core-lightning/hsmd/libhsmd.c
Christian Decker 96acafcef3 libhsmd: Prefix check_client_capabilities
I wante to hide it inside the library, but it is good to have a single
place to verify that the client was permitted to send a message we are
handling, so make it officially part of the interface by prefixing it.
2021-05-04 11:18:52 +09:30

1547 lines
53 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#include <bitcoin/script.h>
#include <ccan/crypto/hkdf_sha256/hkdf_sha256.h>
#include <common/bolt12_merkle.h>
#include <common/hash_u5.h>
#include <common/key_derive.h>
#include <common/type_to_string.h>
#include <hsmd/capabilities.h>
#include <hsmd/libhsmd.h>
#include <wire/peer_wire.h>
#if DEVELOPER
/* If they specify --dev-force-privkey it ends up in here. */
struct privkey *dev_force_privkey;
/* If they specify --dev-force-bip32-seed it ends up in here. */
struct secret *dev_force_bip32_seed;
#endif
/*~ Nobody will ever find it here! hsm_secret is our root secret, the bip32
* tree and bolt12 payer_id keys are derived from that, and cached here. */
struct {
struct secret hsm_secret;
struct ext_key bip32;
secp256k1_keypair bolt12;
} secretstuff;
/* Have we initialized the secretstuff? */
bool initialized = false;
struct hsmd_client *hsmd_client_new_main(const tal_t *ctx, u64 capabilities,
void *extra)
{
struct hsmd_client *c = tal(ctx, struct hsmd_client);
c->dbid = 0;
c->capabilities = capabilities;
c->extra = extra;
return c;
}
struct hsmd_client *hsmd_client_new_peer(const tal_t *ctx, u64 capabilities,
u64 dbid,
const struct node_id *peer_id,
void *extra)
{
struct hsmd_client *c = tal(ctx, struct hsmd_client);
c->dbid = dbid;
c->capabilities = capabilities;
c->id = *peer_id;
c->extra = extra;
return c;
}
/*~ This routine checks that a client is allowed to call the handler. */
bool hsmd_check_client_capabilities(struct hsmd_client *client,
enum hsmd_wire t)
{
/*~ Here's a useful trick: enums in C are not real types, they're
* semantic sugar sprinkled over an int, bascally (in fact, older
* versions of gcc used to convert the values ints in the parser!).
*
* But GCC will do one thing for us: if we have a switch statement
* with a controlling expression which is an enum, it will warn us
* if a declared enum value is *not* handled in the switch, eg:
* enumeration value FOOBAR not handled in switch [-Werror=switch]
*
* This only works if there's no 'default' label, which is sometimes
* hard, as we *can* have non-enum values in our enum. But the tradeoff
* is worth it so the compiler tells us everywhere we have to fix when
* we add a new enum identifier!
*/
switch (t) {
case WIRE_HSMD_ECDH_REQ:
return (client->capabilities & HSM_CAP_ECDH) != 0;
case WIRE_HSMD_CANNOUNCEMENT_SIG_REQ:
case WIRE_HSMD_CUPDATE_SIG_REQ:
case WIRE_HSMD_NODE_ANNOUNCEMENT_SIG_REQ:
return (client->capabilities & HSM_CAP_SIGN_GOSSIP) != 0;
case WIRE_HSMD_SIGN_DELAYED_PAYMENT_TO_US:
case WIRE_HSMD_SIGN_REMOTE_HTLC_TO_US:
case WIRE_HSMD_SIGN_PENALTY_TO_US:
case WIRE_HSMD_SIGN_LOCAL_HTLC_TX:
return (client->capabilities & HSM_CAP_SIGN_ONCHAIN_TX) != 0;
case WIRE_HSMD_GET_PER_COMMITMENT_POINT:
case WIRE_HSMD_CHECK_FUTURE_SECRET:
return (client->capabilities & HSM_CAP_COMMITMENT_POINT) != 0;
case WIRE_HSMD_SIGN_REMOTE_COMMITMENT_TX:
case WIRE_HSMD_SIGN_REMOTE_HTLC_TX:
return (client->capabilities & HSM_CAP_SIGN_REMOTE_TX) != 0;
case WIRE_HSMD_SIGN_MUTUAL_CLOSE_TX:
return (client->capabilities & HSM_CAP_SIGN_CLOSING_TX) != 0;
case WIRE_HSMD_INIT:
case WIRE_HSMD_CLIENT_HSMFD:
case WIRE_HSMD_SIGN_WITHDRAWAL:
case WIRE_HSMD_SIGN_INVOICE:
case WIRE_HSMD_SIGN_COMMITMENT_TX:
case WIRE_HSMD_GET_CHANNEL_BASEPOINTS:
case WIRE_HSMD_DEV_MEMLEAK:
case WIRE_HSMD_SIGN_MESSAGE:
case WIRE_HSMD_GET_OUTPUT_SCRIPTPUBKEY:
case WIRE_HSMD_SIGN_BOLT12:
return (client->capabilities & HSM_CAP_MASTER) != 0;
/*~ These are messages sent by the HSM so we should never receive them. */
/* FIXME: Since we autogenerate these, we should really generate separate
* enums for replies to avoid this kind of clutter! */
case WIRE_HSMD_ECDH_RESP:
case WIRE_HSMD_CANNOUNCEMENT_SIG_REPLY:
case WIRE_HSMD_CUPDATE_SIG_REPLY:
case WIRE_HSMD_CLIENT_HSMFD_REPLY:
case WIRE_HSMD_NODE_ANNOUNCEMENT_SIG_REPLY:
case WIRE_HSMD_SIGN_WITHDRAWAL_REPLY:
case WIRE_HSMD_SIGN_INVOICE_REPLY:
case WIRE_HSMD_INIT_REPLY:
case WIRE_HSMSTATUS_CLIENT_BAD_REQUEST:
case WIRE_HSMD_SIGN_COMMITMENT_TX_REPLY:
case WIRE_HSMD_SIGN_TX_REPLY:
case WIRE_HSMD_GET_PER_COMMITMENT_POINT_REPLY:
case WIRE_HSMD_CHECK_FUTURE_SECRET_REPLY:
case WIRE_HSMD_GET_CHANNEL_BASEPOINTS_REPLY:
case WIRE_HSMD_DEV_MEMLEAK_REPLY:
case WIRE_HSMD_SIGN_MESSAGE_REPLY:
case WIRE_HSMD_GET_OUTPUT_SCRIPTPUBKEY_REPLY:
case WIRE_HSMD_SIGN_BOLT12_REPLY:
break;
}
return false;
}
/*~ ccan/compiler.h defines PRINTF_FMT as the gcc compiler hint so it will
* check that fmt and other trailing arguments really are the correct type.
*/
/* This function is used to format an error message before passing it
* to the library user specified hsmd_status_bad_request */
static u8 *hsmd_status_bad_request_fmt(struct hsmd_client *client,
const u8 *msg, const char *fmt, ...)
PRINTF_FMT(3, 4);
static u8 *hsmd_status_bad_request_fmt(struct hsmd_client *client,
const u8 *msg, const char *fmt, ...)
{
va_list ap;
char *str;
va_start(ap, fmt);
str = tal_fmt(tmpctx, fmt, ap);
va_end(ap);
return hsmd_status_bad_request(client, msg, str);
}
/* Convenience wrapper for when we simply can't parse. */
static u8 *hsmd_status_malformed_request(struct hsmd_client *c, const u8 *msg_in)
{
return hsmd_status_bad_request(c, msg_in, "could not parse request");
}
/*~ This returns the secret and/or public key for this node. */
static void node_key(struct privkey *node_privkey, struct pubkey *node_id)
{
u32 salt = 0;
struct privkey unused_s;
struct pubkey unused_k;
/* If caller specifies NULL, they don't want the results. */
if (node_privkey == NULL)
node_privkey = &unused_s;
if (node_id == NULL)
node_id = &unused_k;
/*~ So, there is apparently a 1 in 2^127 chance that a random value is
* not a valid private key, so this never actually loops. */
do {
/*~ ccan/crypto/hkdf_sha256 implements RFC5869 "Hardened Key
* Derivation Functions". That means that if a derived key
* leaks somehow, the other keys are not compromised. */
hkdf_sha256(node_privkey, sizeof(*node_privkey),
&salt, sizeof(salt),
&secretstuff.hsm_secret,
sizeof(secretstuff.hsm_secret),
"nodeid", 6);
salt++;
} while (!secp256k1_ec_pubkey_create(secp256k1_ctx, &node_id->pubkey,
node_privkey->secret.data));
#if DEVELOPER
/* In DEVELOPER mode, we can override with --dev-force-privkey */
if (dev_force_privkey) {
*node_privkey = *dev_force_privkey;
if (!secp256k1_ec_pubkey_create(secp256k1_ctx, &node_id->pubkey,
node_privkey->secret.data))
hsmd_status_failed(STATUS_FAIL_INTERNAL_ERROR,
"Failed to derive pubkey for dev_force_privkey");
}
#endif
}
/*~ This returns the secret and/or public x-only key for this node. */
static void node_schnorrkey(secp256k1_keypair *node_keypair,
struct pubkey32 *node_id32)
{
secp256k1_keypair unused_kp;
struct privkey node_privkey;
if (!node_keypair)
node_keypair = &unused_kp;
node_key(&node_privkey, NULL);
if (secp256k1_keypair_create(secp256k1_ctx, node_keypair,
node_privkey.secret.data) != 1)
hsmd_status_failed(STATUS_FAIL_INTERNAL_ERROR,
"Failed to derive keypair");
if (node_id32) {
if (secp256k1_keypair_xonly_pub(secp256k1_ctx,
&node_id32->pubkey,
NULL, node_keypair) != 1)
hsmd_status_failed(STATUS_FAIL_INTERNAL_ERROR,
"Failed to derive xonly pub");
}
}
/*~ This secret is the basis for all per-channel secrets: the per-channel seeds
* will be generated by mixing in the dbid and the peer node_id. */
static void hsm_channel_secret_base(struct secret *channel_seed_base)
{
hkdf_sha256(channel_seed_base, sizeof(struct secret), NULL, 0,
&secretstuff.hsm_secret, sizeof(secretstuff.hsm_secret),
/*~ Initially, we didn't support multiple channels per
* peer at all: a channel had to be completely forgotten
* before another could exist. That was slightly relaxed,
* but the phrase "peer seed" is wired into the seed
* generation here, so we need to keep it that way for
* existing clients, rather than using "channel seed". */
"peer seed", strlen("peer seed"));
}
/*~ This gets the seed for this particular channel. */
static void get_channel_seed(const struct node_id *peer_id, u64 dbid,
struct secret *channel_seed)
{
struct secret channel_base;
u8 input[sizeof(peer_id->k) + sizeof(dbid)];
/*~ Again, "per-peer" should be "per-channel", but Hysterical Raisins */
const char *info = "per-peer seed";
/*~ We use the DER encoding of the pubkey, because it's platform
* independent. Since the dbid is unique, however, it's completely
* unnecessary, but again, existing users can't be broken. */
/* FIXME: lnd has a nicer BIP32 method for deriving secrets which we
* should migrate to. */
hsm_channel_secret_base(&channel_base);
memcpy(input, peer_id->k, sizeof(peer_id->k));
BUILD_ASSERT(sizeof(peer_id->k) == PUBKEY_CMPR_LEN);
/*~ For all that talk about platform-independence, note that this
* field is endian-dependent! But let's face it, little-endian won.
* In related news, we don't support EBCDIC or middle-endian. */
memcpy(input + PUBKEY_CMPR_LEN, &dbid, sizeof(dbid));
hkdf_sha256(channel_seed, sizeof(*channel_seed),
input, sizeof(input),
&channel_base, sizeof(channel_base),
info, strlen(info));
}
/*~ For almost every wallet tx we use the BIP32 seed, but not for onchain
* unilateral closes from a peer: they (may) have an output to us using a
* public key based on the channel basepoints. It's a bit spammy to spend
* those immediately just to make the wallet simpler, and we didn't appreciate
* the problem when we designed the protocol for commitment transaction keys.
*
* So we store just enough about the channel it came from (which may be
* long-gone) to regenerate the keys here. That has the added advantage that
* the secrets themselves stay within the HSM. */
static void hsm_unilateral_close_privkey(struct privkey *dst,
struct unilateral_close_info *info)
{
struct secret channel_seed;
struct basepoints basepoints;
struct secrets secrets;
get_channel_seed(&info->peer_id, info->channel_id, &channel_seed);
derive_basepoints(&channel_seed, NULL, &basepoints, &secrets, NULL);
/* BOLT #3:
*
* If `option_static_remotekey` or `option_anchor_outputs` is
* negotiated, the `remotepubkey` is simply the remote node's
* `payment_basepoint`, otherwise it is calculated as above using the
* remote node's `payment_basepoint`.
*/
/* In our UTXO representation, this is indicated by a NULL
* commitment_point. */
if (!info->commitment_point)
dst->secret = secrets.payment_basepoint_secret;
else if (!derive_simple_privkey(&secrets.payment_basepoint_secret,
&basepoints.payment,
info->commitment_point,
dst)) {
hsmd_status_failed(STATUS_FAIL_INTERNAL_ERROR,
"Deriving unilateral_close_privkey");
}
}
/*~ Get the keys for this given BIP32 index: if privkey is NULL, we
* don't fill it in. */
static void bitcoin_key(struct privkey *privkey, struct pubkey *pubkey,
u32 index)
{
struct ext_key ext;
struct privkey unused_priv;
if (privkey == NULL)
privkey = &unused_priv;
if (index >= BIP32_INITIAL_HARDENED_CHILD)
hsmd_status_failed(STATUS_FAIL_MASTER_IO, "Index %u too great",
index);
/*~ This uses libwally, which doesn't dovetail directly with
* libsecp256k1 even though it, too, uses it internally. */
if (bip32_key_from_parent(&secretstuff.bip32, index,
BIP32_FLAG_KEY_PRIVATE, &ext) != WALLY_OK)
hsmd_status_failed(STATUS_FAIL_INTERNAL_ERROR,
"BIP32 of %u failed", index);
/* libwally says: The private key with prefix byte 0; remove it
* for libsecp256k1. */
memcpy(privkey->secret.data, ext.priv_key+1, 32);
if (!secp256k1_ec_pubkey_create(secp256k1_ctx, &pubkey->pubkey,
privkey->secret.data))
hsmd_status_failed(STATUS_FAIL_INTERNAL_ERROR,
"BIP32 pubkey %u create failed", index);
}
/* This gets the bitcoin private key needed to spend from our wallet */
static void hsm_key_for_utxo(struct privkey *privkey, struct pubkey *pubkey,
const struct utxo *utxo)
{
if (utxo->close_info != NULL) {
/* This is a their_unilateral_close/to-us output, so
* we need to derive the secret the long way */
hsmd_status_debug("Unilateral close output, deriving secrets");
hsm_unilateral_close_privkey(privkey, utxo->close_info);
pubkey_from_privkey(privkey, pubkey);
hsmd_status_debug("Derived public key %s from unilateral close",
type_to_string(tmpctx, struct pubkey, pubkey));
} else {
/* Simple case: just get derive via HD-derivation */
bitcoin_key(privkey, pubkey, utxo->keyindex);
}
}
/* Find our inputs by the pubkey associated with the inputs, and
* add a partial sig for each */
static void sign_our_inputs(struct utxo **utxos, struct wally_psbt *psbt)
{
for (size_t i = 0; i < tal_count(utxos); i++) {
struct utxo *utxo = utxos[i];
for (size_t j = 0; j < psbt->num_inputs; j++) {
struct privkey privkey;
struct pubkey pubkey;
if (!wally_tx_input_spends(&psbt->tx->inputs[j],
&utxo->txid, utxo->outnum))
continue;
hsm_key_for_utxo(&privkey, &pubkey, utxo);
/* This line is basically the entire reason we have
* to iterate through to match the psbt input
* to the UTXO -- otherwise we would just
* call wally_psbt_sign for every utxo privkey
* and be done with it. We can't do that though
* because any UTXO that's derived from channel_info
* requires the HSM to find the pubkey, and we
* skip doing that until now as a bit of a reduction
* of complexity in the calling code */
psbt_input_add_pubkey(psbt, j, &pubkey);
/* It's actually a P2WSH in this case. */
if (utxo->close_info && utxo->close_info->option_anchor_outputs) {
const u8 *wscript = anchor_to_remote_redeem(tmpctx, &pubkey);
psbt_input_set_witscript(psbt, j, wscript);
psbt_input_set_wit_utxo(psbt, j,
scriptpubkey_p2wsh(psbt, wscript),
utxo->amount);
}
tal_wally_start();
if (wally_psbt_sign(psbt, privkey.secret.data,
sizeof(privkey.secret.data),
EC_FLAG_GRIND_R) != WALLY_OK)
hsmd_status_broken(
"Received wally_err attempting to "
"sign utxo with key %s. PSBT: %s",
type_to_string(tmpctx, struct pubkey,
&pubkey),
type_to_string(tmpctx, struct wally_psbt,
psbt));
tal_wally_end(psbt);
}
}
}
/*~ This covers several cases where onchaind is creating a transaction which
* sends funds to our internal wallet. */
/* FIXME: Derive output address for this client, and check it here! */
static u8 *handle_sign_to_us_tx(struct hsmd_client *c, const u8 *msg_in,
struct bitcoin_tx *tx,
const struct privkey *privkey,
const u8 *wscript,
enum sighash_type sighash_type)
{
struct bitcoin_signature sig;
struct pubkey pubkey;
if (!pubkey_from_privkey(privkey, &pubkey))
return hsmd_status_bad_request(c, msg_in,
"bad pubkey_from_privkey");
if (tx->wtx->num_inputs != 1)
return hsmd_status_bad_request(c, msg_in, "bad txinput count");
sign_tx_input(tx, 0, NULL, wscript, privkey, &pubkey, sighash_type, &sig);
return towire_hsmd_sign_tx_reply(NULL, &sig);
}
/*~ lightningd asks us to sign a message. I tweeted the spec
* in https://twitter.com/rusty_twit/status/1182102005914800128:
*
* @roasbeef & @bitconner point out that #lnd algo is:
* zbase32(SigRec(SHA256(SHA256("Lightning Signed Message:" + msg)))).
* zbase32 from https://philzimmermann.com/docs/human-oriented-base-32-encoding.txt
* and SigRec has first byte 31 + recovery id, followed by 64 byte sig. #specinatweet
*/
static u8 *handle_sign_message(struct hsmd_client *c, const u8 *msg_in)
{
u8 *msg;
struct sha256_ctx sctx = SHA256_INIT;
struct sha256_double shad;
secp256k1_ecdsa_recoverable_signature rsig;
struct privkey node_pkey;
if (!fromwire_hsmd_sign_message(tmpctx, msg_in, &msg))
return hsmd_status_malformed_request(c, msg_in);
/* Prefixing by a known string means we'll never be convinced
* to sign some gossip message, etc. */
sha256_update(&sctx, "Lightning Signed Message:",
strlen("Lightning Signed Message:"));
sha256_update(&sctx, msg, tal_count(msg));
sha256_double_done(&sctx, &shad);
node_key(&node_pkey, NULL);
/*~ By no small coincidence, this libsecp routine uses the exact
* recovery signature format mandated by BOLT 11. */
if (!secp256k1_ecdsa_sign_recoverable(secp256k1_ctx, &rsig,
shad.sha.u.u8,
node_pkey.secret.data,
NULL, NULL)) {
return hsmd_status_bad_request(c, msg_in, "Failed to sign message");
}
return towire_hsmd_sign_message_reply(NULL, &rsig);
}
/*~ lightningd asks us to sign a bolt12 (e.g. offer). */
static u8 *handle_sign_bolt12(struct hsmd_client *c, const u8 *msg_in)
{
char *messagename, *fieldname;
struct sha256 merkle, sha;
struct bip340sig sig;
secp256k1_keypair kp;
u8 *publictweak;
if (!fromwire_hsmd_sign_bolt12(tmpctx, msg_in,
&messagename, &fieldname, &merkle,
&publictweak))
return hsmd_status_malformed_request(c, msg_in);
sighash_from_merkle(messagename, fieldname, &merkle, &sha);
if (!publictweak) {
node_schnorrkey(&kp, NULL);
} else {
/* If we're tweaking key, we use bolt12 key */
struct pubkey32 bolt12;
struct sha256 tweak;
if (secp256k1_keypair_xonly_pub(secp256k1_ctx,
&bolt12.pubkey, NULL,
&secretstuff.bolt12) != 1)
hsmd_status_failed(
STATUS_FAIL_INTERNAL_ERROR,
"Could not derive bolt12 public key.");
payer_key_tweak(&bolt12, publictweak, tal_bytelen(publictweak),
&tweak);
kp = secretstuff.bolt12;
if (secp256k1_keypair_xonly_tweak_add(secp256k1_ctx,
&kp,
tweak.u.u8) != 1) {
return hsmd_status_bad_request_fmt(
c, msg_in, "Failed to get tweak key");
}
}
if (!secp256k1_schnorrsig_sign(secp256k1_ctx, sig.u8,
sha.u.u8,
&kp,
NULL, NULL)) {
return hsmd_status_bad_request_fmt(c, msg_in,
"Failed to sign bolt12");
}
return towire_hsmd_sign_bolt12_reply(NULL, &sig);
}
/*~ Lightning invoices, defined by BOLT 11, are signed. This has been
* surprisingly controversial; it means a node needs to be online to create
* invoices. However, it seems clear to me that in a world without
* intermedaries you need proof that you have received an offer (the
* signature), as well as proof that you've paid it (the preimage). */
static u8 *handle_sign_invoice(struct hsmd_client *c, const u8 *msg_in)
{
/*~ We make up a 'u5' type to represent BOLT11's 5-bits-per-byte
* format: it's only for human consumption, as typedefs are almost
* entirely transparent to the C compiler. */
u5 *u5bytes;
u8 *hrpu8;
char *hrp;
struct sha256 sha;
secp256k1_ecdsa_recoverable_signature rsig;
struct hash_u5 hu5;
struct privkey node_pkey;
if (!fromwire_hsmd_sign_invoice(tmpctx, msg_in, &u5bytes, &hrpu8))
return hsmd_status_malformed_request(c, msg_in);
/* BOLT #11:
*
* A writer... MUST set `signature` to a valid 512-bit
* secp256k1 signature of the SHA2 256-bit hash of the
* human-readable part, represented as UTF-8 bytes,
* concatenated with the data part (excluding the signature)
* with 0 bits appended to pad the data to the next byte
* boundary, with a trailing byte containing the recovery ID
* (0, 1, 2, or 3).
*/
/* FIXME: Check invoice! */
/*~ tal_dup_arr() does what you'd expect: allocate an array by copying
* another; the cast is needed because the hrp is a 'char' array, not
* a 'u8' (unsigned char) as it's the "human readable" part.
*
* The final arg of tal_dup_arr() is how many extra bytes to allocate:
* it's so often zero that I've thought about dropping the argument, but
* in cases like this (adding a NUL terminator) it's perfect. */
hrp = tal_dup_arr(tmpctx, char, (char *)hrpu8, tal_count(hrpu8), 1);
hrp[tal_count(hrpu8)] = '\0';
hash_u5_init(&hu5, hrp);
hash_u5(&hu5, u5bytes, tal_count(u5bytes));
hash_u5_done(&hu5, &sha);
node_key(&node_pkey, NULL);
/*~ By no small coincidence, this libsecp routine uses the exact
* recovery signature format mandated by BOLT 11. */
if (!secp256k1_ecdsa_sign_recoverable(secp256k1_ctx, &rsig,
(const u8 *)&sha,
node_pkey.secret.data,
NULL, NULL)) {
return hsmd_status_bad_request_fmt(c, msg_in,
"Failed to sign invoice");
}
return towire_hsmd_sign_invoice_reply(NULL, &rsig);
}
/*~ This gets the basepoints for a channel; it's not private information really
* (we tell the peer this to establish a channel, as it sets up the keys used
* for each transaction).
*
* Note that this is asked by lightningd, so it tells us what channels it wants.
*/
static u8 *handle_get_channel_basepoints(struct hsmd_client *c,
const u8 *msg_in)
{
struct node_id peer_id;
u64 dbid;
struct secret seed;
struct basepoints basepoints;
struct pubkey funding_pubkey;
if (!fromwire_hsmd_get_channel_basepoints(msg_in, &peer_id, &dbid))
return hsmd_status_malformed_request(c, msg_in);
get_channel_seed(&peer_id, dbid, &seed);
derive_basepoints(&seed, &funding_pubkey, &basepoints, NULL, NULL);
return towire_hsmd_get_channel_basepoints_reply(NULL, &basepoints,
&funding_pubkey);
}
/*~ The client has asked us to extract the shared secret from an EC Diffie
* Hellman token. This doesn't leak any information, but requires the private
* key, so the hsmd performs it. It's used to set up an encryption key for the
* connection handshaking (BOLT #8) and for the onion wrapping (BOLT #4). */
static u8 *handle_ecdh(struct hsmd_client *c, const u8 *msg_in)
{
struct privkey privkey;
struct pubkey point;
struct secret ss;
if (!fromwire_hsmd_ecdh_req(msg_in, &point))
return hsmd_status_malformed_request(c, msg_in);
/*~ We simply use the secp256k1_ecdh function: if privkey.secret.data is invalid,
* we kill them for bad randomness (~1 in 2^127 if privkey.secret.data is random) */
node_key(&privkey, NULL);
if (secp256k1_ecdh(secp256k1_ctx, ss.data, &point.pubkey,
privkey.secret.data, NULL, NULL) != 1) {
return hsmd_status_bad_request_fmt(c, msg_in,
"secp256k1_ecdh fail");
}
/*~ In the normal case, we return the shared secret, and then read
* the next msg. */
return towire_hsmd_ecdh_resp(NULL, &ss);
}
/*~ This is used when the remote peer claims to have knowledge of future
* commitment states (option_data_loss_protect in the spec) which means we've
* been restored from backup or something, and may have already revealed
* secrets. We carefully check that this is true, here. */
static u8 *handle_check_future_secret(struct hsmd_client *c, const u8 *msg_in)
{
struct secret channel_seed;
struct sha256 shaseed;
u64 n;
struct secret secret, suggested;
if (!fromwire_hsmd_check_future_secret(msg_in, &n, &suggested))
return hsmd_status_malformed_request(c, msg_in);
get_channel_seed(&c->id, c->dbid, &channel_seed);
if (!derive_shaseed(&channel_seed, &shaseed))
return hsmd_status_bad_request_fmt(c, msg_in,
"bad derive_shaseed");
if (!per_commit_secret(&shaseed, &secret, n))
return hsmd_status_bad_request_fmt(
c, msg_in, "bad commit secret #%" PRIu64, n);
/*~ Note the special secret_eq_consttime: we generate foo_eq for many
* types using ccan/structeq, but not 'struct secret' because any
* comparison risks leaking information about the secret if it is
* timing dependent. */
return towire_hsmd_check_future_secret_reply(
NULL, secret_eq_consttime(&secret, &suggested));
}
static u8 *handle_get_output_scriptpubkey(struct hsmd_client *c,
const u8 *msg_in)
{
struct pubkey pubkey;
struct privkey privkey;
struct unilateral_close_info info;
u8 *scriptPubkey;
info.commitment_point = NULL;
if (!fromwire_hsmd_get_output_scriptpubkey(tmpctx, msg_in,
&info.channel_id,
&info.peer_id,
&info.commitment_point))
return hsmd_status_malformed_request(c, msg_in);
hsm_unilateral_close_privkey(&privkey, &info);
pubkey_from_privkey(&privkey, &pubkey);
scriptPubkey = scriptpubkey_p2wpkh(tmpctx, &pubkey);
return towire_hsmd_get_output_scriptpubkey_reply(NULL,
scriptPubkey);
}
/*~ The specific routine to sign the channel_announcement message. This is
* defined in BOLT #7, and requires *two* signatures: one from this node's key
* (to prove it's from us), and one from the bitcoin key used to create the
* funding transaction (to prove we own the output). */
static u8 *handle_cannouncement_sig(struct hsmd_client *c, const u8 *msg_in)
{
/*~ Our autogeneration code doesn't define field offsets, so we just
* copy this from the spec itself.
*
* Note that 'check-source' will actually find and check this quote
* against the spec (if available); whitespace is ignored and
* "..." means some content is skipped, but it works remarkably well to
* track spec changes. */
/* BOLT #7:
*
* - MUST compute the double-SHA256 hash `h` of the message, beginning
* at offset 256, up to the end of the message.
* - Note: the hash skips the 4 signatures but hashes the rest of the
* message, including any future fields appended to the end.
*/
/* First type bytes are the msg type */
size_t offset = 2 + 256;
struct privkey node_pkey;
secp256k1_ecdsa_signature node_sig, bitcoin_sig;
struct sha256_double hash;
u8 *reply;
u8 *ca;
struct pubkey funding_pubkey;
struct privkey funding_privkey;
struct secret channel_seed;
/*~ You'll find FIXMEs like this scattered through the code.
* Sometimes they suggest simple improvements which someone like
* yourself should go ahead an implement. Sometimes they're deceptive
* quagmires which will cause you nothing but grief. You decide! */
/*~ Christian uses TODO(cdecker) or FIXME(cdecker), but I'm sure he won't
* mind if you fix this for him! */
/* FIXME: We should cache these. */
get_channel_seed(&c->id, c->dbid, &channel_seed);
derive_funding_key(&channel_seed, &funding_pubkey, &funding_privkey);
/*~ fromwire_ routines which need to do allocation take a tal context
* as their first field; tmpctx is good here since we won't need it
* after this function. */
if (!fromwire_hsmd_cannouncement_sig_req(tmpctx, msg_in, &ca))
return hsmd_status_malformed_request(c, msg_in);
if (tal_count(ca) < offset)
return hsmd_status_bad_request_fmt(
c, msg_in, "bad cannounce length %zu", tal_count(ca));
if (fromwire_peektype(ca) != WIRE_CHANNEL_ANNOUNCEMENT)
return hsmd_status_bad_request_fmt(
c, msg_in, "Invalid channel announcement");
node_key(&node_pkey, NULL);
sha256_double(&hash, ca + offset, tal_count(ca) - offset);
sign_hash(&node_pkey, &hash, &node_sig);
sign_hash(&funding_privkey, &hash, &bitcoin_sig);
reply = towire_hsmd_cannouncement_sig_reply(NULL, &node_sig,
&bitcoin_sig);
return reply;
}
/*~ It's optional for nodes to send node_announcement, but it lets us set our
* favourite color and cool alias! Plus other minor details like how to
* connect to us. */
static u8 *handle_sign_node_announcement(struct hsmd_client *c,
const u8 *msg_in)
{
/* BOLT #7:
*
* The origin node:
*...
* - MUST set `signature` to the signature of the double-SHA256 of the
* entire remaining packet after `signature` (using the key given by
* `node_id`).
*/
/* 2 bytes msg type + 64 bytes signature */
size_t offset = 66;
struct sha256_double hash;
struct privkey node_pkey;
secp256k1_ecdsa_signature sig;
u8 *reply;
u8 *ann;
if (!fromwire_hsmd_node_announcement_sig_req(tmpctx, msg_in, &ann))
return hsmd_status_malformed_request(c, msg_in);
if (tal_count(ann) < offset)
return hsmd_status_bad_request(c, msg_in,
"Node announcement too short");
if (fromwire_peektype(ann) != WIRE_NODE_ANNOUNCEMENT)
return hsmd_status_bad_request(c, msg_in,
"Invalid announcement");
node_key(&node_pkey, NULL);
sha256_double(&hash, ann + offset, tal_count(ann) - offset);
sign_hash(&node_pkey, &hash, &sig);
reply = towire_hsmd_node_announcement_sig_reply(NULL, &sig);
return reply;
}
/*~ The specific routine to sign the channel_update message. */
static u8 *handle_channel_update_sig(struct hsmd_client *c, const u8 *msg_in)
{
/* BOLT #7:
*
* - MUST set `signature` to the signature of the double-SHA256 of the
* entire remaining packet after `signature`, using its own
* `node_id`.
*/
/* 2 bytes msg type + 64 bytes signature */
size_t offset = 66;
struct privkey node_pkey;
struct sha256_double hash;
secp256k1_ecdsa_signature sig;
struct short_channel_id scid;
u32 timestamp, fee_base_msat, fee_proportional_mill;
struct amount_msat htlc_minimum, htlc_maximum;
u8 message_flags, channel_flags;
u16 cltv_expiry_delta;
struct bitcoin_blkid chain_hash;
u8 *cu;
if (!fromwire_hsmd_cupdate_sig_req(tmpctx, msg_in, &cu))
return hsmd_status_malformed_request(c, msg_in);
if (!fromwire_channel_update_option_channel_htlc_max(cu, &sig,
&chain_hash, &scid, &timestamp, &message_flags,
&channel_flags, &cltv_expiry_delta,
&htlc_minimum, &fee_base_msat,
&fee_proportional_mill, &htlc_maximum)) {
return hsmd_status_bad_request(c, msg_in,
"Bad inner channel_update");
}
if (tal_count(cu) < offset)
return hsmd_status_bad_request(
c, msg_in, "inner channel_update too short");
node_key(&node_pkey, NULL);
sha256_double(&hash, cu + offset, tal_count(cu) - offset);
sign_hash(&node_pkey, &hash, &sig);
cu = towire_channel_update_option_channel_htlc_max(tmpctx, &sig, &chain_hash,
&scid, timestamp, message_flags, channel_flags,
cltv_expiry_delta, htlc_minimum,
fee_base_msat, fee_proportional_mill,
htlc_maximum);
return towire_hsmd_cupdate_sig_reply(NULL, cu);
}
/*~ This get the Nth a per-commitment point, and for N > 2, returns the
* grandparent per-commitment secret. This pattern is because after
* negotiating commitment N-1, we send them the next per-commitment point,
* and reveal the previous per-commitment secret as a promise not to spend
* the previous commitment transaction. */
static u8 *handle_get_per_commitment_point(struct hsmd_client *c, const u8 *msg_in)
{
struct secret channel_seed;
struct sha256 shaseed;
struct pubkey per_commitment_point;
u64 n;
struct secret *old_secret;
if (!fromwire_hsmd_get_per_commitment_point(msg_in, &n))
return hsmd_status_malformed_request(c, msg_in);
get_channel_seed(&c->id, c->dbid, &channel_seed);
if (!derive_shaseed(&channel_seed, &shaseed))
return hsmd_status_bad_request(c, msg_in, "bad derive_shaseed");
if (!per_commit_point(&shaseed, &per_commitment_point, n))
return hsmd_status_bad_request_fmt(
c, msg_in, "bad per_commit_point %" PRIu64, n);
if (n >= 2) {
old_secret = tal(tmpctx, struct secret);
if (!per_commit_secret(&shaseed, old_secret, n - 2)) {
return hsmd_status_bad_request_fmt(
c, msg_in, "Cannot derive secret %" PRIu64, n - 2);
}
} else
old_secret = NULL;
/*~ hsm_client_wire.csv marks the secret field here optional, so it only
* gets included if the parameter is non-NULL. We violate 80 columns
* pretty badly here, but it's a recommendation not a religion. */
return towire_hsmd_get_per_commitment_point_reply(
NULL, &per_commitment_point, old_secret);
}
/*~ lightningd asks us to sign a withdrawal; same as above but in theory
* we can do more to check the previous case is valid. */
static u8 *handle_sign_withdrawal_tx(struct hsmd_client *c, const u8 *msg_in)
{
struct utxo **utxos;
struct wally_psbt *psbt;
if (!fromwire_hsmd_sign_withdrawal(tmpctx, msg_in,
&utxos, &psbt))
return hsmd_status_malformed_request(c, msg_in);
sign_our_inputs(utxos, psbt);
return towire_hsmd_sign_withdrawal_reply(NULL, psbt);
}
/* This is used by closingd to sign off on a mutual close tx. */
static u8 *handle_sign_mutual_close_tx(struct hsmd_client *c, const u8 *msg_in)
{
struct secret channel_seed;
struct bitcoin_tx *tx;
struct pubkey remote_funding_pubkey, local_funding_pubkey;
struct bitcoin_signature sig;
struct secrets secrets;
const u8 *funding_wscript;
if (!fromwire_hsmd_sign_mutual_close_tx(tmpctx, msg_in,
&tx,
&remote_funding_pubkey))
return hsmd_status_malformed_request(c, msg_in);
tx->chainparams = c->chainparams;
/* FIXME: We should know dust level, decent fee range and
* balances, and final_keyindex, and thus be able to check tx
* outputs! */
get_channel_seed(&c->id, c->dbid, &channel_seed);
derive_basepoints(&channel_seed,
&local_funding_pubkey, NULL, &secrets, NULL);
funding_wscript = bitcoin_redeem_2of2(tmpctx,
&local_funding_pubkey,
&remote_funding_pubkey);
sign_tx_input(tx, 0, NULL, funding_wscript,
&secrets.funding_privkey,
&local_funding_pubkey,
SIGHASH_ALL, &sig);
return towire_hsmd_sign_tx_reply(NULL, &sig);
}
/*~ This is used when a commitment transaction is onchain, and has an HTLC
* output paying to them, which has timed out; this signs that transaction,
* which lightningd will broadcast to collect the funds. */
static u8 *handle_sign_local_htlc_tx(struct hsmd_client *c, const u8 *msg_in)
{
u64 commit_num;
struct secret channel_seed, htlc_basepoint_secret;
struct sha256 shaseed;
struct pubkey per_commitment_point, htlc_basepoint;
struct bitcoin_tx *tx;
u8 *wscript;
struct bitcoin_signature sig;
struct privkey htlc_privkey;
struct pubkey htlc_pubkey;
bool option_anchor_outputs;
if (!fromwire_hsmd_sign_local_htlc_tx(tmpctx, msg_in,
&commit_num, &tx, &wscript,
&option_anchor_outputs))
return hsmd_status_malformed_request(c, msg_in);
tx->chainparams = c->chainparams;
get_channel_seed(&c->id, c->dbid, &channel_seed);
if (!derive_shaseed(&channel_seed, &shaseed))
return hsmd_status_bad_request_fmt(c, msg_in,
"bad derive_shaseed");
if (!per_commit_point(&shaseed, &per_commitment_point, commit_num))
return hsmd_status_bad_request_fmt(
c, msg_in, "bad per_commitment_point %" PRIu64, commit_num);
if (!derive_htlc_basepoint(&channel_seed,
&htlc_basepoint,
&htlc_basepoint_secret))
return hsmd_status_bad_request_fmt(
c, msg_in, "Failed deriving htlc basepoint");
if (!derive_simple_privkey(&htlc_basepoint_secret,
&htlc_basepoint,
&per_commitment_point,
&htlc_privkey))
return hsmd_status_bad_request_fmt(
c, msg_in, "Failed deriving htlc privkey");
if (!pubkey_from_privkey(&htlc_privkey, &htlc_pubkey))
return hsmd_status_bad_request_fmt(c, msg_in,
"bad pubkey_from_privkey");
if (tx->wtx->num_inputs != 1)
return hsmd_status_bad_request_fmt(c, msg_in,
"bad txinput count");
/* FIXME: Check that output script is correct! */
/* BOLT #3:
* ## HTLC-Timeout and HTLC-Success Transactions
*...
* * if `option_anchor_outputs` applies to this commitment transaction,
* `SIGHASH_SINGLE|SIGHASH_ANYONECANPAY` is used.
*/
sign_tx_input(tx, 0, NULL, wscript, &htlc_privkey, &htlc_pubkey,
option_anchor_outputs
? (SIGHASH_SINGLE|SIGHASH_ANYONECANPAY)
: SIGHASH_ALL,
&sig);
return towire_hsmd_sign_tx_reply(NULL, &sig);
}
/*~ This is used by channeld to create signatures for the remote peer's
* HTLC transactions. */
static u8 *handle_sign_remote_htlc_tx(struct hsmd_client *c, const u8 *msg_in)
{
struct secret channel_seed;
struct bitcoin_tx *tx;
struct bitcoin_signature sig;
struct secrets secrets;
struct basepoints basepoints;
struct pubkey remote_per_commit_point;
u8 *wscript;
struct privkey htlc_privkey;
struct pubkey htlc_pubkey;
bool option_anchor_outputs;
if (!fromwire_hsmd_sign_remote_htlc_tx(tmpctx, msg_in,
&tx, &wscript,
&remote_per_commit_point,
&option_anchor_outputs))
return hsmd_status_malformed_request(c, msg_in);
tx->chainparams = c->chainparams;
get_channel_seed(&c->id, c->dbid, &channel_seed);
derive_basepoints(&channel_seed, NULL, &basepoints, &secrets, NULL);
if (!derive_simple_privkey(&secrets.htlc_basepoint_secret,
&basepoints.htlc,
&remote_per_commit_point,
&htlc_privkey))
return hsmd_status_bad_request_fmt(
c, msg_in, "Failed deriving htlc privkey");
if (!derive_simple_key(&basepoints.htlc,
&remote_per_commit_point,
&htlc_pubkey))
return hsmd_status_bad_request_fmt(
c, msg_in, "Failed deriving htlc pubkey");
/* BOLT #3:
* ## HTLC-Timeout and HTLC-Success Transactions
*...
* * if `option_anchor_outputs` applies to this commitment transaction,
* `SIGHASH_SINGLE|SIGHASH_ANYONECANPAY` is used.
*/
sign_tx_input(tx, 0, NULL, wscript, &htlc_privkey, &htlc_pubkey,
option_anchor_outputs
? (SIGHASH_SINGLE|SIGHASH_ANYONECANPAY)
: SIGHASH_ALL, &sig);
return towire_hsmd_sign_tx_reply(NULL, &sig);
}
/*~ This is used by channeld to create signatures for the remote peer's
* commitment transaction. It's functionally identical to signing our own,
* but we expect to do this repeatedly as commitment transactions are
* updated.
*
* The HSM almost certainly *should* do more checks before signing!
*/
/* FIXME: make sure it meets some criteria? */
static u8 *handle_sign_remote_commitment_tx(struct hsmd_client *c, const u8 *msg_in)
{
struct pubkey remote_funding_pubkey, local_funding_pubkey;
struct secret channel_seed;
struct bitcoin_tx *tx;
struct bitcoin_signature sig;
struct secrets secrets;
const u8 *funding_wscript;
struct pubkey remote_per_commit;
bool option_static_remotekey;
if (!fromwire_hsmd_sign_remote_commitment_tx(tmpctx, msg_in,
&tx,
&remote_funding_pubkey,
&remote_per_commit,
&option_static_remotekey))
return hsmd_status_malformed_request(c, msg_in);
tx->chainparams = c->chainparams;
/* Basic sanity checks. */
if (tx->wtx->num_inputs != 1)
return hsmd_status_bad_request_fmt(c, msg_in,
"tx must have 1 input");
if (tx->wtx->num_outputs == 0)
return hsmd_status_bad_request_fmt(c, msg_in,
"tx must have > 0 outputs");
get_channel_seed(&c->id, c->dbid, &channel_seed);
derive_basepoints(&channel_seed,
&local_funding_pubkey, NULL, &secrets, NULL);
funding_wscript = bitcoin_redeem_2of2(tmpctx,
&local_funding_pubkey,
&remote_funding_pubkey);
sign_tx_input(tx, 0, NULL, funding_wscript,
&secrets.funding_privkey,
&local_funding_pubkey,
SIGHASH_ALL,
&sig);
return towire_hsmd_sign_tx_reply(NULL, &sig);
}
/*~ This is used when the remote peer's commitment transaction is revoked;
* we can use the revocation secret to spend the outputs. For simplicity,
* we do them one at a time, though. */
static u8 *handle_sign_penalty_to_us(struct hsmd_client *c, const u8 *msg_in)
{
struct secret channel_seed, revocation_secret, revocation_basepoint_secret;
struct pubkey revocation_basepoint;
struct bitcoin_tx *tx;
struct pubkey point;
struct privkey privkey;
u8 *wscript;
if (!fromwire_hsmd_sign_penalty_to_us(tmpctx, msg_in,
&revocation_secret,
&tx, &wscript))
return hsmd_status_malformed_request(c, msg_in);
tx->chainparams = c->chainparams;
if (!pubkey_from_secret(&revocation_secret, &point))
return hsmd_status_bad_request_fmt(c, msg_in,
"Failed deriving pubkey");
get_channel_seed(&c->id, c->dbid, &channel_seed);
if (!derive_revocation_basepoint(&channel_seed,
&revocation_basepoint,
&revocation_basepoint_secret))
return hsmd_status_bad_request_fmt(
c, msg_in, "Failed deriving revocation basepoint");
if (!derive_revocation_privkey(&revocation_basepoint_secret,
&revocation_secret,
&revocation_basepoint,
&point,
&privkey))
return hsmd_status_bad_request_fmt(
c, msg_in, "Failed deriving revocation privkey");
return handle_sign_to_us_tx(c, msg_in, tx, &privkey, wscript,
SIGHASH_ALL);
}
/*~ This is another lightningd-only interface; signing a commit transaction.
* This is dangerous, since if we sign a revoked commitment tx we'll lose
* funds, thus it's only available to lightningd.
*
*
* Oh look, another FIXME! */
/* FIXME: Ensure HSM never does this twice for same dbid! */
static u8 *handle_sign_commitment_tx(struct hsmd_client *c, const u8 *msg_in)
{
struct pubkey remote_funding_pubkey, local_funding_pubkey;
struct node_id peer_id;
u64 dbid;
struct secret channel_seed;
struct bitcoin_tx *tx;
struct bitcoin_signature sig;
struct secrets secrets;
const u8 *funding_wscript;
if (!fromwire_hsmd_sign_commitment_tx(tmpctx, msg_in,
&peer_id, &dbid,
&tx,
&remote_funding_pubkey))
return hsmd_status_malformed_request(c, msg_in);
tx->chainparams = c->chainparams;
/* Basic sanity checks. */
if (tx->wtx->num_inputs != 1)
return hsmd_status_bad_request(c, msg_in,
"tx must have 1 input");
if (tx->wtx->num_outputs == 0)
return hsmd_status_bad_request_fmt(c, msg_in,
"tx must have > 0 outputs");
get_channel_seed(&peer_id, dbid, &channel_seed);
derive_basepoints(&channel_seed,
&local_funding_pubkey, NULL, &secrets, NULL);
/*~ Bitcoin signatures cover the (part of) the script they're
* executing; the rules are a bit complex in general, but for
* Segregated Witness it's simply the current script. */
funding_wscript = bitcoin_redeem_2of2(tmpctx,
&local_funding_pubkey,
&remote_funding_pubkey);
sign_tx_input(tx, 0, NULL, funding_wscript,
&secrets.funding_privkey,
&local_funding_pubkey,
SIGHASH_ALL,
&sig);
return towire_hsmd_sign_commitment_tx_reply(NULL, &sig);
}
/*~ This is used when a commitment transaction is onchain, and has an HTLC
* output paying to us (because we have the preimage); this signs that
* transaction, which lightningd will broadcast to collect the funds. */
static u8 *handle_sign_remote_htlc_to_us(struct hsmd_client *c,
const u8 *msg_in)
{
struct secret channel_seed, htlc_basepoint_secret;
struct pubkey htlc_basepoint;
struct bitcoin_tx *tx;
struct pubkey remote_per_commitment_point;
struct privkey privkey;
u8 *wscript;
bool option_anchor_outputs;
if (!fromwire_hsmd_sign_remote_htlc_to_us(
tmpctx, msg_in, &remote_per_commitment_point, &tx, &wscript,
&option_anchor_outputs))
return hsmd_status_malformed_request(c, msg_in);
tx->chainparams = c->chainparams;
get_channel_seed(&c->id, c->dbid, &channel_seed);
if (!derive_htlc_basepoint(&channel_seed, &htlc_basepoint,
&htlc_basepoint_secret))
return hsmd_status_bad_request(c, msg_in,
"Failed derive_htlc_basepoint");
if (!derive_simple_privkey(&htlc_basepoint_secret,
&htlc_basepoint,
&remote_per_commitment_point,
&privkey))
return hsmd_status_bad_request(c, msg_in,
"Failed deriving htlc privkey");
/* BOLT #3:
* ## HTLC-Timeout and HTLC-Success Transactions
*...
* * if `option_anchor_outputs` applies to this commitment transaction,
* `SIGHASH_SINGLE|SIGHASH_ANYONECANPAY` is used.
*/
return handle_sign_to_us_tx(
c, msg_in, tx, &privkey, wscript,
option_anchor_outputs ? (SIGHASH_SINGLE | SIGHASH_ANYONECANPAY)
: SIGHASH_ALL);
}
/*~ When we send a commitment transaction onchain (unilateral close), there's
* a delay before we can spend it. onchaind does an explicit transaction to
* transfer it to the wallet so that doesn't need to remember how to spend
* this complex transaction. */
static u8 *handle_sign_delayed_payment_to_us(struct hsmd_client *c,
const u8 *msg_in)
{
u64 commit_num;
struct secret channel_seed, basepoint_secret;
struct pubkey basepoint;
struct bitcoin_tx *tx;
struct sha256 shaseed;
struct pubkey per_commitment_point;
struct privkey privkey;
u8 *wscript;
/*~ We don't derive the wscript ourselves, but perhaps we should? */
if (!fromwire_hsmd_sign_delayed_payment_to_us(tmpctx, msg_in,
&commit_num,
&tx, &wscript))
return hsmd_status_malformed_request(c, msg_in);
tx->chainparams = c->chainparams;
get_channel_seed(&c->id, c->dbid, &channel_seed);
/*~ ccan/crypto/shachain how we efficiently derive 2^48 ordered
* preimages from a single seed; the twist is that as the preimages
* are revealed, you can generate the previous ones yourself, needing
* to only keep log(N) of them at any time. */
if (!derive_shaseed(&channel_seed, &shaseed))
return hsmd_status_bad_request(c, msg_in, "bad derive_shaseed");
/*~ BOLT #3 describes exactly how this is used to generate the Nth
* per-commitment point. */
if (!per_commit_point(&shaseed, &per_commitment_point, commit_num))
return hsmd_status_bad_request_fmt(
c, msg_in, "bad per_commitment_point %" PRIu64, commit_num);
/*~ ... which is combined with the basepoint to generate then N'th key.
*/
if (!derive_delayed_payment_basepoint(&channel_seed,
&basepoint,
&basepoint_secret))
return hsmd_status_bad_request(c, msg_in,
"failed deriving basepoint");
if (!derive_simple_privkey(&basepoint_secret,
&basepoint,
&per_commitment_point,
&privkey))
return hsmd_status_bad_request(c, msg_in,
"failed deriving privkey");
return handle_sign_to_us_tx(c, msg_in, tx, &privkey, wscript,
SIGHASH_ALL);
}
u8 *hsmd_handle_client_message(const tal_t *ctx, struct hsmd_client *client,
const u8 *msg)
{
enum hsmd_wire t = fromwire_peektype(msg);
hsmd_status_debug("Client: Received message %d from client", t);
/* Before we do anything else, is this client allowed to do
* what he asks for? */
if (!hsmd_check_client_capabilities(client, t))
return hsmd_status_bad_request_fmt(
client, msg, "does not have capability to run %d", t);
/* If we aren't initialized yet we better get an init message
* first. Otherwise we don't load the secret and every
* signature we produce is just going to be junk. */
if (!initialized && t != WIRE_HSMD_INIT)
hsmd_status_failed(STATUS_FAIL_MASTER_IO,
"hsmd was not initialized correctly, expected "
"message type %d, got %d",
WIRE_HSMD_INIT, t);
/* Now actually go and do what the client asked for */
switch (t) {
case WIRE_HSMD_INIT:
case WIRE_HSMD_CLIENT_HSMFD:
/* Not implemented yet. Should not have been passed here yet. */
return hsmd_status_bad_request_fmt(
client, msg,
"Message of type %s should be handled externally to "
"libhsmd",
hsmd_wire_name(t));
case WIRE_HSMD_GET_OUTPUT_SCRIPTPUBKEY:
return handle_get_output_scriptpubkey(client, msg);
case WIRE_HSMD_CHECK_FUTURE_SECRET:
return handle_check_future_secret(client, msg);
case WIRE_HSMD_ECDH_REQ:
return handle_ecdh(client, msg);
case WIRE_HSMD_SIGN_INVOICE:
return handle_sign_invoice(client, msg);
case WIRE_HSMD_SIGN_BOLT12:
return handle_sign_bolt12(client, msg);
case WIRE_HSMD_SIGN_MESSAGE:
return handle_sign_message(client, msg);
case WIRE_HSMD_GET_CHANNEL_BASEPOINTS:
return handle_get_channel_basepoints(client, msg);
case WIRE_HSMD_CANNOUNCEMENT_SIG_REQ:
return handle_cannouncement_sig(client, msg);
case WIRE_HSMD_NODE_ANNOUNCEMENT_SIG_REQ:
return handle_sign_node_announcement(client, msg);
case WIRE_HSMD_CUPDATE_SIG_REQ:
return handle_channel_update_sig(client, msg);
case WIRE_HSMD_GET_PER_COMMITMENT_POINT:
return handle_get_per_commitment_point(client, msg);
case WIRE_HSMD_SIGN_WITHDRAWAL:
return handle_sign_withdrawal_tx(client, msg);
case WIRE_HSMD_SIGN_MUTUAL_CLOSE_TX:
return handle_sign_mutual_close_tx(client, msg);
case WIRE_HSMD_SIGN_LOCAL_HTLC_TX:
return handle_sign_local_htlc_tx(client, msg);
case WIRE_HSMD_SIGN_REMOTE_HTLC_TX:
return handle_sign_remote_htlc_tx(client, msg);
case WIRE_HSMD_SIGN_REMOTE_COMMITMENT_TX:
return handle_sign_remote_commitment_tx(client, msg);
case WIRE_HSMD_SIGN_PENALTY_TO_US:
return handle_sign_penalty_to_us(client, msg);
case WIRE_HSMD_SIGN_COMMITMENT_TX:
return handle_sign_commitment_tx(client, msg);
case WIRE_HSMD_SIGN_REMOTE_HTLC_TO_US:
return handle_sign_remote_htlc_to_us(client, msg);
case WIRE_HSMD_SIGN_DELAYED_PAYMENT_TO_US:
return handle_sign_delayed_payment_to_us(client, msg);
case WIRE_HSMD_DEV_MEMLEAK:
case WIRE_HSMD_ECDH_RESP:
case WIRE_HSMD_CANNOUNCEMENT_SIG_REPLY:
case WIRE_HSMD_CUPDATE_SIG_REPLY:
case WIRE_HSMD_CLIENT_HSMFD_REPLY:
case WIRE_HSMD_NODE_ANNOUNCEMENT_SIG_REPLY:
case WIRE_HSMD_SIGN_WITHDRAWAL_REPLY:
case WIRE_HSMD_SIGN_INVOICE_REPLY:
case WIRE_HSMD_INIT_REPLY:
case WIRE_HSMSTATUS_CLIENT_BAD_REQUEST:
case WIRE_HSMD_SIGN_COMMITMENT_TX_REPLY:
case WIRE_HSMD_SIGN_TX_REPLY:
case WIRE_HSMD_GET_PER_COMMITMENT_POINT_REPLY:
case WIRE_HSMD_CHECK_FUTURE_SECRET_REPLY:
case WIRE_HSMD_GET_CHANNEL_BASEPOINTS_REPLY:
case WIRE_HSMD_DEV_MEMLEAK_REPLY:
case WIRE_HSMD_SIGN_MESSAGE_REPLY:
case WIRE_HSMD_GET_OUTPUT_SCRIPTPUBKEY_REPLY:
case WIRE_HSMD_SIGN_BOLT12_REPLY:
break;
}
return hsmd_status_bad_request(client, msg, "Unknown request");
}
u8 *hsmd_init(struct secret hsm_secret,
struct bip32_key_version bip32_key_version)
{
u8 bip32_seed[BIP32_ENTROPY_LEN_256];
struct pubkey key;
struct pubkey32 bolt12;
u32 salt = 0;
struct ext_key master_extkey, child_extkey;
struct node_id node_id;
/*~ Don't swap this. */
sodium_mlock(secretstuff.hsm_secret.data,
sizeof(secretstuff.hsm_secret.data));
memcpy(secretstuff.hsm_secret.data, hsm_secret.data, sizeof(hsm_secret.data));
assert(bip32_key_version.bip32_pubkey_version == BIP32_VER_MAIN_PUBLIC
|| bip32_key_version.bip32_pubkey_version == BIP32_VER_TEST_PUBLIC);
assert(bip32_key_version.bip32_privkey_version == BIP32_VER_MAIN_PRIVATE
|| bip32_key_version.bip32_privkey_version == BIP32_VER_TEST_PRIVATE);
/* Fill in the BIP32 tree for bitcoin addresses. */
/* In libwally-core, the version BIP32_VER_TEST_PRIVATE is for testnet/regtest,
* and BIP32_VER_MAIN_PRIVATE is for mainnet. For litecoin, we also set it like
* bitcoin else.*/
do {
hkdf_sha256(bip32_seed, sizeof(bip32_seed),
&salt, sizeof(salt),
&secretstuff.hsm_secret,
sizeof(secretstuff.hsm_secret),
"bip32 seed", strlen("bip32 seed"));
salt++;
} while (bip32_key_from_seed(bip32_seed, sizeof(bip32_seed),
bip32_key_version.bip32_privkey_version,
0, &master_extkey) != WALLY_OK);
#if DEVELOPER
/* In DEVELOPER mode, we can override with --dev-force-bip32-seed */
if (dev_force_bip32_seed) {
if (bip32_key_from_seed(dev_force_bip32_seed->data,
sizeof(dev_force_bip32_seed->data),
bip32_key_version.bip32_privkey_version,
0, &master_extkey) != WALLY_OK)
hsmd_status_failed(STATUS_FAIL_INTERNAL_ERROR,
"Can't derive bip32 master key");
}
#endif /* DEVELOPER */
/* BIP 32:
*
* The default wallet layout
*
* An HDW is organized as several 'accounts'. Accounts are numbered,
* the default account ("") being number 0. Clients are not required
* to support more than one account - if not, they only use the
* default account.
*
* Each account is composed of two keypair chains: an internal and an
* external one. The external keychain is used to generate new public
* addresses, while the internal keychain is used for all other
* operations (change addresses, generation addresses, ..., anything
* that doesn't need to be communicated). Clients that do not support
* separate keychains for these should use the external one for
* everything.
*
* - m/iH/0/k corresponds to the k'th keypair of the external chain of
* account number i of the HDW derived from master m.
*/
/* Hence child 0, then child 0 again to get extkey to derive from. */
if (bip32_key_from_parent(&master_extkey, 0, BIP32_FLAG_KEY_PRIVATE,
&child_extkey) != WALLY_OK)
/*~ status_failed() is a helper which exits and sends lightningd
* a message about what happened. For hsmd, that's fatal to
* lightningd. */
hsmd_status_failed(STATUS_FAIL_INTERNAL_ERROR,
"Can't derive child bip32 key");
if (bip32_key_from_parent(&child_extkey, 0, BIP32_FLAG_KEY_PRIVATE,
&secretstuff.bip32) != WALLY_OK)
hsmd_status_failed(STATUS_FAIL_INTERNAL_ERROR,
"Can't derive private bip32 key");
/* BIP 33:
*
* We propose the first level of BIP32 tree structure to be used as
* "purpose". This purpose determines the further structure beneath
* this node.
*
* m / purpose' / *
*
* Apostrophe indicates that BIP32 hardened derivation is used.
*
* We encourage different schemes to apply for assigning a separate
* BIP number and use the same number for purpose field, so addresses
* won't be generated from overlapping BIP32 spaces.
*
* Example: Scheme described in BIP44 should use 44' (or 0x8000002C)
* as purpose.
*/
/* Clearly, we should use 9735, the unicode point for lightning! */
if (bip32_key_from_parent(&master_extkey,
BIP32_INITIAL_HARDENED_CHILD|9735,
BIP32_FLAG_KEY_PRIVATE,
&child_extkey) != WALLY_OK)
hsmd_status_failed(STATUS_FAIL_INTERNAL_ERROR,
"Can't derive bolt12 bip32 key");
/* libwally says: The private key with prefix byte 0; remove it
* for libsecp256k1. */
if (secp256k1_keypair_create(secp256k1_ctx, &secretstuff.bolt12,
child_extkey.priv_key+1) != 1)
hsmd_status_failed(STATUS_FAIL_INTERNAL_ERROR,
"Can't derive bolt12 keypair");
/* Now we can consider ourselves initialized, and we won't get
* upset if we get a non-init message. */
initialized = true;
/*~ We tell lightning our node id and (public) bip32 seed. */
node_key(NULL, &key);
node_id_from_pubkey(&node_id, &key);
/* We also give it the base key for bolt12 payerids */
if (secp256k1_keypair_xonly_pub(secp256k1_ctx, &bolt12.pubkey, NULL,
&secretstuff.bolt12) != 1)
hsmd_status_failed(STATUS_FAIL_INTERNAL_ERROR,
"Could derive bolt12 public key.");
/*~ Note: marshalling a bip32 tree only marshals the public side,
* not the secrets! So we're not actually handing them out here!
*/
return take(towire_hsmd_init_reply(
NULL, &node_id, &secretstuff.bip32,
&bolt12));
}