core-lightning/signature.c
Rusty Russell ed3f0115d6 protocol: fix horribly thinko, keep own secrets.
I had each side using the other side's hash secret.  That's a very
dumb idea, since it means you can steal from a unilateral close!

A's secret applies to A's commit transaction: it needs the
secret and B's final signature to steal funds, and that should
never happen (since A doesn't have the B's final signature, and
once A has given B the secret, they never broadcast the commit tx).

This makes the update a 4 step dance, since you need the new
revocation hash to make the other side's TX to sign.

Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2015-06-10 21:39:45 +09:30

277 lines
7.2 KiB
C

#include "signature.h"
#include "shadouble.h"
#include "bitcoin_tx.h"
#include "pubkey.h"
#include "bitcoin_script.h"
#include <openssl/bn.h>
#include <openssl/obj_mac.h>
#include <assert.h>
#include <ccan/cast/cast.h>
#undef DEBUG
#ifdef DEBUG
#include <ccan/err/err.h>
#define SHA_FMT \
"%02x%02x%02x%02x%02x%02x%02x%02x" \
"%02x%02x%02x%02x%02x%02x%02x%02x" \
"%02x%02x%02x%02x%02x%02x%02x%02x" \
"%02x%02x%02x%02x%02x%02x%02x%02x"
#define SHA_VALS(e) \
e[0], e[1], e[2], e[3], e[4], e[5], e[6], e[7], \
e[8], e[9], e[10], e[11], e[12], e[13], e[14], e[15], \
e[16], e[17], e[18], e[19], e[20], e[21], e[22], e[23], \
e[24], e[25], e[25], e[26], e[28], e[29], e[30], e[31]
static void dump_tx(const char *msg,
const struct bitcoin_tx *tx, size_t inputnum,
const u8 *script, size_t script_len,
const struct pubkey *key)
{
size_t i, j;
warnx("%s tx version %u locktime %#x:",
msg, tx->version, tx->lock_time);
for (i = 0; i < tx->input_count; i++) {
warnx("input[%zu].txid = "SHA_FMT, i,
SHA_VALS(tx->input[i].txid.sha.u.u8));
warnx("input[%zu].index = %u", i, tx->input[i].index);
}
for (i = 0; i < tx->output_count; i++) {
warnx("output[%zu].amount = %llu",
i, (long long)tx->output[i].amount);
warnx("output[%zu].script = %llu",
i, (long long)tx->output[i].script_length);
for (j = 0; j < tx->output[i].script_length; j++)
fprintf(stderr, "%02x", tx->output[i].script[j]);
fprintf(stderr, "\n");
}
warnx("input[%zu].script = %zu", inputnum, script_len);
for (i = 0; i < script_len; i++)
fprintf(stderr, "%02x", script[i]);
if (key) {
fprintf(stderr, "\nPubkey: ");
for (i = 0; i < pubkey_len(key); i++)
fprintf(stderr, "%02x", key->key[i]);
fprintf(stderr, "\n");
}
}
#else
static void dump_tx(const char *msg,
const struct bitcoin_tx *tx, size_t inputnum,
const u8 *script, size_t script_len,
const struct pubkey *key)
{
}
#endif
bool sign_hash(const tal_t *ctx, EC_KEY *private_key,
const struct sha256_double *h,
struct signature *s)
{
ECDSA_SIG *sig;
int len;
sig = ECDSA_do_sign(h->sha.u.u8, sizeof(*h), private_key);
if (!sig)
return false;
/* See https://github.com/sipa/bitcoin/commit/a81cd9680.
* There can only be one signature with an even S, so make sure we
* get that one. */
if (BN_is_odd(sig->s)) {
const EC_GROUP *group;
BIGNUM order;
BN_init(&order);
group = EC_KEY_get0_group(private_key);
EC_GROUP_get_order(group, &order, NULL);
BN_sub(sig->s, &order, sig->s);
BN_free(&order);
assert(!BN_is_odd(sig->s));
}
/* In case numbers are small. */
memset(s, 0, sizeof(*s));
/* Pack r and s into signature, 32 bytes each. */
len = BN_num_bytes(sig->r);
assert(len <= sizeof(s->r));
BN_bn2bin(sig->r, s->r + sizeof(s->r) - len);
len = BN_num_bytes(sig->s);
assert(len <= sizeof(s->s));
BN_bn2bin(sig->s, s->s + sizeof(s->s) - len);
ECDSA_SIG_free(sig);
return true;
}
/* Only does SIGHASH_ALL */
static void sha256_tx_one_input(struct bitcoin_tx *tx,
size_t input_num,
const u8 *script, size_t script_len,
struct sha256_double *hash)
{
struct sha256_ctx ctx = SHA256_INIT;
size_t i;
assert(input_num < tx->input_count);
/* You must have all inputs zeroed to start. */
for (i = 0; i < tx->input_count; i++)
assert(tx->input[i].script_length == 0);
tx->input[input_num].script_length = script_len;
tx->input[input_num].script = cast_const(u8 *, script);
sha256_init(&ctx);
sha256_tx(&ctx, tx);
sha256_le32(&ctx, SIGHASH_ALL);
sha256_double_done(&ctx, hash);
/* Reset it for next time. */
tx->input[input_num].script_length = 0;
tx->input[input_num].script = NULL;
}
/* Only does SIGHASH_ALL */
bool sign_tx_input(const tal_t *ctx, struct bitcoin_tx *tx,
unsigned int in,
const u8 *subscript, size_t subscript_len,
EC_KEY *privkey, const struct pubkey *key,
struct signature *sig)
{
struct sha256_double hash;
sha256_tx_one_input(tx, in, subscript, subscript_len, &hash);
dump_tx("Signing", tx, in, subscript, subscript_len, key);
return sign_hash(ctx, privkey, &hash, sig);
}
static bool check_signed_hash(const struct sha256_double *hash,
const struct signature *signature,
const struct pubkey *key)
{
bool ok = false;
BIGNUM r, s;
ECDSA_SIG sig = { &r, &s };
EC_KEY *eckey = EC_KEY_new_by_curve_name(NID_secp256k1);
const unsigned char *k = key->key;
/* S must be even: https://github.com/sipa/bitcoin/commit/a81cd9680 */
assert((signature->s[31] & 1) == 0);
/* Unpack public key. */
if (!o2i_ECPublicKey(&eckey, &k, pubkey_len(key)))
goto out;
/* Unpack signature. */
BN_init(&r);
BN_init(&s);
if (!BN_bin2bn(signature->r, sizeof(signature->r), &r)
|| !BN_bin2bn(signature->s, sizeof(signature->s), &s))
goto free_bns;
/* Now verify hash with public key and signature. */
switch (ECDSA_do_verify(hash->sha.u.u8, sizeof(hash->sha.u), &sig,
eckey)) {
case 0:
/* Invalid signature */
goto free_bns;
case -1:
/* Malformed or other error. */
goto free_bns;
}
ok = true;
free_bns:
BN_free(&r);
BN_free(&s);
out:
EC_KEY_free(eckey);
return ok;
}
bool check_tx_sig(struct bitcoin_tx *tx, size_t input_num,
const u8 *redeemscript, size_t redeemscript_len,
const struct pubkey *key,
const struct bitcoin_signature *sig)
{
struct sha256_double hash;
bool ret;
assert(input_num < tx->input_count);
sha256_tx_one_input(tx, input_num, redeemscript, redeemscript_len,
&hash);
/* We only use SIGHASH_ALL for the moment. */
if (sig->stype != SIGHASH_ALL)
return false;
ret = check_signed_hash(&hash, &sig->sig, key);
if (!ret)
dump_tx("Sig failed", tx, input_num,
redeemscript, redeemscript_len, key);
return ret;
}
bool check_2of2_sig(struct bitcoin_tx *tx, size_t input_num,
const u8 *redeemscript, size_t redeemscript_len,
const struct pubkey *key1, const struct pubkey *key2,
const struct bitcoin_signature *sig1,
const struct bitcoin_signature *sig2)
{
struct sha256_double hash;
assert(input_num < tx->input_count);
sha256_tx_one_input(tx, input_num, redeemscript, redeemscript_len,
&hash);
/* We only use SIGHASH_ALL for the moment. */
if (sig1->stype != SIGHASH_ALL || sig2->stype != SIGHASH_ALL)
return false;
return check_signed_hash(&hash, &sig1->sig, key1)
&& check_signed_hash(&hash, &sig2->sig, key2);
}
Signature *signature_to_proto(const tal_t *ctx, const struct signature *sig)
{
Signature *pb = tal(ctx, Signature);
signature__init(pb);
assert((sig->s[31] & 1) == 0);
/* Kill me now... */
memcpy(&pb->r1, sig->r, 8);
memcpy(&pb->r2, sig->r + 8, 8);
memcpy(&pb->r3, sig->r + 16, 8);
memcpy(&pb->r4, sig->r + 24, 8);
memcpy(&pb->s1, sig->s, 8);
memcpy(&pb->s2, sig->s + 8, 8);
memcpy(&pb->s3, sig->s + 16, 8);
memcpy(&pb->s4, sig->s + 24, 8);
return pb;
}
bool proto_to_signature(const Signature *pb, struct signature *sig)
{
/* Kill me again. */
memcpy(sig->r, &pb->r1, 8);
memcpy(sig->r + 8, &pb->r2, 8);
memcpy(sig->r + 16, &pb->r3, 8);
memcpy(sig->r + 24, &pb->r4, 8);
memcpy(sig->s, &pb->s1, 8);
memcpy(sig->s + 8, &pb->s2, 8);
memcpy(sig->s + 16, &pb->s3, 8);
memcpy(sig->s + 24, &pb->s4, 8);
/* S must be even */
return (sig->s[31] & 1) == 0;
}