr(ctx, u8, len);
err = compress2(z, &compressed_len, scids, len, Z_BEST_COMPRESSION);
if (err == Z_OK) {
status_trace("short_ids compressed %zu into %lu",
len, compressed_len);
tal_resize(&z, compressed_len);
return z;
}
status_trace("short_ids compress %zu returned %i:"
" not compresssing", len, err);
return NULL;
}
/* Once we've assembled */
static bool encode_short_channel_ids_end(u8 **encoded, size_t max_bytes)
{
u8 *z;
/* First byte says what encoding we want. */
switch ((enum scid_encode_types)(*encoded)[0]) {
case SHORTIDS_ZLIB:
/* compress */
z = zencode_scids(tmpctx, *encoded + 1, tal_count(*encoded) - 1);
if (z) {
/* If successful, copy over and trimp */
tal_resize(encoded, 1 + tal_count(z));
memcpy((*encoded) + 1, z, tal_count(z));
goto check_length;
}
/* Otherwise, change first byte to 'uncompressed' */
(*encoded)[0] = SHORTIDS_UNCOMPRESSED;
/* Fall thru */
case SHORTIDS_UNCOMPRESSED:
goto check_length;
}
status_failed(STATUS_FAIL_INTERNAL_ERROR,
"Unknown short_ids encoding %u", (*encoded)[0]);
check_length:
#if DEVELOPER
if (tal_count(*encoded) > max_scids_encode_bytes)
return false;
#endif
return tal_count(*encoded) <= max_bytes;
}
/* BOLT #7:
*
* A node:
* - if the `gossip_queries` feature is negotiated:
* - MUST NOT relay any gossip messages unless explicitly requested.
*/
static void setup_gossip_range(struct peer *peer)
{
u8 *msg;
/*~ Without the `gossip_queries` feature, gossip flows automatically. */
if (!peer->gossip_queries_feature)
return;
/*~ We need to ask for something to start the gossip flowing: we ask
* for everything from 1970 to 2106; this is horribly naive. We
* should be much smarter about requesting only what we don't already
* have. */
msg = towire_gossip_timestamp_filter(peer,
&peer->daemon->chain_hash,
0, UINT32_MAX);
queue_peer_msg(peer, take(msg));
}
/* Create a node_announcement with the given signature. It may be NULL in the
* case we need to create a provisional announcement for the HSM to sign.
* This is called twice: once with the dummy signature to get it signed and a
* second time to build the full packet with the signature. The timestamp is
* handed in rather than using time_now() internally, since that could change
* between the dummy creation and the call with a signature. */
static u8 *create_node_announcement(const tal_t *ctx, struct daemon *daemon,
secp256k1_ecdsa_signature *sig,
u32 timestamp)
{
u8 *addresses = tal_arr(tmpctx, u8, 0);
u8 *announcement;
size_t i;
if (!sig) {
sig = tal(tmpctx, secp256k1_ecdsa_signature);
memset(sig, 0, sizeof(*sig));
}
for (i = 0; i < tal_count(daemon->announcable); i++)
towire_wireaddr(&addresses, &daemon->announcable[i]);
announcement =
towire_node_announcement(ctx, sig, daemon->globalfeatures, timestamp,
&daemon->id, daemon->rgb, daemon->alias,
addresses);
return announcement;
}
/*~ This routine created a `node_announcement` for our node, and hands it to
* the routing.c code like any other `node_announcement`. Such announcements
* are only accepted if there is an announced channel associated with that node
* (to prevent spam), so we only call this once we've announced a channel. */
static void send_node_announcement(struct daemon *daemon)
{
u32 timestamp = time_now().ts.tv_sec;
secp256k1_ecdsa_signature sig;
u8 *msg, *nannounce, *err;
struct node *self = get_node(daemon->rstate, &daemon->id);
/* BOLT #7:
*
* The origin node:
* - MUST set `timestamp` to be greater than that of any previous
* `node_announcement` it has previously created.
*/
if (self && self->bcast.index && timestamp <= self->bcast.timestamp)
timestamp = self->bcast.timestamp + 1;
/* Get an unsigned one. */
nannounce = create_node_announcement(tmpctx, daemon, NULL, timestamp);
/* Ask hsmd to sign it (synchronous) */
if (!wire_sync_write(HSM_FD, take(towire_hsm_node_announcement_sig_req(NULL, nannounce))))
status_failed(STATUS_FAIL_MASTER_IO, "Could not write to HSM: %s", strerror(errno));
msg = wire_sync_read(tmpctx, HSM_FD);
if (!fromwire_hsm_node_announcement_sig_reply(msg, &sig))
status_failed(STATUS_FAIL_MASTER_IO, "HSM returned an invalid node_announcement sig");
/* We got the signature for out provisional node_announcement back
* from the HSM, create the real announcement and forward it to
* gossipd so it can take care of forwarding it. */
nannounce = create_node_announcement(NULL, daemon, &sig, timestamp);
/* This injects it into the routing code in routing.c; it should not
* reject it! */
err = handle_node_announcement(daemon->rstate, take(nannounce));
if (err)
status_failed(STATUS_FAIL_INTERNAL_ERROR,
"rejected own node announcement: %s",
tal_hex(tmpctx, err));
}
/* Return true if the only change would be the timestamp. */
static bool node_announcement_redundant(struct daemon *daemon)
{
struct node *n = get_node(daemon->rstate, &daemon->id);
if (!n)
return false;
if (!n->node_announcement)
return false;
if (tal_count(n->addresses) != tal_count(daemon->announcable))
return false;
for (size_t i = 0; i < tal_count(n->addresses); i++)
if (!wireaddr_eq(&n->addresses[i], &daemon->announcable[i]))
return false;
BUILD_ASSERT(ARRAY_SIZE(daemon->alias) == ARRAY_SIZE(n->alias));
if (!memeq(daemon->alias, ARRAY_SIZE(daemon->alias),
n->alias, ARRAY_SIZE(n->alias)))
return false;
BUILD_ASSERT(ARRAY_SIZE(daemon->rgb) == ARRAY_SIZE(n->rgb_color));
if (!memeq(daemon->rgb, ARRAY_SIZE(daemon->rgb),
n->rgb_color, ARRAY_SIZE(n->rgb_color)))
return false;
if (!memeq(daemon->globalfeatures, tal_count(daemon->globalfeatures),
n->globalfeatures, tal_count(n->globalfeatures)))
return false;
return true;
}
/* Should we announce our own node? Called at strategic places. */
static void maybe_send_own_node_announce(struct daemon *daemon)
{
/* We keep an internal flag in the routing code to say we've announced
* a local channel. The alternative would be to have it make a
* callback, but when we start up we don't want to make multiple
* announcments, so we use this approach for now. */
if (!daemon->rstate->local_channel_announced)
return;
if (node_announcement_redundant(daemon))
return;
send_node_announcement(daemon);
daemon->rstate->local_channel_announced = false;
}
/*~Routines to handle gossip messages from peer, forwarded by subdaemons.
*-----------------------------------------------------------------------
*
* It's not the subdaemon's fault if they're malformed or invalid; so these
* all return an error packet which gets sent back to the subdaemon in that
* case.
*/
/* The routing code checks that it's basically valid, returning an
* error message for the peer or NULL. NULL means it's OK, but the
* message might be redundant, in which case scid is also NULL.
* Otherwise `scid` gives us the short_channel_id claimed by the
* message, and puts the announcemnt on an internal 'pending'
* queue. We'll send a request to lightningd to look it up, and continue
* processing in `handle_txout_reply`. */
static const u8 *handle_channel_announcement_msg(struct peer *peer,
const u8 *msg)
{
const struct short_channel_id *scid;
const u8 *err;
/* If it's OK, tells us the short_channel_id to lookup */
err = handle_channel_announcement(peer->daemon->rstate, msg, &scid);
if (err)
return err;
else if (scid)
daemon_conn_send(peer->daemon->master,
take(towire_gossip_get_txout(NULL, scid)));
return NULL;
}
static u8 *handle_channel_update_msg(struct peer *peer, const u8 *msg)
{
/* Hand the channel_update to the routing code */
u8 *err = handle_channel_update(peer->daemon->rstate, msg, "subdaemon");
if (err)
return err;
/*~ As a nasty compromise in the spec, we only forward channel_announce
* once we have a channel_update; the channel isn't *usable* for
* routing until you have both anyway. For this reason, we might have
* just sent out our own channel_announce, so we check if it's time to
* send a node_announcement too. */
maybe_send_own_node_announce(peer->daemon);
return NULL;
}
/*~ The peer can ask about an array of short channel ids: we don't assemble the
* reply immediately but process them one at a time in dump_gossip which is
* called when there's nothing more important to send. */
static const u8 *handle_query_short_channel_ids(struct peer *peer, const u8 *msg)
{
struct bitcoin_blkid chain;
u8 *encoded;
struct short_channel_id *scids;
if (!fromwire_query_short_channel_ids(tmpctx, msg, &chain, &encoded)) {
return towire_errorfmt(peer, NULL,
"Bad query_short_channel_ids %s",
tal_hex(tmpctx, msg));
}
if (!bitcoin_blkid_eq(&peer->daemon->chain_hash, &chain)) {
status_trace("%s sent query_short_channel_ids chainhash %s",
type_to_string(tmpctx, struct node_id, &peer->id),
type_to_string(tmpctx, struct bitcoin_blkid, &chain));
return NULL;
}
/* BOLT #7:
*
* - if it has not sent `reply_short_channel_ids_end` to a
* previously received `query_short_channel_ids` from this
* sender:
* - MAY fail the connection.
*/
if (peer->scid_queries || peer->scid_query_nodes) {
return towire_errorfmt(peer, NULL,
"Bad concurrent query_short_channel_ids");
}
scids = decode_short_ids(tmpctx, encoded);
if (!scids) {
return towire_errorfmt(peer, NULL,
"Bad query_short_channel_ids encoding %s",
tal_hex(tmpctx, encoded));
}
/* BOLT #7:
*
* - MUST respond to each known `short_channel_id` with a `channel_announcement`
* and the latest `channel_update` for each end
* - SHOULD NOT wait for the next outgoing gossip flush to send
* these.
*/
peer->scid_queries = tal_steal(peer, scids);
peer->scid_query_idx = 0;
peer->scid_query_nodes = tal_arr(peer, struct node_id, 0);
/* Notify the daemon_conn-write loop to invoke create_next_scid_reply */
daemon_conn_wake(peer->dc);
return NULL;
}
/*~ The peer can specify a timestamp range; gossip outside this range won't be
* sent any more, and we'll start streaming gossip in this range. This is
* only supposed to be used if we negotiate the `gossip_queries` in which case
* the first send triggers the first gossip to be sent.
*/
static u8 *handle_gossip_timestamp_filter(struct peer *peer, const u8 *msg)
{
struct bitcoin_blkid chain_hash;
u32 first_timestamp, timestamp_range;
if (!fromwire_gossip_timestamp_filter(msg, &chain_hash,
&first_timestamp,
&timestamp_range)) {
return towire_errorfmt(peer, NULL,
"Bad gossip_timestamp_filter %s",
tal_hex(tmpctx, msg));
}
if (!bitcoin_blkid_eq(&peer->daemon->chain_hash, &chain_hash)) {
status_trace("%s sent gossip_timestamp_filter chainhash %s",
type_to_string(tmpctx, struct node_id, &peer->id),
type_to_string(tmpctx, struct bitcoin_blkid,
&chain_hash));
return NULL;
}
/* We initialize the timestamps to "impossible" values so we can
* detect that this is the first filter: in this case, we gossip sync
* immediately. */
if (peer->gossip_timestamp_min > peer->gossip_timestamp_max)
wake_gossip_out(peer);
/* FIXME: We don't index by timestamp, so this forces a brute
* search! But keeping in correct order is v. hard. */
peer->gossip_timestamp_min = first_timestamp;
peer->gossip_timestamp_max = first_timestamp + timestamp_range - 1;
/* In case they overflow. */
if (peer->gossip_timestamp_max < peer->gossip_timestamp_min)
peer->gossip_timestamp_max = UINT32_MAX;
peer->broadcast_index = 0;
return NULL;
}
/*~ We can send multiple replies when the peer queries for all channels in
* a given range of blocks; each one indicates the range of blocks it covers. */
static void reply_channel_range(struct peer *peer,
u32 first_blocknum, u32 number_of_blocks,
const u8 *encoded)
{
/* BOLT #7:
*
* - For each `reply_channel_range`:
* - MUST set with `chain_hash` equal to that of `query_channel_range`,
* - MUST encode a `short_channel_id` for every open channel it
* knows in blocks `first_blocknum` to `first_blocknum` plus
* `number_of_blocks` minus one.
* - MUST limit `number_of_blocks` to the maximum number of blocks
* whose results could fit in `encoded_short_ids`
* - if does not maintain up-to-date channel information for
* `chain_hash`:
* - MUST set `complete` to 0.
* - otherwise:
* - SHOULD set `complete` to 1.
*/
u8 *msg = towire_reply_channel_range(NULL,
&peer->daemon->chain_hash,
first_blocknum,
number_of_blocks,
1, encoded);
queue_peer_msg(peer, take(msg));
}
/*~ When we need to send an array of channels, it might go over our 64k packet
* size. If it doesn't, we recurse, splitting in two, etc. Each message
* indicates what blocks it contains, so the recipient knows when we're
* finished.
*
* tail_blocks is the empty blocks at the end, in case they asked for all
* blocks to 4 billion.
*/
static bool queue_channel_ranges(struct peer *peer,
u32 first_blocknum, u32 number_of_blocks,
u32 tail_blocks)
{
struct routing_state *rstate = peer->daemon->rstate;
u8 *encoded = encode_short_channel_ids_start(tmpctx);
struct short_channel_id scid;
bool scid_ok;
/* BOLT #7:
*
* 1. type: 264 (`reply_channel_range`) (`gossip_queries`)
* 2. data:
* * [`32`:`chain_hash`]
* * [`4`:`first_blocknum`]
* * [`4`:`number_of_blocks`]
* * [`1`:`complete`]
* * [`2`:`len`]
* * [`len`:`encoded_short_ids`]
*/
const size_t reply_overhead = 32 + 4 + 4 + 1 + 2;
const size_t max_encoded_bytes = 65535 - 2 - reply_overhead;
/* Avoid underflow: we don't use block 0 anyway */
if (first_blocknum == 0)
scid_ok = mk_short_channel_id(&scid, 1, 0, 0);
else
scid_ok = mk_short_channel_id(&scid, first_blocknum, 0, 0);
scid.u64--;
if (!scid_ok)
return false;
/* We keep a `uintmap` of `short_channel_id` to `struct chan *`.
* Unlike a htable, it's efficient to iterate through, but it only
* works because each short_channel_id is basically a 64-bit unsigned
* integer.
*
* First we iteraate and gather all the short channel ids. */
while (uintmap_after(&rstate->chanmap, &scid.u64)) {
u32 blocknum = short_channel_id_blocknum(&scid);
if (blocknum >= first_blocknum + number_of_blocks)
break;
encode_add_short_channel_id(&encoded, &scid);
}
/* If we can encode that, fine: send it */
if (encode_short_channel_ids_end(&encoded, max_encoded_bytes)) {
reply_channel_range(peer, first_blocknum,
number_of_blocks + tail_blocks,
encoded);
return true;
}
/* It wouldn't all fit: divide in half */
/* We assume we can always send one block! */
if (number_of_blocks <= 1) {
/* We always assume we can send 1 blocks worth */
status_broken("Could not fit scids for single block %u",
first_blocknum);
return false;
}
status_debug("queue_channel_ranges full: splitting %u+%u and %u+%u(+%u)",
first_blocknum,
number_of_blocks / 2,
first_blocknum + number_of_blocks / 2,
number_of_blocks - number_of_blocks / 2,
tail_blocks);
return queue_channel_ranges(peer, first_blocknum, number_of_blocks / 2, 0)
&& queue_channel_ranges(peer, first_blocknum + number_of_blocks / 2,
number_of_blocks - number_of_blocks / 2,
tail_blocks);
}
/*~ The peer can ask for all channels is a series of blocks. We reply with one
* or more messages containing the short_channel_ids. */
static u8 *handle_query_channel_range(struct peer *peer, const u8 *msg)
{
struct routing_state *rstate = peer->daemon->rstate;
struct bitcoin_blkid chain_hash;
u32 first_blocknum, number_of_blocks, tail_blocks;
struct short_channel_id last_scid;
if (!fromwire_query_channel_range(msg, &chain_hash,
&first_blocknum, &number_of_blocks)) {
return towire_errorfmt(peer, NULL,
"Bad query_channel_range %s",
tal_hex(tmpctx, msg));
}
/* FIXME: if they ask for the wrong chain, we should not ignore it,
* but give an empty response with the `complete` flag unset? */
if (!bitcoin_blkid_eq(&peer->daemon->chain_hash, &chain_hash)) {
status_trace("%s sent query_channel_range chainhash %s",
type_to_string(tmpctx, struct node_id, &peer->id),
type_to_string(tmpctx, struct bitcoin_blkid,
&chain_hash));
return NULL;
}
/* If they ask for number_of_blocks UINTMAX, and we have to divide
* and conquer, we'll do a lot of unnecessary work. Cap it at the
* last value we have, then send an empty reply. */
if (uintmap_last(&rstate->chanmap, &last_scid.u64)) {
u32 last_block = short_channel_id_blocknum(&last_scid);
/* u64 here avoids overflow on number_of_blocks
UINTMAX for example */
if ((u64)first_blocknum + number_of_blocks > last_block) {
tail_blocks = first_blocknum + number_of_blocks
- last_block - 1;
number_of_blocks -= tail_blocks;
} else
tail_blocks = 0;
} else
tail_blocks = 0;
if (!queue_channel_ranges(peer, first_blocknum, number_of_blocks,
tail_blocks))
return towire_errorfmt(peer, NULL,
"Invalid query_channel_range %u+%u",
first_blocknum, number_of_blocks + tail_blocks);
return NULL;
}
/*~ This is the reply we get when we send query_channel_range; we keep
* expecting them until the entire range we asked for is covered. */
static const u8 *handle_reply_channel_range(struct peer *peer, const u8 *msg)
{
struct bitcoin_blkid chain;
u8 complete;
u32 first_blocknum, number_of_blocks, start, end;
u8 *encoded;
struct short_channel_id *scids;
size_t n;
unsigned long b;
if (!fromwire_reply_channel_range(tmpctx, msg, &chain, &first_blocknum,
&number_of_blocks, &complete,
&encoded)) {
return towire_errorfmt(peer, NULL,
"Bad reply_channel_range %s",
tal_hex(tmpctx, msg));
}
if (!bitcoin_blkid_eq(&peer->daemon->chain_hash, &chain)) {
return towire_errorfmt(peer, NULL,
"reply_channel_range for bad chain: %s",
tal_hex(tmpctx, msg));
}
if (!peer->query_channel_blocks) {
return towire_errorfmt(peer, NULL,
"reply_channel_range without query: %s",
tal_hex(tmpctx, msg));
}
/* Beware overflow! */
if (first_blocknum + number_of_blocks < first_blocknum) {
return towire_errorfmt(peer, NULL,
"reply_channel_range invalid %u+%u",
first_blocknum, number_of_blocks);
}
scids = decode_short_ids(tmpctx, encoded);
if (!scids) {
return towire_errorfmt(peer, NULL,
"Bad reply_channel_range encoding %s",
tal_hex(tmpctx, encoded));
}
status_debug("peer %s reply_channel_range %u+%u (of %u+%u) %zu scids",
type_to_string(tmpctx, struct node_id, &peer->id),
first_blocknum, number_of_blocks,
peer->range_first_blocknum,
peer->range_end_blocknum - peer->range_first_blocknum,
tal_count(scids));
/* BOLT #7:
*
* The receiver of `query_channel_range`:
*...
* - MUST respond with one or more `reply_channel_range` whose
* combined range cover the requested `first_blocknum` to
* `first_blocknum` plus `number_of_blocks` minus one.
*/
/* ie. They can be outside range we asked, but they must overlap! */
if (first_blocknum + number_of_blocks <= peer->range_first_blocknum
|| first_blocknum >= peer->range_end_blocknum) {
return towire_errorfmt(peer, NULL,
"reply_channel_range invalid %u+%u for query %u+%u",
first_blocknum, number_of_blocks,
peer->range_first_blocknum,
peer->range_end_blocknum
- peer->range_first_blocknum);
}
start = first_blocknum;
end = first_blocknum + number_of_blocks;
/* Trim to make it a subset of what we want. */
if (start < peer->range_first_blocknum)
start = peer->range_first_blocknum;
if (end > peer->range_end_blocknum)
end = peer->range_end_blocknum;
/* We keep a bitmap of what blocks have been covered by replies: bit 0
* represents block peer->range_first_blocknum */
b = bitmap_ffs(peer->query_channel_blocks,
start - peer->range_first_blocknum,
end - peer->range_first_blocknum);
if (b != end - peer->range_first_blocknum) {
return towire_errorfmt(peer, NULL,
"reply_channel_range %u+%u already have block %lu",
first_blocknum, number_of_blocks,
peer->range_first_blocknum + b);
}
/* Mark that short_channel_ids for this block have been received */
bitmap_fill_range(peer->query_channel_blocks,
start - peer->range_first_blocknum,
end - peer->range_first_blocknum);
peer->range_blocks_remaining -= end - start;
/* Add scids */
n = tal_count(peer->query_channel_scids);
tal_resize(&peer->query_channel_scids, n + tal_count(scids));
memcpy(peer->query_channel_scids + n, scids, tal_bytelen(scids));
/* Still more to go? */
if (peer->range_blocks_remaining)
return NULL;
/* All done, send reply to lightningd: that's currently the only thing
* which triggers this (for testing). Eventually we might start probing
* for gossip information on our own. */
msg = towire_gossip_query_channel_range_reply(NULL,
first_blocknum,
number_of_blocks,
complete,
peer->query_channel_scids);
daemon_conn_send(peer->daemon->master, take(msg));
peer->query_channel_scids = tal_free(peer->query_channel_scids);
peer->query_channel_blocks = tal_free(peer->query_channel_blocks);
return NULL;
}
/*~ For simplicity, all pings and pongs are forwarded to us here in gossipd. */
static u8 *handle_ping(struct peer *peer, const u8 *ping)
{
u8 *pong;
/* This checks the ping packet and makes a pong reply if needed; peer
* can specify it doesn't want a response, to simulate traffic. */
if (!check_ping_make_pong(NULL, ping, &pong))
return towire_errorfmt(peer, NULL, "Bad ping");
if (pong)
queue_peer_msg(peer, take(pong));
return NULL;
}
/*~ When we get a pong, we tell lightningd about it (it's probably a response
* to the `ping` JSON RPC command). */
static const u8 *handle_pong(struct peer *peer, const u8 *pong)
{
const char *err = got_pong(pong, &peer->num_pings_outstanding);
if (err)
return towire_errorfmt(peer, NULL, "%s", err);
daemon_conn_send(peer->daemon->master,
take(towire_gossip_ping_reply(NULL, &peer->id, true,
tal_count(pong))));
return NULL;
}
/*~ When we ask about an array of short_channel_ids, we get all channel &
* node announcements and channel updates which the peer knows. There's an
* explicit end packet; this is needed to differentiate between 'I'm slow'
* and 'I don't know those channels'. */
static u8 *handle_reply_short_channel_ids_end(struct peer *peer, const u8 *msg)
{
struct bitcoin_blkid chain;
u8 complete;
if (!fromwire_reply_short_channel_ids_end(msg, &chain, &complete)) {
return towire_errorfmt(peer, NULL,
"Bad reply_short_channel_ids_end %s",
tal_hex(tmpctx, msg));
}
if (!bitcoin_blkid_eq(&peer->daemon->chain_hash, &chain)) {
return towire_errorfmt(peer, NULL,
"reply_short_channel_ids_end for bad chain: %s",
tal_hex(tmpctx, msg));
}
if (peer->num_scid_queries_outstanding == 0) {
return towire_errorfmt(peer, NULL,
"unexpected reply_short_channel_ids_end: %s",
tal_hex(tmpctx, msg));
}
peer->num_scid_queries_outstanding--;
/* We tell lightningd: this is because we currently only ask for
* query_short_channel_ids when lightningd asks. */
msg = towire_gossip_scids_reply(msg, true, complete);
daemon_conn_send(peer->daemon->master, take(msg));
return NULL;
}
/*~ Arbitrary ordering function of pubkeys.
*
* Note that we could use memcmp() here: even if they had somehow different
* bitwise representations for the same key, we copied them all from struct
* node which should make them unique. Even if not (say, a node vanished
* and reappeared) we'd just end up sending two node_announcement for the
* same node.
*/
static int pubkey_order(const struct node_id *k1,
const struct node_id *k2,
void *unused UNUSED)
{
return node_id_cmp(k1, k2);
}
static void uniquify_node_ids(struct node_id **ids)
{
size_t dst, src;
/* BOLT #7:
*
* - MUST follow with any `node_announcement`s for each
* `channel_announcement`
*
* - SHOULD avoid sending duplicate `node_announcements` in
* response to a single `query_short_channel_ids`.
*/
/* ccan/asort is a typesafe qsort wrapper: like most ccan modules
* it eschews exposing 'void *' pointers and ensures that the
* callback function and its arguments match types correctly. */
asort(*ids, tal_count(*ids), pubkey_order, NULL);
/* Compact the array */
for (dst = 0, src = 0; src < tal_count(*ids); src++) {
if (dst && node_id_eq(&(*ids)[dst-1], &(*ids)[src]))
continue;
(*ids)[dst++] = (*ids)[src];
}
/* And trim to length, so tal_count() gives correct answer. */
tal_resize(ids, dst);
}
/*~ We are fairly careful to avoid the peer DoSing us with channel queries:
* this routine sends information about a single short_channel_id, unless
* it's finished all of them. */
static void maybe_create_next_scid_reply(struct peer *peer)
{
struct routing_state *rstate = peer->daemon->rstate;
size_t i, num;
bool sent = false;
/* BOLT #7:
*
* - MUST respond to each known `short_channel_id` with a
* `channel_announcement` and the latest `channel_update` for each end
* - SHOULD NOT wait for the next outgoing gossip flush
* to send these.
*/
/* Search for next short_channel_id we know about. */
num = tal_count(peer->scid_queries);
for (i = peer->scid_query_idx; !sent && i < num; i++) {
struct chan *chan;
chan = get_channel(rstate, &peer->scid_queries[i]);
if (!chan || !is_chan_announced(chan))
continue;
queue_peer_msg(peer, chan->channel_announce);
if (chan->half[0].channel_update)
queue_peer_msg(peer, chan->half[0].channel_update);
if (chan->half[1].channel_update)
queue_peer_msg(peer, chan->half[1].channel_update);
/* Record node ids for later transmission of node_announcement */
tal_arr_expand(&peer->scid_query_nodes, chan->nodes[0]->id);
tal_arr_expand(&peer->scid_query_nodes, chan->nodes[1]->id);
sent = true;
}
/* Just finished channels? Remove duplicate nodes. */
if (peer->scid_query_idx != num && i == num)
uniquify_node_ids(&peer->scid_query_nodes);
/* Update index for next time we're called. */
peer->scid_query_idx = i;
/* BOLT #7:
*
* - MUST follow with any `node_announcement`s for each
* `channel_announcement`
* - SHOULD avoid sending duplicate `node_announcements` in response
* to a single `query_short_channel_ids`.
*/
/* If we haven't sent anything above, we look for the next
* node_announcement to send. */
num = tal_count(peer->scid_query_nodes);
for (i = peer->scid_query_nodes_idx; !sent && i < num; i++) {
const struct node *n;
/* Not every node announces itself (we know it exists because
* of a channel_announcement, however) */
n = get_node(rstate, &peer->scid_query_nodes[i]);
if (!n || !n->bcast.index)
continue;
queue_peer_msg(peer, n->node_announcement);
sent = true;
}
peer->scid_query_nodes_idx = i;
/* All finished? */
if (peer->scid_queries && peer->scid_query_nodes_idx == num) {
/* BOLT #7:
*
* - MUST follow these responses with
* `reply_short_channel_ids_end`.
* - if does not maintain up-to-date channel information for
* `chain_hash`:
* - MUST set `complete` to 0.
* - otherwise:
* - SHOULD set `complete` to 1.
*/
/* FIXME: We consider ourselves to have complete knowledge. */
u8 *end = towire_reply_short_channel_ids_end(peer,
&peer->daemon->chain_hash,
true);
queue_peer_msg(peer, take(end));
/* We're done! Clean up so we simply pass-through next time. */
peer->scid_queries = tal_free(peer->scid_queries);
peer->scid_query_idx = 0;
peer->scid_query_nodes = tal_free(peer->scid_query_nodes);
peer->scid_query_nodes_idx = 0;
}
}
/*~ If we're supposed to be sending gossip, do so now. */
static void maybe_queue_gossip(struct peer *peer)
{
const u8 *next;
/* If the gossip timer is still running, don't send. */
if (peer->gossip_timer)
return;
#if DEVELOPER
/* The dev_suppress_gossip RPC is used for testing. */
if (suppress_gossip)
return;
#endif
/*~ We maintain an ordered map of gossip to broadcast, so each peer
* only needs to keep an index; this returns the next gossip message
* which is past the previous index and within the timestamp: it
* also updates `broadcast_index`. */
next = next_broadcast(peer->daemon->rstate->broadcasts,
peer->gossip_timestamp_min,
peer->gossip_timestamp_max,
&peer->broadcast_index);
if (next) {
queue_peer_msg(peer, next);
return;
}
/* BOLT #7:
*
* A node:
*...
* - SHOULD flush outgoing gossip messages once every 60 seconds,
* independently of the arrival times of the messages.
* - Note: this results in staggered announcements that are unique
* (not duplicated).
*/
/* Gossip is drained; we set up timer now, which is strictly-speaking
* more than 60 seconds if sending gossip took a long time. But
* that's their fault for being slow! */
peer->gossip_timer
= new_reltimer(&peer->daemon->timers, peer,
/* The time is adjustable for testing */
time_from_msec(peer->daemon->broadcast_interval_msec),
wake_gossip_out, peer);
}
/*~ This is called when the outgoing queue is empty; gossip has lower priority
* than just about anything else. */
static void dump_gossip(struct peer *peer)
{
/* Do we have scid query replies to send? */
maybe_create_next_scid_reply(peer);
/* Queue any gossip we want to send */
maybe_queue_gossip(peer);
}
/*~ This generates a `channel_update` message for one of our channels. We do
* this here, rather than in `channeld` because we (may) need to do it
* ourselves anyway if channeld dies, or when we refresh it once a week. */
static void update_local_channel(struct daemon *daemon,
const struct chan *chan,
int direction,
bool disable,
u16 cltv_expiry_delta,
struct amount_msat htlc_minimum,
u32 fee_base_msat,
u32 fee_proportional_millionths,
struct amount_msat htlc_maximum,
const char *caller)
{
secp256k1_ecdsa_signature dummy_sig;
u8 *update, *msg;
u32 timestamp = time_now().ts.tv_sec;
u8 message_flags, channel_flags;
/* So valgrind doesn't complain */
memset(&dummy_sig, 0, sizeof(dummy_sig));
/* BOLT #7:
*
* The origin node:
*...
* - MUST set `timestamp` to greater than 0, AND to greater than any
* previously-sent `channel_update` for this `short_channel_id`.
* - SHOULD base `timestamp` on a UNIX timestamp.
*/
if (is_halfchan_defined(&chan->half[direction])
&& timestamp == chan->half[direction].bcast.timestamp)
timestamp++;
/* BOLT #7:
*
* The `channel_flags` bitfield is used to indicate the direction of
* the channel: it identifies the node that this update originated
* from and signals various options concerning the channel. The
* following table specifies the meaning of its individual bits:
*
* | Bit Position | Name | Meaning |
* | ------------- | ----------- | -------------------------------- |
* | 0 | `direction` | Direction this update refers to. |
* | 1 | `disable` | Disable the channel. |
*/
channel_flags = direction;
if (disable)
channel_flags |= ROUTING_FLAGS_DISABLED;
/* BOLT #7:
*
* The `message_flags` bitfield is used to indicate the presence of
* optional fields in the `channel_update` message:
*
*| Bit Position | Name | Field |
*...
*| 0 | `option_channel_htlc_max` | `htlc_maximum_msat` |
*/
message_flags = 0 | ROUTING_OPT_HTLC_MAX_MSAT;
/* We create an update with a dummy signature, and hand to hsmd to get
* it signed. */
update = towire_channel_update_option_channel_htlc_max(tmpctx, &dummy_sig,
&daemon->chain_hash,
&chan->scid,
timestamp,
message_flags, channel_flags,
cltv_expiry_delta,
htlc_minimum,
fee_base_msat,
fee_proportional_millionths,
htlc_maximum);
/* Note that we treat the hsmd as synchronous. This is simple (no
* callback hell)!, but may need to change to async if we ever want
* remote HSMs */
if (!wire_sync_write(HSM_FD,
towire_hsm_cupdate_sig_req(tmpctx, update))) {
status_failed(STATUS_FAIL_HSM_IO, "Writing cupdate_sig_req: %s",
strerror(errno));
}
msg = wire_sync_read(tmpctx, HSM_FD);
if (!msg || !fromwire_hsm_cupdate_sig_reply(NULL, msg, &update)) {
status_failed(STATUS_FAIL_HSM_IO,
"Reading cupdate_sig_req: %s",
strerror(errno));
}
/* BOLT #7:
*
* The origin node:
* - MAY create a `channel_update` to communicate the channel parameters to the
* channel peer, even though the channel has not yet been announced (i.e. the
* `announce_channel` bit was not set).
*/
if (!is_chan_public(chan)) {
/* handle_channel_update will not put private updates in the
* broadcast list, but we send it direct to the peer (if we
* have one connected) now */
struct peer *peer = find_peer(daemon,
&chan->nodes[!direction]->id);
if (peer)
queue_peer_msg(peer, update);
}
/* We feed it into routing.c like any other channel_update; it may
* discard it (eg. non-public channel), but it should not complain
* about it being invalid! */
msg = handle_channel_update(daemon->rstate, take(update), caller);
if (msg)
status_failed(STATUS_FAIL_INTERNAL_ERROR,
"%s: rejected local channel update %s: %s",
caller,
/* Normally we must not touch something taken()
* but we're in deep trouble anyway, and
* handle_channel_update only tal_steals onto
* tmpctx, so it's actually OK. */
tal_hex(tmpctx, update),
tal_hex(tmpctx, msg));
}
/*~ We generate local channel updates lazily; most of the time we simply
* toggle the `local_disabled` flag so we don't use it to route. We never
* change anything else after startup (yet!) */
static void maybe_update_local_channel(struct daemon *daemon,
struct chan *chan, int direction)
{
const struct half_chan *hc = &chan->half[direction];
/* Don't generate a channel_update for an uninitialized channel. */
if (!hc->channel_update)
return;
/* Nothing to update? */
/*~ Note the inversions here on both sides, which is cheap conversion to
* boolean for the RHS! */
if (!chan->local_disabled == !(hc->channel_flags & ROUTING_FLAGS_DISABLED))
return;
update_local_channel(daemon, chan, direction,
chan->local_disabled,
hc->delay,
hc->htlc_minimum,
hc->base_fee,
hc->proportional_fee,
hc->htlc_maximum,
/* Note this magic C macro which expands to the
* function name, for debug messages */
__func__);
}
/*~ This helper figures out which direction of the channel is from-us; if
* neither, it returns false. This meets Linus' rule "Always return the error",
* without doing some horrible 0/1/-1 return. */
static bool local_direction(struct daemon *daemon,
const struct chan *chan,
int *direction)
{
for (*direction = 0; *direction < 2; (*direction)++) {
if (node_id_eq(&chan->nodes[*direction]->id, &daemon->id))
return true;
}
return false;
}
/*~ This is when channeld asks us for a channel_update for a local channel.
* It does that to fill in the error field when lightningd fails an HTLC and
* sets the UPDATE bit in the error type. lightningd is too important to
* fetch this itself, so channeld does it (channeld has to talk to us for
* other things anyway, so why not?). */
static bool handle_get_update(struct peer *peer, const u8 *msg)
{
struct short_channel_id scid;
struct chan *chan;
const u8 *update;
struct routing_state *rstate = peer->daemon->rstate;
int direction;
if (!fromwire_gossipd_get_update(msg, &scid)) {
status_broken("peer %s sent bad gossip_get_update %s",
type_to_string(tmpctx, struct node_id, &peer->id),
tal_hex(tmpctx, msg));
return false;
}
/* It's possible that the channel has just closed (though v. unlikely) */
chan = get_channel(rstate, &scid);
if (!chan) {
status_unusual("peer %s scid %s: unknown channel",
type_to_string(tmpctx, struct node_id, &peer->id),
type_to_string(tmpctx, struct short_channel_id,
&scid));
update = NULL;
goto out;
}
/* We want the update that comes from our end. */
if (!local_direction(peer->daemon, chan, &direction)) {
status_unusual("peer %s scid %s: not our channel?",
type_to_string(tmpctx, struct node_id, &peer->id),
type_to_string(tmpctx,
struct short_channel_id,
&scid));
update = NULL;
goto out;
}
/* Since we're going to send it out, make sure it's up-to-date. */
maybe_update_local_channel(peer->daemon, chan, direction);
/* It's possible this is NULL, if we've never sent a channel_update
* for that channel. */
update = chan->half[direction].channel_update;
out:
status_trace("peer %s schanid %s: %s update",
type_to_string(tmpctx, struct node_id, &peer->id),
type_to_string(tmpctx, struct short_channel_id, &scid),
update ? "got" : "no");
msg = towire_gossipd_get_update_reply(NULL, update);
daemon_conn_send(peer->dc, take(msg));
return true;
}
/*~ Return true if the channel information has changed. This can only
* currently happen if the user restarts with different fee options, but we
* don't assume that. */
static bool halfchan_new_info(const struct half_chan *hc,
u16 cltv_delta, struct amount_msat htlc_minimum,
u32 fee_base_msat, u32 fee_proportional_millionths,
struct amount_msat htlc_maximum)
{
if (!is_halfchan_defined(hc))
return true;
return hc->delay != cltv_delta
|| !amount_msat_eq(hc->htlc_minimum, htlc_minimum)
|| hc->base_fee != fee_base_msat
|| hc->proportional_fee != fee_proportional_millionths
|| !amount_msat_eq(hc->htlc_maximum, htlc_maximum);
}
/*~ channeld asks us to update the local channel. */
static bool handle_local_channel_update(struct peer *peer, const u8 *msg)
{
struct chan *chan;
struct short_channel_id scid;
bool disable;
u16 cltv_expiry_delta;
struct amount_msat htlc_minimum, htlc_maximum;
u32 fee_base_msat;
u32 fee_proportional_millionths;
int direction;
/* FIXME: We should get scid from lightningd when setting up the
* connection, so no per-peer daemon can mess with channels other than
* its own! */
if (!fromwire_gossipd_local_channel_update(msg,
&scid,
&disable,
&cltv_expiry_delta,
&htlc_minimum,
&fee_base_msat,
&fee_proportional_millionths,
&htlc_maximum)) {
status_broken("peer %s bad local_channel_update %s",
type_to_string(tmpctx, struct node_id, &peer->id),
tal_hex(tmpctx, msg));
return false;
}
/* Can theoretically happen if channel just closed. */
chan = get_channel(peer->daemon->rstate, &scid);
if (!chan) {
status_trace("peer %s local_channel_update for unknown %s",
type_to_string(tmpctx, struct node_id, &peer->id),
type_to_string(tmpctx, struct short_channel_id,
&scid));
return true;
}
/* You shouldn't be asking for a non-local channel though. */
if (!local_direction(peer->daemon, chan, &direction)) {
status_broken("peer %s bad local_channel_update for non-local %s",
type_to_string(tmpctx, struct node_id, &peer->id),
type_to_string(tmpctx, struct short_channel_id,
&scid));
return false;
}
/* We could change configuration on restart; update immediately.
* Or, if we're *enabling* an announced-disabled channel.
* Or, if it's an unannounced channel (only sending to peer). */
if (halfchan_new_info(&chan->half[direction],
cltv_expiry_delta, htlc_minimum,
fee_base_msat, fee_proportional_millionths,
htlc_maximum)
|| ((chan->half[direction].channel_flags & ROUTING_FLAGS_DISABLED)
&& !disable)
|| !is_chan_public(chan)) {
update_local_channel(peer->daemon, chan, direction,
disable,
cltv_expiry_delta,
htlc_minimum,
fee_base_msat,
fee_proportional_millionths,
htlc_maximum,
__func__);
}
/* Normal case: just toggle local_disabled, and generate broadcast in
* maybe_update_local_channel when/if someone asks about it. */
chan->local_disabled = disable;
return true;
}
/*~ This is where the per-peer daemons send us messages. It's either forwarded
* gossip, or a request for information. We deliberately use non-overlapping
* message types so we can distinguish them. */
static struct io_plan *peer_msg_in(struct io_conn *conn,
const u8 *msg,
struct peer *peer)
{
const u8 *err;
bool ok;
/* These are messages relayed from peer */
switch ((enum wire_type)fromwire_peektype(msg)) {
case WIRE_CHANNEL_ANNOUNCEMENT:
err = handle_channel_announcement_msg(peer, msg);
goto handled_relay;
case WIRE_CHANNEL_UPDATE:
err = handle_channel_update_msg(peer, msg);
goto handled_relay;
case WIRE_NODE_ANNOUNCEMENT:
err = handle_node_announcement(peer->daemon->rstate, msg);
goto handled_relay;
case WIRE_QUERY_CHANNEL_RANGE:
err = handle_query_channel_range(peer, msg);
goto handled_relay;
case WIRE_REPLY_CHANNEL_RANGE:
err = handle_reply_channel_range(peer, msg);
goto handled_relay;
case WIRE_QUERY_SHORT_CHANNEL_IDS:
err = handle_query_short_channel_ids(peer, msg);
goto handled_relay;
case WIRE_REPLY_SHORT_CHANNEL_IDS_END:
err = handle_reply_short_channel_ids_end(peer, msg);
goto handled_relay;
case WIRE_GOSSIP_TIMESTAMP_FILTER:
err = handle_gossip_timestamp_filter(peer, msg);
goto handled_relay;
case WIRE_PING:
err = handle_ping(peer, msg);
goto handled_relay;
case WIRE_PONG:
err = handle_pong(peer, msg);
goto handled_relay;
/* These are non-gossip messages (!is_msg_for_gossipd()) */
case WIRE_INIT:
case WIRE_ERROR:
case WIRE_OPEN_CHANNEL:
case WIRE_ACCEPT_CHANNEL:
case WIRE_FUNDING_CREATED:
case WIRE_FUNDING_SIGNED:
case WIRE_FUNDING_LOCKED:
case WIRE_SHUTDOWN:
case WIRE_CLOSING_SIGNED:
case WIRE_UPDATE_ADD_HTLC:
case WIRE_UPDATE_FULFILL_HTLC:
case WIRE_UPDATE_FAIL_HTLC:
case WIRE_UPDATE_FAIL_MALFORMED_HTLC:
case WIRE_COMMITMENT_SIGNED:
case WIRE_REVOKE_AND_ACK:
case WIRE_UPDATE_FEE:
case WIRE_CHANNEL_REESTABLISH:
case WIRE_ANNOUNCEMENT_SIGNATURES:
status_broken("peer %s: relayed unexpected msg of type %s",
type_to_string(tmpctx, struct node_id, &peer->id),
wire_type_name(fromwire_peektype(msg)));
return io_close(conn);
}
/* Must be a gossip_peerd_wire_type asking us to do something. */
switch ((enum gossip_peerd_wire_type)fromwire_peektype(msg)) {
case WIRE_GOSSIPD_GET_UPDATE:
ok = handle_get_update(peer, msg);
goto handled_cmd;
case WIRE_GOSSIPD_LOCAL_ADD_CHANNEL:
ok = handle_local_add_channel(peer->daemon->rstate, msg);
if (ok)
gossip_store_add(peer->daemon->rstate->broadcasts->gs,
msg);
goto handled_cmd;
case WIRE_GOSSIPD_LOCAL_CHANNEL_UPDATE:
ok = handle_local_channel_update(peer, msg);
goto handled_cmd;
/* These are the ones we send, not them */
case WIRE_GOSSIPD_GET_UPDATE_REPLY:
case WIRE_GOSSIPD_SEND_GOSSIP:
break;
}
/* Anything else should not have been sent to us: close on it */
status_broken("peer %s: unexpected cmd of type %i %s",
type_to_string(tmpctx, struct node_id, &peer->id),
fromwire_peektype(msg),
gossip_peerd_wire_type_name(fromwire_peektype(msg)));
return io_close(conn);
/* Commands should always be OK. */
handled_cmd:
if (!ok)
return io_close(conn);
goto done;
/* Forwarded messages may be bad, so we have error which the per-peer
* daemon will forward to the peer. */
handled_relay:
if (err)
queue_peer_msg(peer, take(err));
done:
return daemon_conn_read_next(conn, peer->dc);
}
/*~ This is where connectd tells us about a new peer, and we hand back an fd for
* it to send us messages via peer_msg_in above */
static struct io_plan *connectd_new_peer(struct io_conn *conn,
struct daemon *daemon,
const u8 *msg)
{
struct peer *peer = tal(conn, struct peer);
int fds[2];
if (!fromwire_gossip_new_peer(msg, &peer->id,
&peer->gossip_queries_feature,
&peer->initial_routing_sync_feature)) {
status_broken("Bad new_peer msg from connectd: %s",
tal_hex(tmpctx, msg));
return io_close(conn);
}
/* This can happen: we handle it gracefully, returning a `failed` msg. */
if (socketpair(AF_LOCAL, SOCK_STREAM, 0, fds) != 0) {
status_broken("Failed to create socketpair: %s",
strerror(errno));
daemon_conn_send(daemon->connectd,
take(towire_gossip_new_peer_reply(NULL, false)));
goto done;
}
/* We might not have noticed old peer is dead; kill it now. */
tal_free(find_peer(daemon, &peer->id));
/* Populate the rest of the peer info. */
peer->daemon = daemon;
peer->scid_queries = NULL;
peer->scid_query_idx = 0;
peer->scid_query_nodes = NULL;
peer->scid_query_nodes_idx = 0;
peer->num_scid_queries_outstanding = 0;
peer->query_channel_blocks = NULL;
peer->num_pings_outstanding = 0;
peer->gossip_timer = NULL;
/* We keep a list so we can find peer by id */
list_add_tail(&peer->daemon->peers, &peer->list);
tal_add_destructor(peer, destroy_peer);
/* BOLT #7:
*
* - if the `gossip_queries` feature is negotiated:
* - MUST NOT relay any gossip messages unless explicitly requested.
*/
if (peer->gossip_queries_feature) {
peer->broadcast_index = UINT32_MAX;
/* Nothing in this "impossible" range */
peer->gossip_timestamp_min = UINT32_MAX;
peer->gossip_timestamp_max = 0;
} else {
/* BOLT #7:
*
* - upon receiving an `init` message with the
* `initial_routing_sync` flag set to 1:
* - SHOULD send gossip messages for all known channels and
* nodes, as if they were just received.
* - if the `initial_routing_sync` flag is set to 0, OR if the
* initial sync was completed:
* - SHOULD resume normal operation, as specified in the
* following [Rebroadcasting](#rebroadcasting) section.
*/
peer->gossip_timestamp_min = 0;
peer->gossip_timestamp_max = UINT32_MAX;
if (peer->initial_routing_sync_feature)
peer->broadcast_index = 0;
else
peer->broadcast_index
= broadcast_final_index(peer->daemon->rstate->broadcasts) + 1;
}
/* This is the new connection: calls dump_gossip when nothing else to
* send. */
peer->dc = daemon_conn_new(daemon, fds[0],
peer_msg_in, dump_gossip, peer);
/* Free peer if conn closed (destroy_peer closes conn if peer freed) */
tal_steal(peer->dc, peer);
/* This sends the initial timestamp filter. */
setup_gossip_range(peer);
/* Start the gossip flowing. */
wake_gossip_out(peer);
/* Reply with success, and the new fd */
daemon_conn_send(daemon->connectd,
take(towire_gossip_new_peer_reply(NULL, true)));
daemon_conn_send_fd(daemon->connectd, fds[1]);
done:
return daemon_conn_read_next(conn, daemon->connectd);
}
/*~ connectd can also ask us if we know any addresses for a given id. */
static struct io_plan *connectd_get_address(struct io_conn *conn,
struct daemon *daemon,
const u8 *msg)
{
struct node_id id;
struct node *node;
const struct wireaddr *addrs;
if (!fromwire_gossip_get_addrs(msg, &id)) {
status_broken("Bad gossip_get_addrs msg from connectd: %s",
tal_hex(tmpctx, msg));
return io_close(conn);
}
node = get_node(daemon->rstate, &id);
if (node)
addrs = node->addresses;
else
addrs = NULL;
daemon_conn_send(daemon->connectd,
take(towire_gossip_get_addrs_reply(NULL, addrs)));
return daemon_conn_read_next(conn, daemon->connectd);
}
/*~ connectd's input handler is very simple. */
static struct io_plan *connectd_req(struct io_conn *conn,
const u8 *msg,
struct daemon *daemon)
{
enum connect_gossip_wire_type t = fromwire_peektype(msg);
switch (t) {
case WIRE_GOSSIP_NEW_PEER:
return connectd_new_peer(conn, daemon, msg);
case WIRE_GOSSIP_GET_ADDRS:
return connectd_get_address(conn, daemon, msg);
/* We send these, don't receive them. */
case WIRE_GOSSIP_NEW_PEER_REPLY:
case WIRE_GOSSIP_GET_ADDRS_REPLY:
break;
}
status_broken("Bad msg from connectd: %s",
tal_hex(tmpctx, msg));
return io_close(conn);
}
/*~ This is our twice-weekly timer callback for refreshing our channels. This
* was added to the spec because people abandoned their channels without
* closing them. */
static void gossip_send_keepalive_update(struct daemon *daemon,
const struct chan *chan,
const struct half_chan *hc)
{
status_trace("Sending keepalive channel_update for %s",
type_to_string(tmpctx, struct short_channel_id,
&chan->scid));
/* As a side-effect, this will create an update which matches the
* local_disabled state */
update_local_channel(daemon, chan,
hc->channel_flags & ROUTING_FLAGS_DIRECTION,
chan->local_disabled,
hc->delay,
hc->htlc_minimum,
hc->base_fee,
hc->proportional_fee,
hc->htlc_maximum,
__func__);
}
/* BOLT #7:
*
* A node:
* - if a channel's latest `channel_update`s `timestamp` is older than two weeks
* (1209600 seconds):
* - MAY prune the channel.
* - MAY ignore the channel.
*/
static void gossip_refresh_network(struct daemon *daemon)
{
u64 now = time_now().ts.tv_sec;
/* Anything below this highwater mark could be pruned if not refreshed */
s64 highwater = now - daemon->rstate->prune_timeout / 2;
struct node *n;
/* Schedule next run now (prune_timeout is 2 weeks) */
notleak(new_reltimer(&daemon->timers, daemon,
time_from_sec(daemon->rstate->prune_timeout/4),
gossip_refresh_network, daemon));
/* Find myself in the network */
n = get_node(daemon->rstate, &daemon->id);
if (n) {
/* Iterate through all outgoing connection and check whether
* it's time to re-announce */
struct chan_map_iter i;
struct chan *c;
for (c = first_chan(n, &i); c; c = next_chan(n, &i)) {
struct half_chan *hc = half_chan_from(n, c);
if (!is_halfchan_defined(hc)) {
/* Connection is not announced yet, so don't even
* try to re-announce it */
continue;
}
if (hc->bcast.timestamp > highwater) {
/* No need to send a keepalive update message */
continue;
}
if (!is_halfchan_enabled(hc)) {
/* Only send keepalives for active connections */
continue;
}
gossip_send_keepalive_update(daemon, c, hc);
}
}
/* Now we've refreshed our channels, we can prune without clobbering
* them */
route_prune(daemon->rstate);
}
/* Disables all channels connected to our node. */
static void gossip_disable_local_channels(struct daemon *daemon)
{
struct node *local_node = get_node(daemon->rstate, &daemon->id);
struct chan_map_iter i;
struct chan *c;
/* We don't have a local_node, so we don't have any channels yet
* either */
if (!local_node)
return;
for (c = first_chan(local_node, &i); c; c = next_chan(local_node, &i))
c->local_disabled = true;
}
/*~ Parse init message from lightningd: starts the daemon properly. */
static struct io_plan *gossip_init(struct io_conn *conn,
struct daemon *daemon,
const u8 *msg)
{
u32 update_channel_interval;
u32 *dev_gossip_time;
struct amount_sat *dev_unknown_channel_satoshis;
if (!fromwire_gossipctl_init(daemon, msg,
/* 60,000 ms
* (unless --dev-broadcast-interval) */
&daemon->broadcast_interval_msec,
&daemon->chain_hash,
&daemon->id, &daemon->globalfeatures,
daemon->rgb,
daemon->alias,
/* 1 week in seconds
* (unless --dev-channel-update-interval) */
&update_channel_interval,
&daemon->announcable,
&dev_gossip_time,
&dev_unknown_channel_satoshis)) {
master_badmsg(WIRE_GOSSIPCTL_INIT, msg);
}
/* Prune time (usually 2 weeks) is twice update time */
daemon->rstate = new_routing_state(daemon,
chainparams_by_chainhash(&daemon->chain_hash),
&daemon->id,
update_channel_interval * 2,
dev_gossip_time,
dev_unknown_channel_satoshis);
/* Load stored gossip messages */
gossip_store_load(daemon->rstate, daemon->rstate->broadcasts->gs);
/* Now disable all local channels, they can't be connected yet. */
gossip_disable_local_channels(daemon);
/* If that announced channels, we can announce ourselves (options
* or addresses might have changed!) */
maybe_send_own_node_announce(daemon);
/* Start the weekly refresh timer. */
notleak(new_reltimer(&daemon->timers, daemon,
time_from_sec(daemon->rstate->prune_timeout/4),
gossip_refresh_network, daemon));
return daemon_conn_read_next(conn, daemon->master);
}
/*~ lightningd can ask for a route between nodes. */
static struct io_plan *getroute_req(struct io_conn *conn, struct daemon *daemon,
const u8 *msg)
{
struct node_id source, destination;
struct amount_msat msat;
u32 final_cltv;
u64 riskfactor_by_million;
u32 max_hops;
u8 *out;
struct route_hop *hops;
double fuzz;
struct short_channel_id_dir *excluded;
/* To choose between variations, we need to know how much we're
* sending (eliminates too-small channels, and also effects the fees
* we'll pay), how to trade off more locktime vs. more fees, and how
* much cltv we need a the final node to give exact values for each
* intermediate hop, as well as how much random fuzz to inject to
* avoid being too predictable. */
if (!fromwire_gossip_getroute_request(msg, msg,
&source, &destination,
&msat, &riskfactor_by_million,
&final_cltv, &fuzz,
&excluded,
&max_hops))
master_badmsg(WIRE_GOSSIP_GETROUTE_REQUEST, msg);
status_trace("Trying to find a route from %s to %s for %s",
type_to_string(tmpctx, struct node_id, &source),
type_to_string(tmpctx, struct node_id, &destination),
type_to_string(tmpctx, struct amount_msat, &msat));
/* routing.c does all the hard work; can return NULL. */
hops = get_route(tmpctx, daemon->rstate, &source, &destination,
msat, riskfactor_by_million / 1000000.0, final_cltv,
fuzz, pseudorand_u64(), excluded, max_hops);
out = towire_gossip_getroute_reply(NULL, hops);
daemon_conn_send(daemon->master, take(out));
return daemon_conn_read_next(conn, daemon->master);
}
/*~ When someone asks lightningd to `listchannels`, gossipd does the work:
* marshalling the channel information for all channels into an array of
* gossip_getchannels_entry, which lightningd converts to JSON. Each channel
* is represented by two half_chan; one in each direction.
*/
static struct gossip_halfchannel_entry *hc_entry(const tal_t *ctx,
const struct chan *chan,
int idx)
{
/* Our 'struct chan' contains two nodes: they are in pubkey_cmp order
* (ie. chan->nodes[0] is the lesser pubkey) and this is the same as
* the direction bit in `channel_update`s `channel_flags`.
*
* The halfchans are arranged so that half[0] src == nodes[0], and we
* use that here. */
const struct half_chan *c = &chan->half[idx];
struct gossip_halfchannel_entry *e;
/* If we've never seen a channel_update for this direction... */
if (!is_halfchan_defined(c))
return NULL;
e = tal(ctx, struct gossip_halfchannel_entry);
e->channel_flags = c->channel_flags;
e->message_flags = c->message_flags;
e->last_update_timestamp = c->bcast.timestamp;
e->base_fee_msat = c->base_fee;
e->fee_per_millionth = c->proportional_fee;
e->delay = c->delay;
return e;
}
/*~ Marshal (possibly) both channel directions into entries. */
static void append_channel(const struct gossip_getchannels_entry ***entries,
const struct chan *chan,
const struct node_id *srcfilter)
{
struct gossip_getchannels_entry *e = tal(*entries, struct gossip_getchannels_entry);
e->node[0] = chan->nodes[0]->id;
e->node[1] = chan->nodes[1]->id;
e->sat = chan->sat;
e->local_disabled = chan->local_disabled;
e->public = is_chan_public(chan);
e->short_channel_id = chan->scid;
if (!srcfilter || node_id_eq(&e->node[0], srcfilter))
e->e[0] = hc_entry(*entries, chan, 0);
else
e->e[0] = NULL;
if (!srcfilter || node_id_eq(&e->node[1], srcfilter))
e->e[1] = hc_entry(*entries, chan, 1);
else
e->e[1] = NULL;
/* We choose not to tell lightningd about channels with no updates,
* as they're unusable and can't be represented in the listchannels
* JSON output we use anyway. */
if (e->e[0] || e->e[1])
tal_arr_expand(entries, e);
}
/*~ This is where lightningd asks for all channels we know about. */
static struct io_plan *getchannels_req(struct io_conn *conn,
struct daemon *daemon,
const u8 *msg)
{
u8 *out;
const struct gossip_getchannels_entry **entries;
struct chan *chan;
struct short_channel_id *scid;
struct node_id *source;
/* Note: scid is marked optional in gossip_wire.csv */
if (!fromwire_gossip_getchannels_request(msg, msg, &scid, &source))
master_badmsg(WIRE_GOSSIP_GETCHANNELS_REQUEST, msg);
entries = tal_arr(tmpctx, const struct gossip_getchannels_entry *, 0);
/* They can ask about a particular channel by short_channel_id */
if (scid) {
chan = get_channel(daemon->rstate, scid);
if (chan)
append_channel(&entries, chan, NULL);
} else if (source) {
struct node *s = get_node(daemon->rstate, source);
if (s) {
struct chan_map_iter i;
struct chan *c;
for (c = first_chan(s, &i); c; c = next_chan(s, &i)) {
append_channel(&entries, c, source);
}
}
} else {
u64 idx;
/* For the more general case, we just iterate through every
* short channel id. */
for (chan = uintmap_first(&daemon->rstate->chanmap, &idx);
chan;
chan = uintmap_after(&daemon->rstate->chanmap, &idx)) {
append_channel(&entries, chan, NULL);
}
}
out = towire_gossip_getchannels_reply(NULL, entries);
daemon_conn_send(daemon->master, take(out));
return daemon_conn_read_next(conn, daemon->master);
}
/*~ Similarly, lightningd asks us for all nodes when it gets `listnodes` */
/* We keep pointers into n, assuming it won't change. */
static void append_node(const struct gossip_getnodes_entry ***entries,
const struct node *n)
{
struct gossip_getnodes_entry *e;
e = tal(*entries, struct gossip_getnodes_entry);
e->nodeid = n->id;
/* Timestamp on wire is an unsigned 32 bit: we use a 64-bit signed, so
* -1 means "we never received a channel_update". */
if (!n->node_announcement)
e->last_timestamp = -1;
else {
e->last_timestamp = n->bcast.timestamp;
e->globalfeatures = n->globalfeatures;
e->addresses = n->addresses;
BUILD_ASSERT(ARRAY_SIZE(e->alias) == ARRAY_SIZE(n->alias));
BUILD_ASSERT(ARRAY_SIZE(e->color) == ARRAY_SIZE(n->rgb_color));
memcpy(e->alias, n->alias, ARRAY_SIZE(e->alias));
memcpy(e->color, n->rgb_color, ARRAY_SIZE(e->color));
}
tal_arr_expand(entries, e);
}
/* Simply routine when they ask for `listnodes` */
static struct io_plan *getnodes(struct io_conn *conn, struct daemon *daemon,
const u8 *msg)
{
u8 *out;
struct node *n;
const struct gossip_getnodes_entry **nodes;
struct node_id *id;
if (!fromwire_gossip_getnodes_request(tmpctx, msg, &id))
master_badmsg(WIRE_GOSSIP_GETNODES_REQUEST, msg);
/* Format of reply is the same whether they ask for a specific node
* (0 or one responses) or all nodes (0 or more) */
nodes = tal_arr(tmpctx, const struct gossip_getnodes_entry *, 0);
if (id) {
n = get_node(daemon->rstate, id);
if (n)
append_node(&nodes, n);
} else {
struct node_map_iter i;
n = node_map_first(daemon->rstate->nodes, &i);
while (n != NULL) {
append_node(&nodes, n);
n = node_map_next(daemon->rstate->nodes, &i);
}
}
out = towire_gossip_getnodes_reply(NULL, nodes);
daemon_conn_send(daemon->master, take(out));
return daemon_conn_read_next(conn, daemon->master);
}
/*~ We currently have a JSON command to ping a peer: it ends up here, where
* gossipd generates the actual ping and sends it like any other gossip. */
static struct io_plan *ping_req(struct io_conn *conn, struct daemon *daemon,
const u8 *msg)
{
struct node_id id;
u16 num_pong_bytes, len;
struct peer *peer;
u8 *ping;
if (!fromwire_gossip_ping(msg, &id, &num_pong_bytes, &len))
master_badmsg(WIRE_GOSSIP_PING, msg);
/* Even if lightningd were to check for valid ids, there's a race
* where it might vanish before we read this command; cleaner to
* handle it here with 'sent' = false. */
peer = find_peer(daemon, &id);
if (!peer) {
daemon_conn_send(daemon->master,
take(towire_gossip_ping_reply(NULL, &id,
false, 0)));
goto out;
}
/* It should never ask for an oversize ping. */
ping = make_ping(peer, num_pong_bytes, len);
if (tal_count(ping) > 65535)
status_failed(STATUS_FAIL_MASTER_IO, "Oversize ping");
queue_peer_msg(peer, take(ping));
status_trace("sending ping expecting %sresponse",
num_pong_bytes >= 65532 ? "no " : "");
/* BOLT #1:
*
* A node receiving a `ping` message:
*...
* - if `num_pong_bytes` is less than 65532:
* - MUST respond by sending a `pong` message, with `byteslen` equal
* to `num_pong_bytes`.
* - otherwise (`num_pong_bytes` is **not** less than 65532):
* - MUST ignore the `ping`.
*/
if (num_pong_bytes >= 65532)
daemon_conn_send(daemon->master,
take(towire_gossip_ping_reply(NULL, &id,
true, 0)));
else
/* We'll respond to lightningd once the pong comes in */
peer->num_pings_outstanding++;
out:
return daemon_conn_read_next(conn, daemon->master);
}
/*~ If a node has no public channels (other than the one to us), it's not
* a very useful route to tell anyone about. */
static bool node_has_public_channels(const struct node *peer,
const struct chan *exclude)
{
struct chan_map_iter i;
struct chan *c;
for (c = first_chan(peer, &i); c; c = next_chan(peer, &i)) {
if (c == exclude)
continue;
if (is_chan_public(c))
return true;
}
return false;
}
/*~ The `exposeprivate` flag is a trinary: NULL == dynamic, otherwise
* value decides. Thus, we provide two wrappers for clarity: */
static bool never_expose(bool *exposeprivate)
{
return exposeprivate && !*exposeprivate;
}
static bool always_expose(bool *exposeprivate)
{
return exposeprivate && *exposeprivate;
}
/*~ For routeboost, we offer payers a hint of what incoming channels might
* have capacity for their payment. To do this, lightningd asks for the
* information about all channels to this node; but gossipd doesn't know about
* current capacities, so lightningd selects which to use. */
static struct io_plan *get_incoming_channels(struct io_conn *conn,
struct daemon *daemon,
const u8 *msg)
{
struct node *node;
struct route_info *public = tal_arr(tmpctx, struct route_info, 0);
struct route_info *private = tal_arr(tmpctx, struct route_info, 0);
bool has_public;
bool *exposeprivate;
if (!fromwire_gossip_get_incoming_channels(tmpctx, msg, &exposeprivate))
master_badmsg(WIRE_GOSSIP_GET_INCOMING_CHANNELS, msg);
status_trace("exposeprivate = %s",
exposeprivate ? (*exposeprivate ? "TRUE" : "FALSE") : "NULL");
status_trace("msg = %s", tal_hex(tmpctx, msg));
status_trace("always_expose = %u, never_expose = %u",
always_expose(exposeprivate), never_expose(exposeprivate));
has_public = always_expose(exposeprivate);
node = get_node(daemon->rstate, &daemon->rstate->local_id);
if (node) {
struct chan_map_iter i;
struct chan *c;
for (c = first_chan(node, &i); c; c = next_chan(node, &i)) {
const struct half_chan *hc;
struct route_info ri;
hc = &c->half[half_chan_to(node, c)];
if (!is_halfchan_enabled(hc))
continue;
ri.pubkey = other_node(node, c)->id;
ri.short_channel_id = c->scid;
ri.fee_base_msat = hc->base_fee;
ri.fee_proportional_millionths = hc->proportional_fee;
ri.cltv_expiry_delta = hc->delay;
has_public |= is_chan_public(c);
/* If peer doesn't have other public channels,
* no point giving route */
if (!node_has_public_channels(other_node(node, c), c))
continue;
if (always_expose(exposeprivate) || is_chan_public(c))
tal_arr_expand(&public, ri);
else
tal_arr_expand(&private, ri);
}
}
/* If no public channels (even deadend ones!), share private ones. */
if (!has_public && !never_expose(exposeprivate))
msg = towire_gossip_get_incoming_channels_reply(NULL, private);
else
msg = towire_gossip_get_incoming_channels_reply(NULL, public);
daemon_conn_send(daemon->master, take(msg));
return daemon_conn_read_next(conn, daemon->master);
}
#if DEVELOPER
/* FIXME: One day this will be called internally; for now it's just for
* testing with dev_query_scids. */
static struct io_plan *query_scids_req(struct io_conn *conn,
struct daemon *daemon,
const u8 *msg)
{
struct node_id id;
struct short_channel_id *scids;
struct peer *peer;
u8 *encoded;
/* BOLT #7:
*
* 1. type: 261 (`query_short_channel_ids`) (`gossip_queries`)
* 2. data:
* * [`32`:`chain_hash`]
* * [`2`:`len`]
* * [`len`:`encoded_short_ids`]
*/
const size_t reply_overhead = 32 + 2;
const size_t max_encoded_bytes = 65535 - 2 - reply_overhead;
if (!fromwire_gossip_query_scids(msg, msg, &id, &scids))
master_badmsg(WIRE_GOSSIP_QUERY_SCIDS, msg);
peer = find_peer(daemon, &id);
if (!peer) {
status_broken("query_scids: unknown peer %s",
type_to_string(tmpctx, struct node_id, &id));
goto fail;
}
if (!peer->gossip_queries_feature) {
status_broken("query_scids: no gossip_query support in peer %s",
type_to_string(tmpctx, struct node_id, &id));
goto fail;
}
encoded = encode_short_channel_ids_start(tmpctx);
for (size_t i = 0; i < tal_count(scids); i++)
encode_add_short_channel_id(&encoded, &scids[i]);
/* Because this is a dev command, we simply say this case is
* "too hard". */
if (!encode_short_channel_ids_end(&encoded, max_encoded_bytes)) {
status_broken("query_short_channel_ids: %zu is too many",
tal_count(scids));
goto fail;
}
msg = towire_query_short_channel_ids(NULL, &daemon->chain_hash,
encoded);
queue_peer_msg(peer, take(msg));
peer->num_scid_queries_outstanding++;
status_trace("sending query for %zu scids", tal_count(scids));
out:
return daemon_conn_read_next(conn, daemon->master);
fail:
daemon_conn_send(daemon->master,
take(towire_gossip_scids_reply(NULL, false, false)));
goto out;
}
/* BOLT #7:
*
* ### The `gossip_timestamp_filter` Message
*...
* This message allows a node to constrain future gossip messages to
* a specific range. A node which wants any gossip messages would have
* to send this, otherwise `gossip_queries` negotiation means no gossip
* messages would be received.
*
* Note that this filter replaces any previous one, so it can be used
* multiple times to change the gossip from a peer. */
/* This is the entry point for dev_send_timestamp_filter testing. */
static struct io_plan *send_timestamp_filter(struct io_conn *conn,
struct daemon *daemon,
const u8 *msg)
{
struct node_id id;
u32 first, range;
struct peer *peer;
if (!fromwire_gossip_send_timestamp_filter(msg, &id, &first, &range))
master_badmsg(WIRE_GOSSIP_SEND_TIMESTAMP_FILTER, msg);
peer = find_peer(daemon, &id);
if (!peer) {
status_broken("send_timestamp_filter: unknown peer %s",
type_to_string(tmpctx, struct node_id, &id));
goto out;
}
if (!peer->gossip_queries_feature) {
status_broken("send_timestamp_filter: no gossip_query support in peer %s",
type_to_string(tmpctx, struct node_id, &id));
goto out;
}
msg = towire_gossip_timestamp_filter(NULL, &daemon->chain_hash,
first, range);
queue_peer_msg(peer, take(msg));
out:
return daemon_conn_read_next(conn, daemon->master);
}
/* FIXME: One day this will be called internally; for now it's just for
* testing with dev_query_channel_range. */
static struct io_plan *query_channel_range(struct io_conn *conn,
struct daemon *daemon,
const u8 *msg)
{
struct node_id id;
u32 first_blocknum, number_of_blocks;
struct peer *peer;
if (!fromwire_gossip_query_channel_range(msg, &id, &first_blocknum,
&number_of_blocks))
master_badmsg(WIRE_GOSSIP_QUERY_SCIDS, msg);
peer = find_peer(daemon, &id);
if (!peer) {
status_broken("query_channel_range: unknown peer %s",
type_to_string(tmpctx, struct node_id, &id));
goto fail;
}
if (!peer->gossip_queries_feature) {
status_broken("query_channel_range: no gossip_query support in peer %s",
type_to_string(tmpctx, struct node_id, &id));
goto fail;
}
if (peer->query_channel_blocks) {
status_broken("query_channel_range: previous query active");
goto fail;
}
/* Check for overflow on 32-bit machines! */
if (BITMAP_NWORDS(number_of_blocks) < number_of_blocks / BITMAP_WORD_BITS) {
status_broken("query_channel_range: huge number_of_blocks (%u) not supported",
number_of_blocks);
goto fail;
}
status_debug("sending query_channel_range for blocks %u+%u",
first_blocknum, number_of_blocks);
msg = towire_query_channel_range(NULL, &daemon->chain_hash,
first_blocknum, number_of_blocks);
queue_peer_msg(peer, take(msg));
peer->range_first_blocknum = first_blocknum;
peer->range_end_blocknum = first_blocknum + number_of_blocks;
peer->range_blocks_remaining = number_of_blocks;
peer->query_channel_blocks = tal_arrz(peer, bitmap,
BITMAP_NWORDS(number_of_blocks));
peer->query_channel_scids = tal_arr(peer, struct short_channel_id, 0);
out:
return daemon_conn_read_next(conn, daemon->master);
fail:
daemon_conn_send(daemon->master,
take(towire_gossip_query_channel_range_reply(NULL,
0, 0,
false,
NULL)));
goto out;
}
/* This is a testing hack to allow us to artificially lower the maximum bytes
* of short_channel_ids we'll encode, using dev_set_max_scids_encode_size. */
static struct io_plan *dev_set_max_scids_encode_size(struct io_conn *conn,
struct daemon *daemon,
const u8 *msg)
{
if (!fromwire_gossip_dev_set_max_scids_encode_size(msg,
&max_scids_encode_bytes))
master_badmsg(WIRE_GOSSIP_DEV_SET_MAX_SCIDS_ENCODE_SIZE, msg);
status_trace("Set max_scids_encode_bytes to %u", max_scids_encode_bytes);
return daemon_conn_read_next(conn, daemon->master);
}
/* Another testing hack */
static struct io_plan *dev_gossip_suppress(struct io_conn *conn,
struct daemon *daemon,
const u8 *msg)
{
if (!fromwire_gossip_dev_suppress(msg))
master_badmsg(WIRE_GOSSIP_DEV_SUPPRESS, msg);
status_unusual("Suppressing all gossip");
suppress_gossip = true;
return daemon_conn_read_next(conn, daemon->master);
}
static struct io_plan *dev_gossip_memleak(struct io_conn *conn,
struct daemon *daemon,
const u8 *msg)
{
struct htable *memtable;
bool found_leak;
memtable = memleak_enter_allocations(tmpctx, msg, msg);
/* Now delete daemon and those which it has pointers to. */
memleak_remove_referenced(memtable, daemon);
memleak_remove_routing_tables(memtable, daemon->rstate);
found_leak = dump_memleak(memtable);
daemon_conn_send(daemon->master,
take(towire_gossip_dev_memleak_reply(NULL,
found_leak)));
return daemon_conn_read_next(conn, daemon->master);
}
static struct io_plan *dev_compact_store(struct io_conn *conn,
struct daemon *daemon,
const u8 *msg)
{
bool done = gossip_store_compact(daemon->rstate->broadcasts->gs,
&daemon->rstate->broadcasts);
daemon_conn_send(daemon->master,
take(towire_gossip_dev_compact_store_reply(NULL,
done)));
return daemon_conn_read_next(conn, daemon->master);
}
#endif /* DEVELOPER */
/*~ lightningd: so, tell me about this channel, so we can forward to it. */
static struct io_plan *get_channel_peer(struct io_conn *conn,
struct daemon *daemon, const u8 *msg)
{
struct short_channel_id scid;
struct chan *chan;
const struct node_id *key;
int direction;
if (!fromwire_gossip_get_channel_peer(msg, &scid))
master_badmsg(WIRE_GOSSIP_GET_CHANNEL_PEER, msg);
chan = get_channel(daemon->rstate, &scid);
if (!chan) {
status_trace("Failed to resolve channel %s",
type_to_string(tmpctx, struct short_channel_id, &scid));
key = NULL;
} else if (local_direction(daemon, chan, &direction)) {
key = &chan->nodes[!direction]->id;
} else {
status_trace("Resolved channel %s was not local",
type_to_string(tmpctx, struct short_channel_id,
&scid));
key = NULL;
}
daemon_conn_send(daemon->master,
take(towire_gossip_get_channel_peer_reply(NULL, key)));
return daemon_conn_read_next(conn, daemon->master);
}
/*~ We queue incoming channel_announcement pending confirmation from lightningd
* that it really is an unspent output. Here's its reply. */
static struct io_plan *handle_txout_reply(struct io_conn *conn,
struct daemon *daemon, const u8 *msg)
{
struct short_channel_id scid;
u8 *outscript;
struct amount_sat sat;
if (!fromwire_gossip_get_txout_reply(msg, msg, &scid, &sat, &outscript))
master_badmsg(WIRE_GOSSIP_GET_TXOUT_REPLY, msg);
/* Outscript is NULL if it's not an unspent output */
handle_pending_cannouncement(daemon->rstate, &scid, sat, outscript);
/* Anywhere we might have announced a channel, we check if it's time to
* announce ourselves (ie. if we just announced our own first channel) */
maybe_send_own_node_announce(daemon);
return daemon_conn_read_next(conn, daemon->master);
}
/* Fix up the channel_update to include the type if it doesn't currently have
* one. See ElementsProject/lightning#1730 and lightningnetwork/lnd#1599 for the
* in-depth discussion on why we break message parsing here... */
static u8 *patch_channel_update(const tal_t *ctx, u8 *channel_update TAKES)
{
u8 *fixed;
if (channel_update != NULL &&
fromwire_peektype(channel_update) != WIRE_CHANNEL_UPDATE) {
/* This should be a channel_update, prefix with the
* WIRE_CHANNEL_UPDATE type, but isn't. Let's prefix it. */
fixed = tal_arr(ctx, u8, 0);
towire_u16(&fixed, WIRE_CHANNEL_UPDATE);
towire(&fixed, channel_update, tal_bytelen(channel_update));
if (taken(channel_update))
tal_free(channel_update);
return fixed;
} else {
return tal_dup_arr(ctx, u8,
channel_update, tal_count(channel_update), 0);
}
}
/* Return NULL if the wrapped onion error message has no channel_update field,
* or return the embedded channel_update message otherwise. */
static u8 *channel_update_from_onion_error(const tal_t *ctx,
const u8 *onion_message)
{
u8 *channel_update = NULL;
struct amount_msat unused_msat;
u32 unused32;
/* Identify failcodes that have some channel_update.
*
* TODO > BOLT 1.0: Add new failcodes when updating to a
* new BOLT version. */
if (!fromwire_temporary_channel_failure(ctx,
onion_message,
&channel_update) &&
!fromwire_amount_below_minimum(ctx,
onion_message, &unused_msat,
&channel_update) &&
!fromwire_fee_insufficient(ctx,
onion_message, &unused_msat,
&channel_update) &&
!fromwire_incorrect_cltv_expiry(ctx,
onion_message, &unused32,
&channel_update) &&
!fromwire_expiry_too_soon(ctx,
onion_message,
&channel_update))
/* No channel update. */
return NULL;
return patch_channel_update(ctx, take(channel_update));
}
/*~ lightningd tells us when a payment has failed; we mark the channel (or
* node) unusable here if it's a permanent failure, and unpack any
* channel_update contained in the error. */
static struct io_plan *handle_payment_failure(struct io_conn *conn,
struct daemon *daemon,
const u8 *msg)
{
struct node_id erring_node;
struct short_channel_id erring_channel;
u8 erring_channel_direction;
u8 *error;
enum onion_type failcode;
u8 *channel_update;
if (!fromwire_gossip_payment_failure(msg, msg,
&erring_node,
&erring_channel,
&erring_channel_direction,
&error))
master_badmsg(WIRE_GOSSIP_PAYMENT_FAILURE, msg);
failcode = fromwire_peektype(error);
channel_update = channel_update_from_onion_error(tmpctx, error);
if (channel_update)
status_debug("Extracted channel_update %s from onionreply %s",
tal_hex(tmpctx, channel_update),
tal_hex(tmpctx, error));
routing_failure(daemon->rstate,
&erring_node,
&erring_channel,
erring_channel_direction,
failcode,
channel_update);
return daemon_conn_read_next(conn, daemon->master);
}
/*~ This is where lightningd tells us that a channel's funding transaction has
* been spent. */
static struct io_plan *handle_outpoint_spent(struct io_conn *conn,
struct daemon *daemon,
const u8 *msg)
{
struct short_channel_id scid;
struct chan *chan;
struct routing_state *rstate = daemon->rstate;
if (!fromwire_gossip_outpoint_spent(msg, &scid))
master_badmsg(WIRE_GOSSIP_OUTPOINT_SPENT, msg);
chan = get_channel(rstate, &scid);
if (chan) {
status_trace(
"Deleting channel %s due to the funding outpoint being "
"spent",
type_to_string(msg, struct short_channel_id, &scid));
/* Freeing is sufficient since everything else is allocated off
* of the channel and the destructor takes care of unregistering
* the channel */
tal_free(chan);
/* We put a tombstone marker in the channel store, so we don't
* have to replay blockchain spends on restart. */
gossip_store_add_channel_delete(rstate->broadcasts->gs, &scid);
}
return daemon_conn_read_next(conn, daemon->master);
}
/*~ This is sent by lightningd when it kicks off 'closingd': we disable it
* in both directions.
*
* We'll leave it to handle_outpoint_spent to delete the channel from our view
* once the close gets confirmed. This avoids having strange states in which the
* channel is list in our peer list but won't be returned when listing public
* channels. This does not send out updates since that's triggered by the peer
* connection closing.
*/
static struct io_plan *handle_local_channel_close(struct io_conn *conn,
struct daemon *daemon,
const u8 *msg)
{
struct short_channel_id scid;
struct chan *chan;
struct routing_state *rstate = daemon->rstate;
if (!fromwire_gossip_local_channel_close(msg, &scid))
master_badmsg(WIRE_GOSSIP_LOCAL_CHANNEL_CLOSE, msg);
chan = get_channel(rstate, &scid);
if (chan)
chan->local_disabled = true;
return daemon_conn_read_next(conn, daemon->master);
}
/*~ This routine handles all the commands from lightningd. */
static struct io_plan *recv_req(struct io_conn *conn,
const u8 *msg,
struct daemon *daemon)
{
enum gossip_wire_type t = fromwire_peektype(msg);
switch (t) {
case WIRE_GOSSIPCTL_INIT:
return gossip_init(conn, daemon, msg);
case WIRE_GOSSIP_GETNODES_REQUEST:
return getnodes(conn, daemon, msg);
case WIRE_GOSSIP_GETROUTE_REQUEST:
return getroute_req(conn, daemon, msg);
case WIRE_GOSSIP_GETCHANNELS_REQUEST:
return getchannels_req(conn, daemon, msg);
case WIRE_GOSSIP_GET_CHANNEL_PEER:
return get_channel_peer(conn, daemon, msg);
case WIRE_GOSSIP_GET_TXOUT_REPLY:
return handle_txout_reply(conn, daemon, msg);
case WIRE_GOSSIP_PAYMENT_FAILURE:
return handle_payment_failure(conn, daemon, msg);
case WIRE_GOSSIP_OUTPOINT_SPENT:
return handle_outpoint_spent(conn, daemon, msg);
case WIRE_GOSSIP_LOCAL_CHANNEL_CLOSE:
return handle_local_channel_close(conn, daemon, msg);
case WIRE_GOSSIP_PING:
return ping_req(conn, daemon, msg);
case WIRE_GOSSIP_GET_INCOMING_CHANNELS:
return get_incoming_channels(conn, daemon, msg);
#if DEVELOPER
case WIRE_GOSSIP_QUERY_SCIDS:
return query_scids_req(conn, daemon, msg);
case WIRE_GOSSIP_SEND_TIMESTAMP_FILTER:
return send_timestamp_filter(conn, daemon, msg);
case WIRE_GOSSIP_QUERY_CHANNEL_RANGE:
return query_channel_range(conn, daemon, msg);
case WIRE_GOSSIP_DEV_SET_MAX_SCIDS_ENCODE_SIZE:
return dev_set_max_scids_encode_size(conn, daemon, msg);
case WIRE_GOSSIP_DEV_SUPPRESS:
return dev_gossip_suppress(conn, daemon, msg);
case WIRE_GOSSIP_DEV_MEMLEAK:
return dev_gossip_memleak(conn, daemon, msg);
case WIRE_GOSSIP_DEV_COMPACT_STORE:
return dev_compact_store(conn, daemon, msg);
#else
case WIRE_GOSSIP_QUERY_SCIDS:
case WIRE_GOSSIP_SEND_TIMESTAMP_FILTER:
case WIRE_GOSSIP_QUERY_CHANNEL_RANGE:
case WIRE_GOSSIP_DEV_SET_MAX_SCIDS_ENCODE_SIZE:
case WIRE_GOSSIP_DEV_SUPPRESS:
case WIRE_GOSSIP_DEV_MEMLEAK:
case WIRE_GOSSIP_DEV_COMPACT_STORE:
break;
#endif /* !DEVELOPER */
/* We send these, we don't receive them */
case WIRE_GOSSIP_GETNODES_REPLY:
case WIRE_GOSSIP_GETROUTE_REPLY:
case WIRE_GOSSIP_GETCHANNELS_REPLY:
case WIRE_GOSSIP_PING_REPLY:
case WIRE_GOSSIP_SCIDS_REPLY:
case WIRE_GOSSIP_QUERY_CHANNEL_RANGE_REPLY:
case WIRE_GOSSIP_GET_CHANNEL_PEER_REPLY:
case WIRE_GOSSIP_GET_INCOMING_CHANNELS_REPLY:
case WIRE_GOSSIP_GET_TXOUT:
case WIRE_GOSSIP_DEV_MEMLEAK_REPLY:
case WIRE_GOSSIP_DEV_COMPACT_STORE_REPLY:
break;
}
/* Master shouldn't give bad requests. */
status_failed(STATUS_FAIL_MASTER_IO, "%i: %s",
t, tal_hex(tmpctx, msg));
}
/* This is called when lightningd closes its connection to us. We simply
* exit. */
static void master_gone(struct daemon_conn *master UNUSED)
{
daemon_shutdown();
/* Can't tell master, it's gone. */
exit(2);
}
int main(int argc, char *argv[])
{
setup_locale();
struct daemon *daemon;
subdaemon_setup(argc, argv);
daemon = tal(NULL, struct daemon);
list_head_init(&daemon->peers);
/* Note the use of time_mono() here. That's a monotonic clock, which
* is really useful: it can only be used to measure relative events
* (there's no correspondence to time-since-Ken-grew-a-beard or
* anything), but unlike time_now(), this will never jump backwards by
* half a second and leave me wondering how my tests failed CI! */
timers_init(&daemon->timers, time_mono());
/* Our daemons always use STDIN for commands from lightningd. */
daemon->master = daemon_conn_new(daemon, STDIN_FILENO,
recv_req, NULL, daemon);
tal_add_destructor(daemon->master, master_gone);
status_setup_async(daemon->master);
/* connectd is already started, and uses this fd to ask us things. */
daemon->connectd = daemon_conn_new(daemon, CONNECTD_FD,
connectd_req, NULL, daemon);
/* This loop never exits. io_loop() only returns if a timer has
* expired, or io_break() is called, or all fds are closed. We don't
* use io_break and closing the lightningd fd calls master_gone()
* which exits. */
for (;;) {
struct timer *expired = NULL;
io_loop(&daemon->timers, &expired);
timer_expired(daemon, expired);
}
}
/*~ Note that the actual routing stuff is in routing.c; you might want to
* check that out later.
*
* But that's the last of the global daemons. We now move on to the first of
* the per-peer daemons: openingd/openingd.c.
*/