core-lightning/bitcoin/base58.c
Rusty Russell ef9463f6b1 Sort include lines (ignoring hacky cli test utils).
Put ccan first, openssl next, then standard headers, then locals.

Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2015-06-12 12:41:28 +09:30

365 lines
8.3 KiB
C

/* Converted to C by Rusty Russell, based on bitcoin source: */
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2012 The Bitcoin Developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <ccan/build_assert/build_assert.h>
#include <ccan/tal/str/str.h>
#include <openssl/obj_mac.h>
#include <openssl/sha.h>
#include <assert.h>
#include <string.h>
#include "address.h"
#include "base58.h"
#include "pubkey.h"
#include "shadouble.h"
static const char enc_16[] = "0123456789abcdef";
static const char enc_58[] =
"123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz";
static char encode_char(unsigned long val, const char *enc)
{
assert(val < strlen(enc));
return enc[val];
}
static int decode_char(char c, const char *enc)
{
const char *pos = strchr(enc, c);
if (!pos)
return -1;
return pos - enc;
}
/*
* Encode a byte sequence as a base58-encoded string. This is a bit
* weird: returns pointer into buf (or NULL if wouldn't fit).
*/
static char *encode_base58(char *buf, size_t buflen,
const u8 *data, size_t data_len)
{
char *p;
BIGNUM bn;
/* Convert to a bignum. */
BN_init(&bn);
BN_bin2bn(data, data_len, &bn);
/* Add NUL terminator */
if (!buflen) {
p = NULL;
goto out;
}
p = buf + buflen;
*(--p) = '\0';
/* Fill from the back, using a series of divides. */
while (!BN_is_zero(&bn)) {
int rem = BN_div_word(&bn, 58);
if (--p < buf) {
p = NULL;
goto out;
}
*p = encode_char(rem, enc_58);
}
/* Now, this is really weird. We pad with zeroes, but not at
* base 58, but in terms of zero bytes. This means that some
* encodings are shorter than others! */
while (data_len && *data == '\0') {
if (--p < buf) {
p = NULL;
goto out;
}
*p = encode_char(0, enc_58);
data_len--;
data++;
}
out:
BN_free(&bn);
return p;
}
/*
* Decode a base_n-encoded string into a byte sequence.
*/
bool raw_decode_base_n(BIGNUM *bn, const char *src, size_t len, int base)
{
const char *enc;
BN_zero(bn);
assert(base == 16 || base == 58);
switch (base) {
case 16:
enc = enc_16;
break;
case 58:
enc = enc_58;
break;
}
while (len) {
char current = *src;
if (base == 16)
current = tolower(current); /* TODO: Not in ccan. */
int val = decode_char(current, enc);
if (val < 0) {
BN_free(bn);
return false;
}
BN_mul_word(bn, base);
BN_add_word(bn, val);
src++;
len--;
}
return true;
}
/*
* Decode a base58-encoded string into a byte sequence.
*/
bool raw_decode_base58(BIGNUM *bn, const char *src, size_t len)
{
return raw_decode_base_n(bn, src, len, 58);
}
void base58_get_checksum(u8 csum[4], const u8 buf[], size_t buflen)
{
struct sha256_double sha_result;
/* Form checksum, using double SHA2 (as per bitcoin standard) */
sha256_double(&sha_result, buf, buflen);
/* Use first four bytes of that as the checksum. */
memcpy(csum, sha_result.sha.u.u8, 4);
}
char *bitcoin_to_base58(const tal_t *ctx, bool test_net,
const struct bitcoin_address *addr)
{
u8 buf[1 + RIPEMD160_DIGEST_LENGTH + 4];
char out[BASE58_ADDR_MAX_LEN + 2], *p;
buf[0] = test_net ? 111 : 0;
BUILD_ASSERT(sizeof(*addr) == RIPEMD160_DIGEST_LENGTH);
memcpy(buf+1, addr, RIPEMD160_DIGEST_LENGTH);
/* Append checksum */
base58_get_checksum(buf + 1 + RIPEMD160_DIGEST_LENGTH,
buf, 1 + RIPEMD160_DIGEST_LENGTH);
p = encode_base58(out, BASE58_ADDR_MAX_LEN, buf, sizeof(buf));
return tal_strdup(ctx, p);
}
bool bitcoin_from_base58(bool *test_net,
struct bitcoin_address *addr,
const char *base58, size_t base58_len)
{
u8 buf[1 + RIPEMD160_DIGEST_LENGTH + 4];
BIGNUM bn;
size_t len;
u8 csum[4];
BN_init(&bn);
if (!raw_decode_base58(&bn, base58, base58_len))
return false;
len = BN_num_bytes(&bn);
if (len > sizeof(buf))
return false;
memset(buf, 0, sizeof(buf));
BN_bn2bin(&bn, buf + sizeof(buf) - len);
BN_free(&bn);
if (buf[0] == 111)
*test_net = true;
else if (buf[0] == 0)
*test_net = false;
else
return false;
base58_get_checksum(csum, buf, 1 + RIPEMD160_DIGEST_LENGTH);
if (memcmp(csum, buf + 1 + RIPEMD160_DIGEST_LENGTH, sizeof(csum)) != 0)
return false;
BUILD_ASSERT(sizeof(*addr) == RIPEMD160_DIGEST_LENGTH);
memcpy(addr, buf+1, sizeof(*addr));
return true;
}
/* buf already contains version and ripemd160. Append checksum and encode */
char *base58_with_check(char dest[BASE58_ADDR_MAX_LEN],
u8 buf[1 + RIPEMD160_DIGEST_LENGTH + 4])
{
/* Append checksum */
base58_get_checksum(buf + 1 + RIPEMD160_DIGEST_LENGTH,
buf, 1 + RIPEMD160_DIGEST_LENGTH);
/* Now encode. */
return encode_base58(dest, BASE58_ADDR_MAX_LEN, buf,
1 + RIPEMD160_DIGEST_LENGTH + 4);
}
bool ripemd_from_base58(u8 *version, u8 ripemd160[RIPEMD160_DIGEST_LENGTH],
const char *base58)
{
u8 buf[1 + RIPEMD160_DIGEST_LENGTH + 4];
u8 csum[4];
BIGNUM bn;
size_t len;
/* Too long? Check here before doing arithmetic. */
if (strlen(base58) > BASE58_ADDR_MAX_LEN - 1)
return false;
BN_init(&bn);
/* Fails if it contains invalid characters. */
if (!raw_decode_base58(&bn, base58, strlen(base58)))
return false;
/* Too big? */
len = BN_num_bytes(&bn);
if (len > sizeof(buf)) {
BN_free(&bn);
return false;
}
/* Fill start with zeroes. */
memset(buf, 0, sizeof(buf) - len);
BN_bn2bin(&bn, buf + sizeof(buf) - len);
BN_free(&bn);
/* Check checksum is correct. */
base58_get_checksum(csum, buf, sizeof(buf));
if (memcmp(csum, buf + 1 + RIPEMD160_DIGEST_LENGTH, 4) != 0)
return false;
*version = buf[0];
memcpy(ripemd160, buf + 1, RIPEMD160_DIGEST_LENGTH);
return true;
}
char *key_to_base58(const tal_t *ctx, bool test_net, EC_KEY *key)
{
u8 buf[1 + 32 + 1 + 4];
char out[BASE58_KEY_MAX_LEN + 2], *p;
const BIGNUM *bn = EC_KEY_get0_private_key(key);
int len;
buf[0] = test_net ? 239 : 128;
/* Make sure any zeroes are at the front of number (MSB) */
len = BN_num_bytes(bn);
assert(len <= 32);
memset(buf + 1, 0, 32 - len);
BN_bn2bin(bn, buf + 1 + 32 - len);
/* Mark this as a compressed key. */
buf[1 + 32] = 1;
/* Append checksum */
base58_get_checksum(buf + 1 + 32 + 1, buf, 1 + 32 + 1);
p = encode_base58(out, BASE58_KEY_MAX_LEN, buf, sizeof(buf));
return tal_strdup(ctx, p);
}
// Thus function based on bitcoin's key.cpp:
// Copyright (c) 2009-2012 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
static bool EC_KEY_regenerate_key(EC_KEY *eckey, BIGNUM *priv_key)
{
BN_CTX *ctx = NULL;
EC_POINT *pub_key = NULL;
const EC_GROUP *group = EC_KEY_get0_group(eckey);
if ((ctx = BN_CTX_new()) == NULL)
return false;
pub_key = EC_POINT_new(group);
if (pub_key == NULL)
return false;
if (!EC_POINT_mul(group, pub_key, priv_key, NULL, NULL, ctx))
return false;
EC_KEY_set_private_key(eckey, priv_key);
EC_KEY_set_public_key(eckey, pub_key);
BN_CTX_free(ctx);
EC_POINT_free(pub_key);
return true;
}
EC_KEY *key_from_base58(const char *base58, size_t base58_len,
bool *test_net, struct pubkey *key)
{
size_t keylen;
u8 keybuf[1 + 32 + 1 + 4], *kptr;
u8 csum[4];
EC_KEY *priv;
BIGNUM bn;
point_conversion_form_t cform;
BN_init(&bn);
if (!raw_decode_base58(&bn, base58, base58_len))
return NULL;
keylen = BN_num_bytes(&bn);
if (keylen == 1 + 32 + 4)
cform = POINT_CONVERSION_UNCOMPRESSED;
else if (keylen == 1 + 32 + 1 + 4)
cform = POINT_CONVERSION_COMPRESSED;
else
goto fail_free_bn;
BN_bn2bin(&bn, keybuf);
base58_get_checksum(csum, keybuf, keylen - sizeof(csum));
if (memcmp(csum, keybuf + keylen - sizeof(csum), sizeof(csum)) != 0)
goto fail_free_bn;
/* Byte after key should be 1 to represent a compressed key. */
if (cform == POINT_CONVERSION_COMPRESSED && keybuf[1 + 32] != 1)
goto fail_free_bn;
if (keybuf[0] == 128)
*test_net = false;
else if (keybuf[0] == 239)
*test_net = true;
else
goto fail_free_bn;
priv = EC_KEY_new_by_curve_name(NID_secp256k1);
EC_KEY_set_conv_form(priv, cform);
BN_free(&bn);
BN_init(&bn);
if (!BN_bin2bn(keybuf + 1, 32, &bn))
goto fail_free_priv;
if (!EC_KEY_regenerate_key(priv, &bn))
goto fail_free_priv;
/* Save public key */
kptr = key->key;
keylen = i2o_ECPublicKey(priv, &kptr);
assert(keylen == pubkey_len(key));
BN_free(&bn);
return priv;
fail_free_priv:
EC_KEY_free(priv);
fail_free_bn:
BN_free(&bn);
return NULL;
}