mirror of
https://github.com/ElementsProject/lightning.git
synced 2025-01-03 20:44:54 +01:00
3fa375881a
It doesn't belong in bitcoin, and should not be confused with varint_t. Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
774 lines
21 KiB
C
774 lines
21 KiB
C
#include <assert.h>
|
|
|
|
#include <ccan/array_size/array_size.h>
|
|
#include <ccan/crypto/ripemd160/ripemd160.h>
|
|
#include <ccan/crypto/sha256/sha256.h>
|
|
#include <ccan/mem/mem.h>
|
|
#include <common/node_id.h>
|
|
#include <common/sphinx.h>
|
|
#include <common/utils.h>
|
|
|
|
#include <err.h>
|
|
|
|
#include <secp256k1_ecdh.h>
|
|
|
|
#include <sodium/crypto_auth_hmacsha256.h>
|
|
#include <sodium/crypto_stream_chacha20.h>
|
|
|
|
#define BLINDING_FACTOR_SIZE 32
|
|
#define SHARED_SECRET_SIZE 32
|
|
#define KEY_LEN 32
|
|
|
|
#define NUM_STREAM_BYTES (2*ROUTING_INFO_SIZE)
|
|
#define ONION_REPLY_SIZE 256
|
|
|
|
#define RHO_KEYTYPE "rho"
|
|
|
|
struct hop_params {
|
|
u8 secret[SHARED_SECRET_SIZE];
|
|
u8 blind[BLINDING_FACTOR_SIZE];
|
|
struct pubkey ephemeralkey;
|
|
};
|
|
|
|
struct keyset {
|
|
u8 pi[KEY_LEN];
|
|
u8 mu[KEY_LEN];
|
|
u8 rho[KEY_LEN];
|
|
u8 gamma[KEY_LEN];
|
|
};
|
|
|
|
/*
|
|
* All the necessary information to generate a valid onion for this hop on a
|
|
* sphinx path. The payload is preserialized in order since the onion
|
|
* generation is payload agnostic. */
|
|
struct sphinx_hop {
|
|
struct pubkey pubkey;
|
|
enum sphinx_payload_type type;
|
|
const u8 *payload;
|
|
u8 hmac[HMAC_SIZE];
|
|
};
|
|
|
|
/* Encapsulates the information about a given payment path for the the onion
|
|
* routing algorithm.
|
|
*/
|
|
struct sphinx_path {
|
|
/* The session_key used to generate the shared secrets along the
|
|
* path. This MUST be generated in a cryptographically secure manner,
|
|
* and is exposed solely for testing, i.e., it can be set to known
|
|
* values in unit tests. If unset it'll be generated during the packet
|
|
* generation. */
|
|
struct secret *session_key;
|
|
|
|
/* The associated data is appended to the packet when generating the
|
|
* HMAC, but is not passed along as part of the packet. It is used to
|
|
* ensure some external data (HTLC payment_hash) is not modified along
|
|
* the way. */
|
|
u8 *associated_data;
|
|
|
|
/* The individual hops on this route. */
|
|
struct sphinx_hop *hops;
|
|
};
|
|
|
|
struct sphinx_path *sphinx_path_new(const tal_t *ctx, const u8 *associated_data)
|
|
{
|
|
struct sphinx_path *sp = tal(ctx, struct sphinx_path);
|
|
sp->associated_data = tal_dup_arr(sp, u8, associated_data,
|
|
tal_bytelen(associated_data), 0);
|
|
sp->session_key = NULL;
|
|
sp->hops = tal_arr(sp, struct sphinx_hop, 0);
|
|
return sp;
|
|
}
|
|
|
|
struct sphinx_path *sphinx_path_new_with_key(const tal_t *ctx,
|
|
const u8 *associated_data,
|
|
const struct secret *session_key)
|
|
{
|
|
struct sphinx_path *sp = sphinx_path_new(ctx, associated_data);
|
|
sp->session_key = tal_dup(sp, struct secret, session_key);
|
|
return sp;
|
|
}
|
|
|
|
static size_t sphinx_hop_size(const struct sphinx_hop *hop)
|
|
{
|
|
size_t size = tal_bytelen(hop->payload), vsize;
|
|
|
|
/* There is no point really in trying to serialize something that is
|
|
* larger than the maximum length we can fit into the payload region
|
|
* anyway. 3 here is the maximum bigsize size that we allow. */
|
|
assert(size < ROUTING_INFO_SIZE - 3 - HMAC_SIZE);
|
|
|
|
/* Backwards compatibility: realm 0 is the legacy hop_data format and
|
|
* always has 65 bytes in size */
|
|
if (hop->type == SPHINX_V0_PAYLOAD)
|
|
return 65;
|
|
|
|
/* Since this uses the bigsize serialization format for variable
|
|
* length integer encodings we need to allocate enough space for
|
|
* it. Values >= 0xfd are used to signal multi-byte serializations. */
|
|
if (size < 0xFD)
|
|
vsize = 1;
|
|
else
|
|
vsize = 3;
|
|
|
|
/* The hop must accomodate the hop_payload, as well as the bigsize
|
|
* describing the length and HMAC. */
|
|
return vsize + size + HMAC_SIZE;
|
|
}
|
|
|
|
static size_t sphinx_path_payloads_size(const struct sphinx_path *path)
|
|
{
|
|
size_t size = 0;
|
|
for (size_t i=0; i<tal_count(path->hops); i++)
|
|
size += sphinx_hop_size(&path->hops[i]);
|
|
return size;
|
|
}
|
|
|
|
void sphinx_add_raw_hop(struct sphinx_path *path, const struct pubkey *pubkey,
|
|
enum sphinx_payload_type type, const u8 *payload)
|
|
{
|
|
struct sphinx_hop sp;
|
|
sp.payload = payload;
|
|
sp.type = type;
|
|
sp.pubkey = *pubkey;
|
|
tal_arr_expand(&path->hops, sp);
|
|
assert(sphinx_path_payloads_size(path) <= ROUTING_INFO_SIZE);
|
|
}
|
|
|
|
void sphinx_add_v0_hop(struct sphinx_path *path, const struct pubkey *pubkey,
|
|
const struct short_channel_id *scid,
|
|
struct amount_msat forward, u32 outgoing_cltv)
|
|
{
|
|
const u8 padding[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
|
|
u8 *buf = tal_arr(path, u8, 0);
|
|
towire_short_channel_id(&buf, scid);
|
|
towire_u64(&buf, forward.millisatoshis); /* Raw: low-level serializer */
|
|
towire_u32(&buf, outgoing_cltv);
|
|
towire(&buf, padding, ARRAY_SIZE(padding));
|
|
assert(tal_bytelen(buf) == 32);
|
|
sphinx_add_raw_hop(path, pubkey, 0, buf);
|
|
}
|
|
|
|
/* Small helper to append data to a buffer and update the position
|
|
* into the buffer
|
|
*/
|
|
static void write_buffer(u8 *dst, const void *src, const size_t len, int *pos)
|
|
{
|
|
memcpy(dst + *pos, src, len);
|
|
*pos += len;
|
|
}
|
|
|
|
/* Read len bytes from the source at position pos into dst and update
|
|
* the position pos accordingly.
|
|
*/
|
|
static void read_buffer(void *dst, const u8 *src, const size_t len, int *pos)
|
|
{
|
|
memcpy(dst, src + *pos, len);
|
|
*pos += len;
|
|
}
|
|
|
|
u8 *serialize_onionpacket(
|
|
const tal_t *ctx,
|
|
const struct onionpacket *m)
|
|
{
|
|
u8 *dst = tal_arr(ctx, u8, TOTAL_PACKET_SIZE);
|
|
|
|
u8 der[PUBKEY_CMPR_LEN];
|
|
int p = 0;
|
|
|
|
pubkey_to_der(der, &m->ephemeralkey);
|
|
write_buffer(dst, &m->version, 1, &p);
|
|
write_buffer(dst, der, sizeof(der), &p);
|
|
write_buffer(dst, m->routinginfo, ROUTING_INFO_SIZE, &p);
|
|
write_buffer(dst, m->mac, sizeof(m->mac), &p);
|
|
return dst;
|
|
}
|
|
|
|
struct onionpacket *parse_onionpacket(const tal_t *ctx,
|
|
const void *src,
|
|
const size_t srclen,
|
|
enum onion_type *why_bad)
|
|
{
|
|
struct onionpacket *m;
|
|
int p = 0;
|
|
u8 rawEphemeralkey[PUBKEY_CMPR_LEN];
|
|
|
|
assert(srclen == TOTAL_PACKET_SIZE);
|
|
|
|
m = talz(ctx, struct onionpacket);
|
|
|
|
read_buffer(&m->version, src, 1, &p);
|
|
if (m->version != 0x00) {
|
|
// FIXME add logging
|
|
*why_bad = WIRE_INVALID_ONION_VERSION;
|
|
return tal_free(m);
|
|
}
|
|
read_buffer(rawEphemeralkey, src, sizeof(rawEphemeralkey), &p);
|
|
|
|
if (!pubkey_from_der(rawEphemeralkey, sizeof(rawEphemeralkey),
|
|
&m->ephemeralkey)) {
|
|
*why_bad = WIRE_INVALID_ONION_KEY;
|
|
return tal_free(m);
|
|
}
|
|
|
|
read_buffer(&m->routinginfo, src, ROUTING_INFO_SIZE, &p);
|
|
read_buffer(&m->mac, src, HMAC_SIZE, &p);
|
|
return m;
|
|
}
|
|
|
|
static void xorbytes(uint8_t *d, const uint8_t *a, const uint8_t *b, size_t len)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
d[i] = a[i] ^ b[i];
|
|
}
|
|
|
|
/*
|
|
* Generate a pseudo-random byte stream of length `dstlen` from key `k` and
|
|
* store it in `dst`. `dst must be at least `dstlen` bytes long.
|
|
*/
|
|
static void generate_cipher_stream(void *dst, const u8 *k, size_t dstlen)
|
|
{
|
|
u8 nonce[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
|
|
|
|
crypto_stream_chacha20(dst, dstlen, nonce, k);
|
|
}
|
|
|
|
static bool compute_hmac(
|
|
void *dst,
|
|
const void *src,
|
|
size_t len,
|
|
const void *key,
|
|
size_t keylen)
|
|
{
|
|
crypto_auth_hmacsha256_state state;
|
|
|
|
crypto_auth_hmacsha256_init(&state, key, keylen);
|
|
crypto_auth_hmacsha256_update(&state, memcheck(src, len), len);
|
|
crypto_auth_hmacsha256_final(&state, dst);
|
|
return true;
|
|
}
|
|
|
|
static void compute_packet_hmac(const struct onionpacket *packet,
|
|
const u8 *assocdata, const size_t assocdatalen,
|
|
u8 *mukey, u8 *hmac)
|
|
{
|
|
u8 mactemp[ROUTING_INFO_SIZE + assocdatalen];
|
|
u8 mac[32];
|
|
int pos = 0;
|
|
|
|
write_buffer(mactemp, packet->routinginfo, ROUTING_INFO_SIZE, &pos);
|
|
write_buffer(mactemp, assocdata, assocdatalen, &pos);
|
|
|
|
compute_hmac(mac, mactemp, sizeof(mactemp), mukey, KEY_LEN);
|
|
memcpy(hmac, mac, HMAC_SIZE);
|
|
}
|
|
|
|
static bool generate_key(void *k, const char *t, u8 tlen, const u8 *s)
|
|
{
|
|
return compute_hmac(k, s, KEY_LEN, t, tlen);
|
|
}
|
|
|
|
static bool generate_header_padding(void *dst, size_t dstlen,
|
|
const struct sphinx_path *path,
|
|
struct hop_params *params)
|
|
{
|
|
u8 stream[2 * ROUTING_INFO_SIZE];
|
|
u8 key[KEY_LEN];
|
|
size_t fillerStart, fillerEnd, fillerSize;
|
|
|
|
memset(dst, 0, dstlen);
|
|
for (int i = 0; i < tal_count(path->hops) - 1; i++) {
|
|
if (!generate_key(&key, RHO_KEYTYPE, strlen(RHO_KEYTYPE),
|
|
params[i].secret))
|
|
return false;
|
|
|
|
generate_cipher_stream(stream, key, sizeof(stream));
|
|
|
|
/* Sum up how many bytes have been used by previous hops,
|
|
* that gives us the start in the stream */
|
|
fillerSize = 0;
|
|
for (int j = 0; j < i; j++)
|
|
fillerSize += sphinx_hop_size(&path->hops[j]);
|
|
fillerStart = ROUTING_INFO_SIZE - fillerSize;
|
|
|
|
/* The filler will dangle off of the end by the current
|
|
* hop-size, we'll make sure to copy it into the correct
|
|
* position in the next step. */
|
|
fillerEnd = ROUTING_INFO_SIZE + sphinx_hop_size(&path->hops[i]);
|
|
|
|
/* Apply the cipher-stream to the part of the filler that'll
|
|
* be added by this hop */
|
|
xorbytes(dst, dst, stream + fillerStart,
|
|
fillerEnd - fillerStart);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void compute_blinding_factor(const struct pubkey *key,
|
|
const u8 sharedsecret[SHARED_SECRET_SIZE],
|
|
u8 res[BLINDING_FACTOR_SIZE])
|
|
{
|
|
struct sha256_ctx ctx;
|
|
u8 der[PUBKEY_CMPR_LEN];
|
|
struct sha256 temp;
|
|
|
|
pubkey_to_der(der, key);
|
|
sha256_init(&ctx);
|
|
sha256_update(&ctx, der, sizeof(der));
|
|
sha256_update(&ctx, sharedsecret, SHARED_SECRET_SIZE);
|
|
sha256_done(&ctx, &temp);
|
|
memcpy(res, &temp, 32);
|
|
}
|
|
|
|
static bool blind_group_element(struct pubkey *blindedelement,
|
|
const struct pubkey *pubkey,
|
|
const u8 blind[BLINDING_FACTOR_SIZE])
|
|
{
|
|
/* tweak_mul is inplace so copy first. */
|
|
if (pubkey != blindedelement)
|
|
*blindedelement = *pubkey;
|
|
if (secp256k1_ec_pubkey_tweak_mul(secp256k1_ctx,
|
|
&blindedelement->pubkey, blind) != 1)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static bool create_shared_secret(u8 *secret, const struct pubkey *pubkey,
|
|
const struct secret *session_key)
|
|
{
|
|
if (secp256k1_ecdh(secp256k1_ctx, secret, &pubkey->pubkey,
|
|
session_key->data, NULL, NULL) != 1)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool onion_shared_secret(
|
|
u8 *secret,
|
|
const struct onionpacket *packet,
|
|
const struct privkey *privkey)
|
|
{
|
|
return create_shared_secret(secret, &packet->ephemeralkey,
|
|
&privkey->secret);
|
|
}
|
|
|
|
static void generate_key_set(const u8 secret[SHARED_SECRET_SIZE],
|
|
struct keyset *keys)
|
|
{
|
|
generate_key(keys->rho, "rho", 3, secret);
|
|
generate_key(keys->pi, "pi", 2, secret);
|
|
generate_key(keys->mu, "mu", 2, secret);
|
|
generate_key(keys->gamma, "gamma", 5, secret);
|
|
}
|
|
|
|
static struct hop_params *generate_hop_params(
|
|
const tal_t *ctx,
|
|
const u8 *sessionkey,
|
|
struct sphinx_path *path)
|
|
{
|
|
int i, j, num_hops = tal_count(path->hops);
|
|
struct pubkey temp;
|
|
u8 blind[BLINDING_FACTOR_SIZE];
|
|
struct hop_params *params = tal_arr(ctx, struct hop_params, num_hops);
|
|
|
|
/* Initialize the first hop with the raw information */
|
|
if (secp256k1_ec_pubkey_create(secp256k1_ctx,
|
|
¶ms[0].ephemeralkey.pubkey,
|
|
path->session_key->data) != 1)
|
|
return NULL;
|
|
|
|
if (!create_shared_secret(params[0].secret, &path->hops[0].pubkey,
|
|
path->session_key))
|
|
return NULL;
|
|
|
|
compute_blinding_factor(
|
|
¶ms[0].ephemeralkey, params[0].secret,
|
|
params[0].blind);
|
|
|
|
/* Recursively compute all following ephemeral public keys,
|
|
* secrets and blinding factors
|
|
*/
|
|
for (i = 1; i < num_hops; i++) {
|
|
if (!blind_group_element(
|
|
¶ms[i].ephemeralkey,
|
|
¶ms[i - 1].ephemeralkey,
|
|
params[i - 1].blind))
|
|
return NULL;
|
|
|
|
/* Blind this hop's point with all previous blinding factors
|
|
* Order is indifferent, multiplication is commutative.
|
|
*/
|
|
memcpy(&blind, sessionkey, 32);
|
|
temp = path->hops[i].pubkey;
|
|
if (!blind_group_element(&temp, &temp, blind))
|
|
return NULL;
|
|
for (j = 0; j < i; j++)
|
|
if (!blind_group_element(
|
|
&temp,
|
|
&temp,
|
|
params[j].blind))
|
|
return NULL;
|
|
|
|
/* Now hash temp and store it. This requires us to
|
|
* DER-serialize first and then skip the sign byte.
|
|
*/
|
|
u8 der[PUBKEY_CMPR_LEN];
|
|
pubkey_to_der(der, &temp);
|
|
struct sha256 h;
|
|
sha256(&h, der, sizeof(der));
|
|
memcpy(¶ms[i].secret, &h, sizeof(h));
|
|
|
|
compute_blinding_factor(
|
|
¶ms[i].ephemeralkey,
|
|
params[i].secret, params[i].blind);
|
|
}
|
|
return params;
|
|
}
|
|
|
|
static void deserialize_hop_data(struct hop_data *data, const u8 *src)
|
|
{
|
|
const u8 *cursor = src;
|
|
size_t max = FRAME_SIZE;
|
|
data->realm = fromwire_u8(&cursor, &max);
|
|
fromwire_short_channel_id(&cursor, &max, &data->channel_id);
|
|
data->amt_forward = fromwire_amount_msat(&cursor, &max);
|
|
data->outgoing_cltv = fromwire_u32(&cursor, &max);
|
|
}
|
|
|
|
static bool sphinx_write_frame(u8 *dest, const struct sphinx_hop *hop)
|
|
{
|
|
size_t raw_size = tal_bytelen(hop->payload);
|
|
size_t hop_size = sphinx_hop_size(hop);
|
|
size_t padding_size;
|
|
int pos = 0;
|
|
|
|
#if !EXPERIMENTAL_FEATURES
|
|
if (hop->type != SPHINX_V0_PAYLOAD)
|
|
return false;
|
|
#endif
|
|
|
|
/* Backwards compatibility for the legacy hop_data format. */
|
|
if (hop->type == SPHINX_V0_PAYLOAD)
|
|
dest[pos++] = 0x00;
|
|
else
|
|
pos += bigsize_put(dest+pos, raw_size);
|
|
|
|
memcpy(dest + pos, hop->payload, raw_size);
|
|
pos += raw_size;
|
|
|
|
padding_size = hop_size - pos - HMAC_SIZE;
|
|
memset(dest + pos, 0, padding_size);
|
|
pos += padding_size;
|
|
|
|
memcpy(dest + pos, hop->hmac, HMAC_SIZE);
|
|
assert(pos + HMAC_SIZE == hop_size);
|
|
return true;
|
|
}
|
|
|
|
static void sphinx_parse_payload(struct route_step *step, const u8 *src)
|
|
{
|
|
size_t hop_size, vsize;
|
|
bigsize_t raw_size;
|
|
#if !EXPERIMENTAL_FEATURES
|
|
if (src[0] != 0x00) {
|
|
step->type = SPHINX_INVALID_PAYLOAD;
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/* Legacy hop_data support */
|
|
if (src[0] == 0x00) {
|
|
vsize = 1;
|
|
raw_size = 32;
|
|
hop_size = FRAME_SIZE;
|
|
step->type = SPHINX_V0_PAYLOAD;
|
|
} else {
|
|
vsize = bigsize_get(src, 3, &raw_size);
|
|
hop_size = raw_size + vsize + HMAC_SIZE;
|
|
step->type = SPHINX_TLV_PAYLOAD;
|
|
}
|
|
|
|
/* Copy common pieces over */
|
|
step->raw_payload = tal_dup_arr(step, u8, src + vsize, raw_size, 0);
|
|
memcpy(step->next->mac, src + hop_size - HMAC_SIZE, HMAC_SIZE);
|
|
|
|
/* And now try to parse whatever the payload contains so we can use it
|
|
* later. */
|
|
if (step->type == SPHINX_V0_PAYLOAD)
|
|
deserialize_hop_data(&step->payload.v0, src);
|
|
}
|
|
|
|
struct onionpacket *create_onionpacket(
|
|
const tal_t *ctx,
|
|
struct sphinx_path *sp,
|
|
struct secret **path_secrets
|
|
)
|
|
{
|
|
struct onionpacket *packet = talz(ctx, struct onionpacket);
|
|
int i, num_hops = tal_count(sp->hops);
|
|
size_t fillerSize = sphinx_path_payloads_size(sp) -
|
|
sphinx_hop_size(&sp->hops[num_hops - 1]);
|
|
u8 filler[fillerSize];
|
|
struct keyset keys;
|
|
u8 nexthmac[HMAC_SIZE];
|
|
u8 stream[ROUTING_INFO_SIZE];
|
|
struct hop_params *params;
|
|
struct secret *secrets = tal_arr(ctx, struct secret, num_hops);
|
|
|
|
if (sp->session_key == NULL) {
|
|
sp->session_key = tal(sp, struct secret);
|
|
randombytes_buf(sp->session_key, sizeof(struct secret));
|
|
}
|
|
|
|
params = generate_hop_params(ctx, sp->session_key->data, sp);
|
|
if (!params) {
|
|
tal_free(packet);
|
|
tal_free(secrets);
|
|
return NULL;
|
|
}
|
|
packet->version = 0;
|
|
memset(nexthmac, 0, HMAC_SIZE);
|
|
memset(packet->routinginfo, 0, ROUTING_INFO_SIZE);
|
|
|
|
generate_header_padding(filler, sizeof(filler), sp, params);
|
|
|
|
for (i = num_hops - 1; i >= 0; i--) {
|
|
memcpy(sp->hops[i].hmac, nexthmac, HMAC_SIZE);
|
|
generate_key_set(params[i].secret, &keys);
|
|
generate_cipher_stream(stream, keys.rho, ROUTING_INFO_SIZE);
|
|
|
|
/* Rightshift mix-header by FRAME_SIZE */
|
|
size_t shiftSize = sphinx_hop_size(&sp->hops[i]);
|
|
memmove(packet->routinginfo + shiftSize, packet->routinginfo,
|
|
ROUTING_INFO_SIZE-shiftSize);
|
|
if (!sphinx_write_frame(packet->routinginfo, &sp->hops[i])) {
|
|
tal_free(packet);
|
|
tal_free(secrets);
|
|
return NULL;
|
|
}
|
|
xorbytes(packet->routinginfo, packet->routinginfo, stream, ROUTING_INFO_SIZE);
|
|
|
|
if (i == num_hops - 1) {
|
|
memcpy(packet->routinginfo + ROUTING_INFO_SIZE - fillerSize, filler, fillerSize);
|
|
}
|
|
|
|
compute_packet_hmac(packet, sp->associated_data, tal_bytelen(sp->associated_data), keys.mu,
|
|
nexthmac);
|
|
}
|
|
memcpy(packet->mac, nexthmac, sizeof(nexthmac));
|
|
memcpy(&packet->ephemeralkey, ¶ms[0].ephemeralkey, sizeof(secp256k1_pubkey));
|
|
|
|
for (i=0; i<num_hops; i++) {
|
|
memcpy(&secrets[i], params[i].secret, SHARED_SECRET_SIZE);
|
|
}
|
|
|
|
*path_secrets = secrets;
|
|
return packet;
|
|
}
|
|
|
|
/*
|
|
* Given an onionpacket msg extract the information for the current
|
|
* node and unwrap the remainder so that the node can forward it.
|
|
*/
|
|
struct route_step *process_onionpacket(
|
|
const tal_t *ctx,
|
|
const struct onionpacket *msg,
|
|
const u8 *shared_secret,
|
|
const u8 *assocdata,
|
|
const size_t assocdatalen
|
|
)
|
|
{
|
|
struct route_step *step = talz(ctx, struct route_step);
|
|
u8 hmac[HMAC_SIZE];
|
|
struct keyset keys;
|
|
u8 blind[BLINDING_FACTOR_SIZE];
|
|
u8 stream[NUM_STREAM_BYTES];
|
|
u8 paddedheader[2*ROUTING_INFO_SIZE];
|
|
size_t vsize;
|
|
bigsize_t shift_size;
|
|
|
|
step->next = talz(step, struct onionpacket);
|
|
step->next->version = msg->version;
|
|
generate_key_set(shared_secret, &keys);
|
|
|
|
compute_packet_hmac(msg, assocdata, assocdatalen, keys.mu, hmac);
|
|
|
|
if (memcmp(msg->mac, hmac, sizeof(hmac)) != 0) {
|
|
/* Computed MAC does not match expected MAC, the message was modified. */
|
|
return tal_free(step);
|
|
}
|
|
|
|
//FIXME:store seen secrets to avoid replay attacks
|
|
generate_cipher_stream(stream, keys.rho, sizeof(stream));
|
|
|
|
memset(paddedheader, 0, sizeof(paddedheader));
|
|
memcpy(paddedheader, msg->routinginfo, ROUTING_INFO_SIZE);
|
|
xorbytes(paddedheader, paddedheader, stream, sizeof(stream));
|
|
|
|
compute_blinding_factor(&msg->ephemeralkey, shared_secret, blind);
|
|
if (!blind_group_element(&step->next->ephemeralkey, &msg->ephemeralkey, blind))
|
|
return tal_free(step);
|
|
|
|
sphinx_parse_payload(step, paddedheader);
|
|
|
|
/* Extract how many bytes we need to shift away */
|
|
if (paddedheader[0] == 0x00) {
|
|
shift_size = FRAME_SIZE;
|
|
} else {
|
|
/* In addition to the raw payload we need to also shift the
|
|
* length encoding itself and the HMAC away. */
|
|
vsize = bigsize_get(paddedheader, 3, &shift_size);
|
|
shift_size += vsize + HMAC_SIZE;
|
|
|
|
/* If we get an unreasonable shift size we must return an error. */
|
|
if (shift_size >= ROUTING_INFO_SIZE)
|
|
return tal_free(step);
|
|
}
|
|
|
|
step->raw_payload = tal_dup_arr(step, u8, paddedheader + 1,
|
|
shift_size - 1 - HMAC_SIZE, 0);
|
|
|
|
/* Copy the hmac from the last HMAC_SIZE bytes */
|
|
memcpy(&step->next->mac, paddedheader + shift_size - HMAC_SIZE, HMAC_SIZE);
|
|
|
|
/* Left shift the current payload out and make the remainder the new onion */
|
|
memcpy(&step->next->routinginfo, paddedheader + shift_size, ROUTING_INFO_SIZE);
|
|
|
|
if (memeqzero(step->next->mac, sizeof(step->next->mac))) {
|
|
step->nextcase = ONION_END;
|
|
} else {
|
|
step->nextcase = ONION_FORWARD;
|
|
}
|
|
|
|
return step;
|
|
}
|
|
|
|
u8 *create_onionreply(const tal_t *ctx, const struct secret *shared_secret,
|
|
const u8 *failure_msg)
|
|
{
|
|
size_t msglen = tal_count(failure_msg);
|
|
size_t padlen = ONION_REPLY_SIZE - msglen;
|
|
u8 *reply = tal_arr(ctx, u8, 0), *payload = tal_arr(ctx, u8, 0);
|
|
u8 key[KEY_LEN];
|
|
u8 hmac[HMAC_SIZE];
|
|
|
|
/* BOLT #4:
|
|
*
|
|
* The node generating the error message (_erring node_) builds a return
|
|
* packet consisting of
|
|
* the following fields:
|
|
*
|
|
* 1. data:
|
|
* * [`32*byte`:`hmac`]
|
|
* * [`u16`:`failure_len`]
|
|
* * [`failure_len*byte`:`failuremsg`]
|
|
* * [`u16`:`pad_len`]
|
|
* * [`pad_len*byte`:`pad`]
|
|
*/
|
|
towire_u16(&payload, msglen);
|
|
towire(&payload, failure_msg, msglen);
|
|
towire_u16(&payload, padlen);
|
|
towire_pad(&payload, padlen);
|
|
|
|
/* BOLT #4:
|
|
*
|
|
* The _erring node_:
|
|
* - SHOULD set `pad` such that the `failure_len` plus `pad_len` is
|
|
* equal to 256.
|
|
* - Note: this value is 118 bytes longer than the longest
|
|
* currently-defined message.
|
|
*/
|
|
assert(tal_count(payload) == ONION_REPLY_SIZE + 4);
|
|
|
|
/* BOLT #4:
|
|
*
|
|
* Where `hmac` is an HMAC authenticating the remainder of the packet,
|
|
* with a key generated using the above process, with key type `um`
|
|
*/
|
|
generate_key(key, "um", 2, shared_secret->data);
|
|
|
|
compute_hmac(hmac, payload, tal_count(payload), key, KEY_LEN);
|
|
towire(&reply, hmac, sizeof(hmac));
|
|
|
|
towire(&reply, payload, tal_count(payload));
|
|
tal_free(payload);
|
|
|
|
return reply;
|
|
}
|
|
|
|
u8 *wrap_onionreply(const tal_t *ctx,
|
|
const struct secret *shared_secret, const u8 *reply)
|
|
{
|
|
u8 key[KEY_LEN];
|
|
size_t streamlen = tal_count(reply);
|
|
u8 stream[streamlen];
|
|
u8 *result = tal_arr(ctx, u8, streamlen);
|
|
|
|
/* BOLT #4:
|
|
*
|
|
* The erring node then generates a new key, using the key type `ammag`.
|
|
* This key is then used to generate a pseudo-random stream, which is
|
|
* in turn applied to the packet using `XOR`.
|
|
*
|
|
* The obfuscation step is repeated by every hop along the return path.
|
|
*/
|
|
generate_key(key, "ammag", 5, shared_secret->data);
|
|
generate_cipher_stream(stream, key, streamlen);
|
|
xorbytes(result, stream, reply, streamlen);
|
|
return result;
|
|
}
|
|
|
|
struct onionreply *unwrap_onionreply(const tal_t *ctx,
|
|
const struct secret *shared_secrets,
|
|
const int numhops, const u8 *reply)
|
|
{
|
|
struct onionreply *oreply = tal(tmpctx, struct onionreply);
|
|
u8 *msg = tal_arr(oreply, u8, tal_count(reply));
|
|
u8 key[KEY_LEN], hmac[HMAC_SIZE];
|
|
const u8 *cursor;
|
|
size_t max;
|
|
u16 msglen;
|
|
|
|
if (tal_count(reply) != ONION_REPLY_SIZE + sizeof(hmac) + 4) {
|
|
return NULL;
|
|
}
|
|
|
|
memcpy(msg, reply, tal_count(reply));
|
|
oreply->origin_index = -1;
|
|
|
|
for (int i = 0; i < numhops; i++) {
|
|
/* Since the encryption is just XORing with the cipher
|
|
* stream encryption is identical to decryption */
|
|
msg = wrap_onionreply(tmpctx, &shared_secrets[i], msg);
|
|
|
|
/* Check if the HMAC matches, this means that this is
|
|
* the origin */
|
|
generate_key(key, "um", 2, shared_secrets[i].data);
|
|
compute_hmac(hmac, msg + sizeof(hmac),
|
|
tal_count(msg) - sizeof(hmac), key, KEY_LEN);
|
|
if (memcmp(hmac, msg, sizeof(hmac)) == 0) {
|
|
oreply->origin_index = i;
|
|
break;
|
|
}
|
|
}
|
|
if (oreply->origin_index == -1) {
|
|
return NULL;
|
|
}
|
|
|
|
cursor = msg + sizeof(hmac);
|
|
max = tal_count(msg) - sizeof(hmac);
|
|
msglen = fromwire_u16(&cursor, &max);
|
|
|
|
if (msglen > ONION_REPLY_SIZE) {
|
|
return NULL;
|
|
}
|
|
|
|
oreply->msg = tal_arr(oreply, u8, msglen);
|
|
fromwire(&cursor, &max, oreply->msg, msglen);
|
|
|
|
tal_steal(ctx, oreply);
|
|
return oreply;
|
|
|
|
}
|