core-lightning/ccan/ccan/time/time.c
Rusty Russell f8344baf64 ccan: update, new modules.
ccan/autodata, ccan/breakpoint, ccan/crypto/hmac_sha256, ccan/crypto/hkdf_sha256,
ccan/fdpass and ccan/io/fdpass.

Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2017-01-04 13:16:47 +10:30

139 lines
3.1 KiB
C

/* Licensed under BSD-MIT - see LICENSE file for details */
#include <ccan/time/time.h>
#include <stdlib.h>
#include <stdio.h>
#if !HAVE_CLOCK_GETTIME
#include <sys/time.h>
struct timeabs time_now(void)
{
struct timeval now;
struct timeabs ret;
gettimeofday(&now, NULL);
ret.ts.tv_sec = now.tv_sec;
ret.ts.tv_nsec = now.tv_usec * 1000;
return TIMEABS_CHECK(ret);
}
#else
#include <time.h>
struct timeabs time_now(void)
{
struct timeabs ret;
clock_gettime(CLOCK_REALTIME, &ret.ts);
return TIMEABS_CHECK(ret);
}
#endif /* HAVE_CLOCK_GETTIME */
struct timemono time_mono(void)
{
struct timemono ret;
#if TIME_HAVE_MONOTONIC
clock_gettime(CLOCK_MONOTONIC, &ret.ts);
#else /* Best we can do */
ret.ts = time_now().ts;
#endif /* !HAVE_TIME_MONOTONIC */
return TIMEMONO_CHECK(ret);
}
struct timerel time_divide(struct timerel t, unsigned long div)
{
struct timerel res;
uint64_t rem, ns;
/* Dividing seconds is simple. */
res.ts.tv_sec = TIMEREL_CHECK(t).ts.tv_sec / div;
rem = t.ts.tv_sec % div;
/* If we can't fit remainder * 1,000,000,000 in 64 bits? */
#if 0 /* ilog is great, but we use fp for multiply anyway. */
bits = ilog64(rem);
if (bits + 30 >= 64) {
/* Reduce accuracy slightly */
rem >>= (bits - (64 - 30));
div >>= (bits - (64 - 30));
}
#endif
if (rem & ~(((uint64_t)1 << 30) - 1)) {
/* FIXME: fp is cheating! */
double nsec = rem * 1000000000.0 + t.ts.tv_nsec;
res.ts.tv_nsec = nsec / div;
} else {
ns = rem * 1000000000 + t.ts.tv_nsec;
res.ts.tv_nsec = ns / div;
}
return TIMEREL_CHECK(res);
}
struct timerel time_multiply(struct timerel t, unsigned long mult)
{
struct timerel res;
/* Are we going to overflow if we multiply nsec? */
if (mult & ~((1UL << 30) - 1)) {
/* FIXME: fp is cheating! */
double nsec = (double)t.ts.tv_nsec * mult;
res.ts.tv_sec = nsec / 1000000000.0;
res.ts.tv_nsec = nsec - (res.ts.tv_sec * 1000000000.0);
} else {
uint64_t nsec = t.ts.tv_nsec * mult;
res.ts.tv_nsec = nsec % 1000000000;
res.ts.tv_sec = nsec / 1000000000;
}
res.ts.tv_sec += TIMEREL_CHECK(t).ts.tv_sec * mult;
return TIMEREL_CHECK(res);
}
struct timespec time_check_(struct timespec t, const char *abortstr)
{
if (t.tv_sec < 0 || t.tv_nsec >= 1000000000) {
if (abortstr) {
fprintf(stderr, "%s: malformed time %li.%09li\n",
abortstr,
(long)t.tv_sec, (long)t.tv_nsec);
abort();
} else {
struct timespec old = t;
if (t.tv_nsec >= 1000000000) {
t.tv_sec += t.tv_nsec / 1000000000;
t.tv_nsec %= 1000000000;
}
if (t.tv_sec < 0)
t.tv_sec = 0;
fprintf(stderr, "WARNING: malformed time"
" %li seconds %li ns converted to %li.%09li.\n",
(long)old.tv_sec, (long)old.tv_nsec,
(long)t.tv_sec, (long)t.tv_nsec);
}
}
return t;
}
struct timerel timerel_check(struct timerel t, const char *abortstr)
{
struct timerel ret;
ret.ts = time_check_(t.ts, abortstr);
return ret;
}
struct timeabs timeabs_check(struct timeabs t, const char *abortstr)
{
struct timeabs ret;
ret.ts = time_check_(t.ts, abortstr);
return ret;
}
struct timemono timemono_check(struct timemono t, const char *abortstr)
{
struct timemono ret;
ret.ts = time_check_(t.ts, abortstr);
return ret;
}