mirror of
https://github.com/ElementsProject/lightning.git
synced 2025-01-18 05:12:45 +01:00
a9002eac52
And nail "make check-source" to that specific version (which is a commit id, not a branch name, so needs a different syntax for git). Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
580 lines
15 KiB
C
580 lines
15 KiB
C
#include <assert.h>
|
|
|
|
#include <ccan/crypto/ripemd160/ripemd160.h>
|
|
#include <ccan/crypto/sha256/sha256.h>
|
|
#include <ccan/mem/mem.h>
|
|
#include <common/sphinx.h>
|
|
#include <common/utils.h>
|
|
|
|
#include <err.h>
|
|
|
|
#include <secp256k1_ecdh.h>
|
|
|
|
#include <sodium/crypto_auth_hmacsha256.h>
|
|
#include <sodium/crypto_stream_chacha20.h>
|
|
#include <wire/wire.h>
|
|
|
|
#define BLINDING_FACTOR_SIZE 32
|
|
#define SHARED_SECRET_SIZE 32
|
|
#define HMAC_SIZE 32
|
|
|
|
#define NUM_STREAM_BYTES ((NUM_MAX_HOPS + 1) * HOP_DATA_SIZE)
|
|
#define KEY_LEN 32
|
|
#define ONION_REPLY_SIZE 256
|
|
|
|
struct hop_params {
|
|
u8 secret[SHARED_SECRET_SIZE];
|
|
u8 blind[BLINDING_FACTOR_SIZE];
|
|
secp256k1_pubkey ephemeralkey;
|
|
};
|
|
|
|
struct keyset {
|
|
u8 pi[KEY_LEN];
|
|
u8 mu[KEY_LEN];
|
|
u8 rho[KEY_LEN];
|
|
u8 gamma[KEY_LEN];
|
|
};
|
|
|
|
/* Small helper to append data to a buffer and update the position
|
|
* into the buffer
|
|
*/
|
|
static void write_buffer(u8 *dst, const void *src, const size_t len, int *pos)
|
|
{
|
|
memcpy(dst + *pos, src, len);
|
|
*pos += len;
|
|
}
|
|
|
|
/* Read len bytes from the source at position pos into dst and update
|
|
* the position pos accordingly.
|
|
*/
|
|
static void read_buffer(void *dst, const u8 *src, const size_t len, int *pos)
|
|
{
|
|
memcpy(dst, src + *pos, len);
|
|
*pos += len;
|
|
}
|
|
|
|
u8 *serialize_onionpacket(
|
|
const tal_t *ctx,
|
|
const struct onionpacket *m)
|
|
{
|
|
u8 *dst = tal_arr(ctx, u8, TOTAL_PACKET_SIZE);
|
|
|
|
u8 der[33];
|
|
size_t outputlen = 33;
|
|
int p = 0;
|
|
|
|
secp256k1_ec_pubkey_serialize(secp256k1_ctx,
|
|
der,
|
|
&outputlen,
|
|
&m->ephemeralkey,
|
|
SECP256K1_EC_COMPRESSED);
|
|
|
|
write_buffer(dst, &m->version, 1, &p);
|
|
write_buffer(dst, der, outputlen, &p);
|
|
write_buffer(dst, m->routinginfo, ROUTING_INFO_SIZE, &p);
|
|
write_buffer(dst, m->mac, sizeof(m->mac), &p);
|
|
return dst;
|
|
}
|
|
|
|
struct onionpacket *parse_onionpacket(
|
|
const tal_t *ctx,
|
|
const void *src,
|
|
const size_t srclen
|
|
)
|
|
{
|
|
struct onionpacket *m;
|
|
int p = 0;
|
|
u8 rawEphemeralkey[33];
|
|
|
|
if (srclen != TOTAL_PACKET_SIZE)
|
|
return NULL;
|
|
|
|
m = talz(ctx, struct onionpacket);
|
|
|
|
read_buffer(&m->version, src, 1, &p);
|
|
if (m->version != 0x00) {
|
|
// FIXME add logging
|
|
return tal_free(m);
|
|
}
|
|
read_buffer(rawEphemeralkey, src, 33, &p);
|
|
|
|
if (secp256k1_ec_pubkey_parse(secp256k1_ctx, &m->ephemeralkey, rawEphemeralkey, 33) != 1)
|
|
return tal_free(m);
|
|
|
|
read_buffer(&m->routinginfo, src, ROUTING_INFO_SIZE, &p);
|
|
read_buffer(&m->mac, src, SECURITY_PARAMETER, &p);
|
|
return m;
|
|
}
|
|
|
|
static void xorbytes(uint8_t *d, const uint8_t *a, const uint8_t *b, size_t len)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
d[i] = a[i] ^ b[i];
|
|
}
|
|
|
|
/*
|
|
* Generate a pseudo-random byte stream of length `dstlen` from key `k` and
|
|
* store it in `dst`. `dst must be at least `dstlen` bytes long.
|
|
*/
|
|
static void generate_cipher_stream(void *dst, const u8 *k, size_t dstlen)
|
|
{
|
|
u8 nonce[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
|
|
|
|
crypto_stream_chacha20(dst, dstlen, nonce, k);
|
|
}
|
|
|
|
static bool compute_hmac(
|
|
void *dst,
|
|
const void *src,
|
|
size_t len,
|
|
const void *key,
|
|
size_t keylen)
|
|
{
|
|
crypto_auth_hmacsha256_state state;
|
|
|
|
crypto_auth_hmacsha256_init(&state, key, keylen);
|
|
crypto_auth_hmacsha256_update(&state, memcheck(src, len), len);
|
|
crypto_auth_hmacsha256_final(&state, dst);
|
|
return true;
|
|
}
|
|
|
|
static void compute_packet_hmac(const struct onionpacket *packet,
|
|
const u8 *assocdata, const size_t assocdatalen,
|
|
u8 *mukey, u8 *hmac)
|
|
{
|
|
u8 mactemp[ROUTING_INFO_SIZE + assocdatalen];
|
|
u8 mac[32];
|
|
int pos = 0;
|
|
|
|
write_buffer(mactemp, packet->routinginfo, ROUTING_INFO_SIZE, &pos);
|
|
write_buffer(mactemp, assocdata, assocdatalen, &pos);
|
|
|
|
compute_hmac(mac, mactemp, sizeof(mactemp), mukey, KEY_LEN);
|
|
memcpy(hmac, mac, SECURITY_PARAMETER);
|
|
}
|
|
|
|
static bool generate_key(void *k, const char *t, u8 tlen, const u8 *s)
|
|
{
|
|
return compute_hmac(k, s, KEY_LEN, t, tlen);
|
|
}
|
|
|
|
static bool generate_header_padding(
|
|
void *dst, size_t dstlen,
|
|
const size_t hopsize,
|
|
const char *keytype,
|
|
size_t keytypelen,
|
|
const u8 numhops,
|
|
struct hop_params *params
|
|
)
|
|
{
|
|
int i;
|
|
u8 cipher_stream[(NUM_MAX_HOPS + 1) * hopsize];
|
|
u8 key[KEY_LEN];
|
|
|
|
memset(dst, 0, dstlen);
|
|
for (i = 1; i < numhops; i++) {
|
|
if (!generate_key(&key, keytype, keytypelen, params[i - 1].secret))
|
|
return false;
|
|
|
|
generate_cipher_stream(cipher_stream, key, sizeof(cipher_stream));
|
|
int pos = ((NUM_MAX_HOPS - i) + 1) * hopsize;
|
|
xorbytes(dst, dst, cipher_stream + pos, sizeof(cipher_stream) - pos);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void compute_blinding_factor(const secp256k1_pubkey *key,
|
|
const u8 sharedsecret[SHARED_SECRET_SIZE],
|
|
u8 res[BLINDING_FACTOR_SIZE])
|
|
{
|
|
struct sha256_ctx ctx;
|
|
u8 der[33];
|
|
size_t outputlen = 33;
|
|
struct sha256 temp;
|
|
|
|
secp256k1_ec_pubkey_serialize(secp256k1_ctx, der, &outputlen, key,
|
|
SECP256K1_EC_COMPRESSED);
|
|
sha256_init(&ctx);
|
|
sha256_update(&ctx, der, sizeof(der));
|
|
sha256_update(&ctx, sharedsecret, SHARED_SECRET_SIZE);
|
|
sha256_done(&ctx, &temp);
|
|
memcpy(res, &temp, 32);
|
|
}
|
|
|
|
static bool blind_group_element(
|
|
secp256k1_pubkey *blindedelement,
|
|
const secp256k1_pubkey *pubkey,
|
|
const u8 blind[BLINDING_FACTOR_SIZE])
|
|
{
|
|
/* tweak_mul is inplace so copy first. */
|
|
if (pubkey != blindedelement)
|
|
*blindedelement = *pubkey;
|
|
if (secp256k1_ec_pubkey_tweak_mul(secp256k1_ctx, blindedelement, blind) != 1)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static bool create_shared_secret(
|
|
u8 *secret,
|
|
const secp256k1_pubkey *pubkey,
|
|
const u8 *sessionkey)
|
|
{
|
|
|
|
if (secp256k1_ecdh(secp256k1_ctx, secret, pubkey, sessionkey) != 1)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool onion_shared_secret(
|
|
u8 *secret,
|
|
const struct onionpacket *packet,
|
|
const struct privkey *privkey)
|
|
{
|
|
return create_shared_secret(secret, &packet->ephemeralkey,
|
|
privkey->secret.data);
|
|
}
|
|
|
|
static void generate_key_set(const u8 secret[SHARED_SECRET_SIZE],
|
|
struct keyset *keys)
|
|
{
|
|
generate_key(keys->rho, "rho", 3, secret);
|
|
generate_key(keys->pi, "pi", 2, secret);
|
|
generate_key(keys->mu, "mu", 2, secret);
|
|
generate_key(keys->gamma, "gamma", 5, secret);
|
|
}
|
|
|
|
static struct hop_params *generate_hop_params(
|
|
const tal_t *ctx,
|
|
const u8 *sessionkey,
|
|
struct pubkey path[])
|
|
{
|
|
int i, j, num_hops = tal_count(path);
|
|
secp256k1_pubkey temp;
|
|
u8 blind[BLINDING_FACTOR_SIZE];
|
|
struct hop_params *params = tal_arr(ctx, struct hop_params, num_hops);
|
|
|
|
/* Initialize the first hop with the raw information */
|
|
if (secp256k1_ec_pubkey_create(
|
|
secp256k1_ctx, ¶ms[0].ephemeralkey, sessionkey) != 1)
|
|
return NULL;
|
|
|
|
if (!create_shared_secret(
|
|
params[0].secret, &path[0].pubkey, sessionkey))
|
|
return NULL;
|
|
|
|
compute_blinding_factor(
|
|
¶ms[0].ephemeralkey, params[0].secret,
|
|
params[0].blind);
|
|
|
|
/* Recursively compute all following ephemeral public keys,
|
|
* secrets and blinding factors
|
|
*/
|
|
for (i = 1; i < num_hops; i++) {
|
|
if (!blind_group_element(
|
|
¶ms[i].ephemeralkey,
|
|
¶ms[i - 1].ephemeralkey,
|
|
params[i - 1].blind))
|
|
return NULL;
|
|
|
|
/* Blind this hop's point with all previous blinding factors
|
|
* Order is indifferent, multiplication is commutative.
|
|
*/
|
|
memcpy(&blind, sessionkey, 32);
|
|
temp = path[i].pubkey;
|
|
if (!blind_group_element(&temp, &temp, blind))
|
|
return NULL;
|
|
for (j = 0; j < i; j++)
|
|
if (!blind_group_element(
|
|
&temp,
|
|
&temp,
|
|
params[j].blind))
|
|
return NULL;
|
|
|
|
/* Now hash temp and store it. This requires us to
|
|
* DER-serialize first and then skip the sign byte.
|
|
*/
|
|
u8 der[33];
|
|
size_t outputlen = 33;
|
|
secp256k1_ec_pubkey_serialize(
|
|
secp256k1_ctx, der, &outputlen, &temp,
|
|
SECP256K1_EC_COMPRESSED);
|
|
struct sha256 h;
|
|
sha256(&h, der, sizeof(der));
|
|
memcpy(¶ms[i].secret, &h, sizeof(h));
|
|
|
|
compute_blinding_factor(
|
|
¶ms[i].ephemeralkey,
|
|
params[i].secret, params[i].blind);
|
|
}
|
|
return params;
|
|
}
|
|
|
|
static void serialize_hop_data(tal_t *ctx, u8 *dst, const struct hop_data *data)
|
|
{
|
|
u8 *buf = tal_arr(ctx, u8, 0);
|
|
towire_u8(&buf, data->realm);
|
|
towire_short_channel_id(&buf, &data->channel_id);
|
|
towire_u64(&buf, data->amt_forward);
|
|
towire_u32(&buf, data->outgoing_cltv);
|
|
towire_pad(&buf, 12);
|
|
towire(&buf, data->hmac, SECURITY_PARAMETER);
|
|
memcpy(dst, buf, tal_len(buf));
|
|
tal_free(buf);
|
|
}
|
|
|
|
static void deserialize_hop_data(struct hop_data *data, const u8 *src)
|
|
{
|
|
const u8 *cursor = src;
|
|
size_t max = HOP_DATA_SIZE;
|
|
data->realm = fromwire_u8(&cursor, &max);
|
|
fromwire_short_channel_id(&cursor, &max, &data->channel_id);
|
|
data->amt_forward = fromwire_u64(&cursor, &max);
|
|
data->outgoing_cltv = fromwire_u32(&cursor, &max);
|
|
fromwire_pad(&cursor, &max, 12);
|
|
fromwire(&cursor, &max, &data->hmac, SECURITY_PARAMETER);
|
|
}
|
|
|
|
struct onionpacket *create_onionpacket(
|
|
const tal_t *ctx,
|
|
struct pubkey *path,
|
|
struct hop_data hops_data[],
|
|
const u8 *sessionkey,
|
|
const u8 *assocdata,
|
|
const size_t assocdatalen,
|
|
struct secret **path_secrets
|
|
)
|
|
{
|
|
struct onionpacket *packet = talz(ctx, struct onionpacket);
|
|
int i, num_hops = tal_count(path);
|
|
u8 filler[(num_hops - 1) * HOP_DATA_SIZE];
|
|
struct keyset keys;
|
|
u8 nexthmac[SECURITY_PARAMETER];
|
|
u8 stream[ROUTING_INFO_SIZE];
|
|
struct hop_params *params = generate_hop_params(ctx, sessionkey, path);
|
|
struct secret *secrets = tal_arr(ctx, struct secret, num_hops);
|
|
|
|
if (!params)
|
|
return NULL;
|
|
packet->version = 0;
|
|
memset(nexthmac, 0, SECURITY_PARAMETER);
|
|
memset(packet->routinginfo, 0, ROUTING_INFO_SIZE);
|
|
|
|
generate_header_padding(filler, sizeof(filler), HOP_DATA_SIZE,
|
|
"rho", 3, num_hops, params);
|
|
|
|
for (i = num_hops - 1; i >= 0; i--) {
|
|
memcpy(hops_data[i].hmac, nexthmac, SECURITY_PARAMETER);
|
|
generate_key_set(params[i].secret, &keys);
|
|
generate_cipher_stream(stream, keys.rho, ROUTING_INFO_SIZE);
|
|
|
|
/* Rightshift mix-header by 2*SECURITY_PARAMETER */
|
|
memmove(packet->routinginfo + HOP_DATA_SIZE, packet->routinginfo,
|
|
ROUTING_INFO_SIZE - HOP_DATA_SIZE);
|
|
serialize_hop_data(packet, packet->routinginfo, &hops_data[i]);
|
|
xorbytes(packet->routinginfo, packet->routinginfo, stream, ROUTING_INFO_SIZE);
|
|
|
|
if (i == num_hops - 1) {
|
|
size_t len = (NUM_MAX_HOPS - num_hops + 1) * HOP_DATA_SIZE;
|
|
memcpy(packet->routinginfo + len, filler, sizeof(filler));
|
|
}
|
|
|
|
compute_packet_hmac(packet, assocdata, assocdatalen, keys.mu,
|
|
nexthmac);
|
|
}
|
|
memcpy(packet->mac, nexthmac, sizeof(nexthmac));
|
|
memcpy(&packet->ephemeralkey, ¶ms[0].ephemeralkey, sizeof(secp256k1_pubkey));
|
|
|
|
for (i=0; i<num_hops; i++) {
|
|
memcpy(&secrets[i], params[i].secret, SHARED_SECRET_SIZE);
|
|
}
|
|
|
|
*path_secrets = secrets;
|
|
return packet;
|
|
}
|
|
|
|
/*
|
|
* Given a onionpacket msg extract the information for the current
|
|
* node and unwrap the remainder so that the node can forward it.
|
|
*/
|
|
struct route_step *process_onionpacket(
|
|
const tal_t *ctx,
|
|
const struct onionpacket *msg,
|
|
const u8 *shared_secret,
|
|
const u8 *assocdata,
|
|
const size_t assocdatalen
|
|
)
|
|
{
|
|
struct route_step *step = talz(ctx, struct route_step);
|
|
u8 hmac[SECURITY_PARAMETER];
|
|
struct keyset keys;
|
|
u8 blind[BLINDING_FACTOR_SIZE];
|
|
u8 stream[NUM_STREAM_BYTES];
|
|
u8 paddedheader[ROUTING_INFO_SIZE + HOP_DATA_SIZE];
|
|
|
|
step->next = talz(step, struct onionpacket);
|
|
step->next->version = msg->version;
|
|
generate_key_set(shared_secret, &keys);
|
|
|
|
compute_packet_hmac(msg, assocdata, assocdatalen, keys.mu, hmac);
|
|
|
|
if (memcmp(msg->mac, hmac, sizeof(hmac)) != 0) {
|
|
/* Computed MAC does not match expected MAC, the message was modified. */
|
|
return tal_free(step);
|
|
}
|
|
|
|
//FIXME:store seen secrets to avoid replay attacks
|
|
generate_cipher_stream(stream, keys.rho, sizeof(stream));
|
|
|
|
memset(paddedheader, 0, sizeof(paddedheader));
|
|
memcpy(paddedheader, msg->routinginfo, ROUTING_INFO_SIZE);
|
|
xorbytes(paddedheader, paddedheader, stream, sizeof(stream));
|
|
|
|
compute_blinding_factor(&msg->ephemeralkey, shared_secret, blind);
|
|
if (!blind_group_element(&step->next->ephemeralkey, &msg->ephemeralkey, blind))
|
|
return tal_free(step);
|
|
|
|
deserialize_hop_data(&step->hop_data, paddedheader);
|
|
|
|
memcpy(&step->next->mac, step->hop_data.hmac, SECURITY_PARAMETER);
|
|
|
|
memcpy(&step->next->routinginfo, paddedheader + HOP_DATA_SIZE, ROUTING_INFO_SIZE);
|
|
|
|
if (memeqzero(step->next->mac, sizeof(step->next->mac))) {
|
|
step->nextcase = ONION_END;
|
|
} else {
|
|
step->nextcase = ONION_FORWARD;
|
|
}
|
|
|
|
return step;
|
|
}
|
|
|
|
u8 *create_onionreply(const tal_t *ctx, const struct secret *shared_secret,
|
|
const u8 *failure_msg)
|
|
{
|
|
size_t msglen = tal_len(failure_msg);
|
|
size_t padlen = ONION_REPLY_SIZE - msglen;
|
|
u8 *reply = tal_arr(ctx, u8, 0), *payload = tal_arr(ctx, u8, 0);
|
|
u8 key[KEY_LEN];
|
|
u8 hmac[HMAC_SIZE];
|
|
|
|
/* BOLT #4:
|
|
*
|
|
* The node returning the message builds a return packet consisting of
|
|
* the following fields:
|
|
*
|
|
* 1. data:
|
|
* * [`32`:`hmac`]
|
|
* * [`2`:`failure_len`]
|
|
* * [`failure_len`:`failuremsg`]
|
|
* * [`2`:`pad_len`]
|
|
* * [`pad_len`:`pad`]
|
|
*/
|
|
towire_u16(&payload, msglen);
|
|
towire(&payload, failure_msg, msglen);
|
|
towire_u16(&payload, padlen);
|
|
towire_pad(&payload, padlen);
|
|
|
|
/* BOLT #4:
|
|
*
|
|
* The node SHOULD set `pad` such that the `failure_len` plus
|
|
* `pad_len` is equal to 256. This is 118 bytes longer than then the
|
|
* longest currently-defined message.
|
|
*/
|
|
assert(tal_len(payload) == ONION_REPLY_SIZE + 4);
|
|
|
|
/* BOLT #4:
|
|
*
|
|
* Where `hmac` is an HMAC authenticating the remainder of the packet,
|
|
* with a key using the above key generation with key type `um`
|
|
*/
|
|
generate_key(key, "um", 2, shared_secret->data);
|
|
|
|
compute_hmac(hmac, payload, tal_len(payload), key, KEY_LEN);
|
|
towire(&reply, hmac, sizeof(hmac));
|
|
|
|
towire(&reply, payload, tal_len(payload));
|
|
tal_free(payload);
|
|
|
|
return reply;
|
|
}
|
|
|
|
u8 *wrap_onionreply(const tal_t *ctx,
|
|
const struct secret *shared_secret, const u8 *reply)
|
|
{
|
|
u8 key[KEY_LEN];
|
|
size_t streamlen = tal_len(reply);
|
|
u8 stream[streamlen];
|
|
u8 *result = tal_arr(ctx, u8, streamlen);
|
|
|
|
/* BOLT #4:
|
|
*
|
|
* The node then generates a new key, using the key type `ammag`.
|
|
* This key is then used to generate a pseudo-random stream, which is
|
|
* then applied to the packet using `XOR`.
|
|
*
|
|
* The obfuscation step is repeated by every node on the return path.
|
|
*/
|
|
generate_key(key, "ammag", 5, shared_secret->data);
|
|
generate_cipher_stream(stream, key, streamlen);
|
|
xorbytes(result, stream, reply, streamlen);
|
|
return result;
|
|
}
|
|
|
|
struct onionreply *unwrap_onionreply(const tal_t *ctx,
|
|
const struct secret *shared_secrets,
|
|
const int numhops, const u8 *reply)
|
|
{
|
|
tal_t *tmpctx = tal_tmpctx(ctx);
|
|
struct onionreply *oreply = tal(tmpctx, struct onionreply);
|
|
u8 *msg = tal_arr(oreply, u8, tal_len(reply));
|
|
u8 key[KEY_LEN], hmac[HMAC_SIZE];
|
|
const u8 *cursor;
|
|
size_t max;
|
|
u16 msglen;
|
|
|
|
if (tal_len(reply) != ONION_REPLY_SIZE + sizeof(hmac) + 4) {
|
|
goto fail;
|
|
}
|
|
|
|
memcpy(msg, reply, tal_len(reply));
|
|
oreply->origin_index = -1;
|
|
|
|
for (int i = 0; i < numhops; i++) {
|
|
/* Since the encryption is just XORing with the cipher
|
|
* stream encryption is identical to decryption */
|
|
msg = wrap_onionreply(tmpctx, &shared_secrets[i], msg);
|
|
|
|
/* Check if the HMAC matches, this means that this is
|
|
* the origin */
|
|
generate_key(key, "um", 2, shared_secrets[i].data);
|
|
compute_hmac(hmac, msg + sizeof(hmac),
|
|
tal_len(msg) - sizeof(hmac), key, KEY_LEN);
|
|
if (memcmp(hmac, msg, sizeof(hmac)) == 0) {
|
|
oreply->origin_index = i;
|
|
break;
|
|
}
|
|
}
|
|
if (oreply->origin_index == -1) {
|
|
goto fail;
|
|
}
|
|
|
|
cursor = msg + sizeof(hmac);
|
|
max = tal_len(msg) - sizeof(hmac);
|
|
msglen = fromwire_u16(&cursor, &max);
|
|
|
|
if (msglen > ONION_REPLY_SIZE) {
|
|
goto fail;
|
|
}
|
|
|
|
oreply->msg = tal_arr(oreply, u8, msglen);
|
|
fromwire(&cursor, &max, oreply->msg, msglen);
|
|
|
|
tal_steal(ctx, oreply);
|
|
tal_free(tmpctx);
|
|
return oreply;
|
|
fail:
|
|
return tal_free(tmpctx);
|
|
}
|