core-lightning/common/memleak.c
Rusty Russell c956d9f5eb lightningd: tal memleak detection, dev-memleak command.
This is a primitive mark-and-sweep-style garbage detector.  The core is
in common/ for later use by subdaemons, but for now it's just lightningd.
We initialize it before most other allocations.

We walk the tal tree to get all the pointers, then search the `ld`
object for those pointers, recursing down.  Some specific helpers are
required for hashtables (which stash bits in the unused pointer bits,
so won't be found).

There's `notleak()` for annotating things that aren't leaks: things
like globals and timers, and other semi-transients.

Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2017-12-20 12:43:10 +01:00

144 lines
3.2 KiB
C

#include <ccan/cast/cast.h>
#include <ccan/crypto/siphash24/siphash24.h>
#include <ccan/htable/htable.h>
#include <ccan/tal/tal.h>
#include <common/memleak.h>
#if DEVELOPER
static const void **notleaks;
void *notleak_(const void *ptr)
{
size_t nleaks;
/* If we're not tracking, don't do anything. */
if (!notleaks)
return cast_const(void *, ptr);
/* FIXME: Doesn't work with reallocs, but tal_steal breaks lifetimes */
nleaks = tal_count(notleaks);
tal_resize(&notleaks, nleaks+1);
notleaks[nleaks] = ptr;
return cast_const(void *, ptr);
}
/* This only works if all objects have tal_len() */
#ifndef CCAN_TAL_DEBUG
#error CCAN_TAL_DEBUG must be set
#endif
static size_t hash_ptr(const void *elem, void *unused UNNEEDED)
{
static struct siphash_seed seed;
return siphash24(&seed, &elem, sizeof(elem));
}
static bool pointer_referenced(struct htable *memtable, const void *p)
{
return htable_del(memtable, hash_ptr(p, NULL), p);
}
static void children_into_htable(const void *exclude,
struct htable *memtable, const tal_t *p)
{
const tal_t *i;
for (i = tal_first(p); i; i = tal_next(i)) {
if (p == exclude)
continue;
htable_add(memtable, hash_ptr(i, NULL), i);
children_into_htable(exclude, memtable, i);
}
}
struct htable *memleak_enter_allocations(const tal_t *ctx, const void *exclude)
{
struct htable *memtable = tal(ctx, struct htable);
htable_init(memtable, hash_ptr, NULL);
/* First, add all pointers off NULL to table. */
children_into_htable(exclude, memtable, NULL);
tal_add_destructor(memtable, htable_clear);
return memtable;
}
static void scan_for_pointers(struct htable *memtable, const tal_t *p)
{
size_t i, n;
/* Search for (aligned) pointers. */
n = tal_len(p) / sizeof(void *);
for (i = 0; i < n; i++) {
void *ptr;
memcpy(&ptr, (char *)p + i * sizeof(void *), sizeof(ptr));
if (pointer_referenced(memtable, ptr))
scan_for_pointers(memtable, ptr);
}
}
void memleak_scan_region(struct htable *memtable, const void *ptr)
{
pointer_referenced(memtable, ptr);
scan_for_pointers(memtable, ptr);
}
void memleak_remove_referenced(struct htable *memtable, const void *root)
{
/* Now delete the ones which are referenced. */
memleak_scan_region(memtable, root);
memleak_scan_region(memtable, notleaks);
/* Remove memtable itself */
pointer_referenced(memtable, memtable);
}
static void remove_with_children(struct htable *memtable, const tal_t *p)
{
const tal_t *i;
pointer_referenced(memtable, p);
for (i = tal_first(p); i; i = tal_next(i))
remove_with_children(memtable, i);
}
static bool ptr_match(const void *candidate, void *ptr)
{
return candidate == ptr;
}
const void *memleak_get(struct htable *memtable)
{
struct htable_iter it;
const tal_t *i, *p;
i = htable_first(memtable, &it);
if (!i)
return NULL;
/* Delete from table (avoids parenting loops) */
htable_delval(memtable, &it);
/* Find ancestor, which is probably source of leak. */
for (p = tal_parent(i);
htable_get(memtable, hash_ptr(p, NULL), ptr_match, p);
i = p, p = tal_parent(i));
/* Delete all children */
remove_with_children(memtable, i);
return i;
}
void memleak_init(const tal_t *root)
{
notleaks = tal_arr(NULL, const void *, 0);
}
void memleak_cleanup(void)
{
notleaks = tal_free(notleaks);
}
#endif /* DEVELOPER */