mirror of
https://github.com/ElementsProject/lightning.git
synced 2025-01-18 13:25:43 +01:00
74ef03d361
It's an internal difference, so doesn't actually break compatibility (it would if we tried to prove we owned an old invoicerequest, but we don't have infrastructure for that anyway). Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
221 lines
6.8 KiB
C
221 lines
6.8 KiB
C
#include "config.h"
|
|
#include <assert.h>
|
|
#include <bitcoin/tx.h>
|
|
#include <ccan/cast/cast.h>
|
|
#include <ccan/ilog/ilog.h>
|
|
#include <ccan/mem/mem.h>
|
|
#include <common/bolt12_merkle.h>
|
|
|
|
#ifndef SUPERVERBOSE
|
|
#define SUPERVERBOSE(...)
|
|
#endif
|
|
|
|
/* BOLT-offers #12:
|
|
* Each form is signed using one or more *signature TLV elements*: TLV
|
|
* types 240 through 1000 (inclusive).
|
|
*/
|
|
static bool is_signature_field(const struct tlv_field *field)
|
|
{
|
|
return field->numtype >= 240 && field->numtype <= 1000;
|
|
}
|
|
|
|
static void sha256_update_bigsize(struct sha256_ctx *ctx, u64 bigsize)
|
|
{
|
|
u8 buf[BIGSIZE_MAX_LEN];
|
|
size_t len;
|
|
|
|
len = bigsize_put(buf, bigsize);
|
|
SUPERVERBOSE("%s", tal_hexstr(tmpctx, buf, len));
|
|
sha256_update(ctx, buf, len);
|
|
}
|
|
|
|
static void sha256_update_tlvfield(struct sha256_ctx *ctx,
|
|
const struct tlv_field *field)
|
|
{
|
|
/* We don't keep it raw, so reconstruct. */
|
|
sha256_update_bigsize(ctx, field->numtype);
|
|
sha256_update_bigsize(ctx, field->length);
|
|
SUPERVERBOSE("%s", tal_hexstr(tmpctx, field->value, field->length));
|
|
sha256_update(ctx, field->value, field->length);
|
|
}
|
|
|
|
/* BOLT-offers #12:
|
|
* Thus we define H(`tag`,`msg`) as SHA256(SHA256(`tag`) || SHA256(`tag`) || `msg`)*/
|
|
/* Create a sha256_ctx which has the tag part done. */
|
|
static void h_simpletag_ctx(struct sha256_ctx *sctx, const char *tag)
|
|
{
|
|
struct sha256 sha;
|
|
sha256(&sha, tag, strlen(tag));
|
|
sha256_init(sctx);
|
|
sha256_update(sctx, &sha, sizeof(sha));
|
|
sha256_update(sctx, &sha, sizeof(sha));
|
|
SUPERVERBOSE("tag=SHA256(%s) -> %s",
|
|
tal_hexstr(tmpctx, tag, strlen(tag)),
|
|
fmt_sha256(tmpctx, &sha));
|
|
}
|
|
|
|
|
|
/* BOLT-offers #12:
|
|
* The Merkle tree's leaves are, in TLV-ascending order for each tlv:
|
|
* 1. The H("LnLeaf",tlv).
|
|
* 2. The H("LnNonce"||first-tlv,tlv-type) where first-tlv is the numerically-first TLV entry in the stream, and tlv-type is the "type" field (1-9 bytes) of the current tlv.
|
|
*/
|
|
|
|
/* Create a sha256_ctx which has the tag part done. */
|
|
static void h_lnnonce_ctx(struct sha256_ctx *sctx, const struct tlv_field *fields)
|
|
{
|
|
struct sha256_ctx inner_sctx;
|
|
struct sha256 sha;
|
|
|
|
sha256_init(&inner_sctx);
|
|
sha256_update(&inner_sctx, "LnNonce", 7);
|
|
SUPERVERBOSE("tag=SHA256(%s", tal_hexstr(tmpctx, "LnNonce", 7));
|
|
assert(tal_count(fields));
|
|
sha256_update_tlvfield(&inner_sctx, &fields[0]);
|
|
sha256_done(&inner_sctx, &sha);
|
|
SUPERVERBOSE(") -> %s\n",
|
|
fmt_sha256(tmpctx, &sha));
|
|
|
|
sha256_init(sctx);
|
|
sha256_update(sctx, &sha, sizeof(sha));
|
|
sha256_update(sctx, &sha, sizeof(sha));
|
|
}
|
|
|
|
/* Use h_lnnonce_ctx to create nonce */
|
|
static void calc_nonce(const struct sha256_ctx *lnnonce_ctx,
|
|
const struct tlv_field *field,
|
|
struct sha256 *hash)
|
|
{
|
|
/* Copy context, to add field */
|
|
struct sha256_ctx ctx = *lnnonce_ctx;
|
|
|
|
SUPERVERBOSE("nonce: H(noncetag,");
|
|
sha256_update_bigsize(&ctx, field->numtype);
|
|
|
|
sha256_done(&ctx, hash);
|
|
SUPERVERBOSE(") = %s\n", fmt_sha256(tmpctx, hash));
|
|
}
|
|
|
|
static void calc_lnleaf(const struct tlv_field *field, struct sha256 *hash)
|
|
{
|
|
struct sha256_ctx sctx;
|
|
|
|
SUPERVERBOSE("leaf: H(");
|
|
h_simpletag_ctx(&sctx, "LnLeaf");
|
|
SUPERVERBOSE(",");
|
|
sha256_update_tlvfield(&sctx, field);
|
|
sha256_done(&sctx, hash);
|
|
SUPERVERBOSE(") -> %s\n", fmt_sha256(tmpctx, hash));
|
|
}
|
|
|
|
/* BOLT-offers #12:
|
|
* The Merkle tree inner nodes are H("LnBranch", lesser-SHA256||greater-SHA256)
|
|
*/
|
|
static struct sha256 *merkle_pair(const tal_t *ctx,
|
|
const struct sha256 *a, const struct sha256 *b)
|
|
{
|
|
struct sha256 *res;
|
|
struct sha256_ctx sctx;
|
|
|
|
/* Make sure a < b */
|
|
if (memcmp(a->u.u8, b->u.u8, sizeof(a->u.u8)) > 0)
|
|
return merkle_pair(ctx, b, a);
|
|
|
|
SUPERVERBOSE("branch: H(");
|
|
h_simpletag_ctx(&sctx, "LnBranch");
|
|
SUPERVERBOSE(",%s %s",
|
|
tal_hexstr(tmpctx, a->u.u8, sizeof(a->u.u8)),
|
|
tal_hexstr(tmpctx, b->u.u8, sizeof(b->u.u8)));
|
|
sha256_update(&sctx, a->u.u8, sizeof(a->u.u8));
|
|
sha256_update(&sctx, b->u.u8, sizeof(b->u.u8));
|
|
|
|
res = tal(ctx, struct sha256);
|
|
sha256_done(&sctx, res);
|
|
SUPERVERBOSE(") -> %s\n", fmt_sha256(tmpctx, res));
|
|
return res;
|
|
}
|
|
|
|
static const struct sha256 *merkle_recurse(const struct sha256 **base,
|
|
const struct sha256 **arr, size_t len)
|
|
{
|
|
const struct sha256 *left, *right;
|
|
if (len == 1)
|
|
return arr[0];
|
|
|
|
SUPERVERBOSE("Merkle recurse [%zu - %zu] and [%zu - %zu]\n",
|
|
arr - base, arr + len / 2 - 1 - base,
|
|
arr + len / 2 - base, arr + len - 1 - base);
|
|
left = merkle_recurse(base, arr, len / 2);
|
|
right = merkle_recurse(base, arr + len / 2, len / 2);
|
|
/* left is never NULL if right is not NULL */
|
|
if (!right) {
|
|
SUPERVERBOSE("[%zu - %zu] is NULL!\n",
|
|
arr + len / 2 - base, arr + len - base);
|
|
return left;
|
|
}
|
|
return merkle_pair(base, left, right);
|
|
}
|
|
|
|
/* This is not the fastest way, but it is the most intuitive. */
|
|
void merkle_tlv(const struct tlv_field *fields, struct sha256 *merkle)
|
|
{
|
|
struct sha256 **arr;
|
|
struct sha256_ctx lnnonce_ctx;
|
|
size_t n;
|
|
|
|
SUPERVERBOSE("nonce tag:");
|
|
h_lnnonce_ctx(&lnnonce_ctx, fields);
|
|
|
|
/* We build an oversized power-of-2 symmentic tree, but with
|
|
* NULL nodes at the end. When we recurse, we pass through
|
|
* NULL. This is less efficient than calculating the
|
|
* power-of-2 split as we recurse, but simpler. */
|
|
arr = tal_arrz(NULL, struct sha256 *,
|
|
1ULL << (ilog64(tal_count(fields)) + 1));
|
|
|
|
n = 0;
|
|
for (size_t i = 0; i < tal_count(fields); i++) {
|
|
struct sha256 leaf, nonce;
|
|
if (is_signature_field(&fields[i]))
|
|
continue;
|
|
calc_lnleaf(&fields[i], &leaf);
|
|
calc_nonce(&lnnonce_ctx, &fields[i], &nonce);
|
|
arr[n++] = merkle_pair(arr, &leaf, &nonce);
|
|
}
|
|
|
|
/* This should never happen, but define it a distinctive all-zeroes */
|
|
if (n == 0)
|
|
memset(merkle, 0, sizeof(*merkle));
|
|
else
|
|
*merkle = *merkle_recurse(cast_const2(const struct sha256 **, arr),
|
|
cast_const2(const struct sha256 **, arr),
|
|
tal_count(arr));
|
|
tal_free(arr);
|
|
}
|
|
|
|
/* BOLT-offers #12:
|
|
* All signatures are created as per
|
|
* [BIP-340](https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki)
|
|
* and tagged as recommended there. Thus we define H(`tag`,`msg`) as
|
|
* SHA256(SHA256(`tag`) || SHA256(`tag`) || `msg`), and SIG(`tag`,`msg`,`key`)
|
|
* as the signature of H(`tag`,`msg`) using `key`.
|
|
*
|
|
* Each form is signed using one or more *signature TLV elements*: TLV types
|
|
* 240 through 1000 (inclusive). For these, the tag is "lightning" ||
|
|
* `messagename` || `fieldname`, and `msg` is the Merkle-root; "lightning" is
|
|
* the literal 9-byte ASCII string, `messagename` is the name of the TLV
|
|
* stream being signed (i.e. "invoice_request" or "invoice") and the
|
|
* `fieldname` is the TLV field containing the signature (e.g. "signature").
|
|
*/
|
|
void sighash_from_merkle(const char *messagename,
|
|
const char *fieldname,
|
|
const struct sha256 *merkle,
|
|
struct sha256 *sighash)
|
|
{
|
|
struct sha256_ctx sctx;
|
|
|
|
bip340_sighash_init(&sctx, "lightning", messagename, fieldname);
|
|
sha256_update(&sctx, merkle, sizeof(*merkle));
|
|
sha256_done(&sctx, sighash);
|
|
}
|