core-lightning/bitcoin/tx.c
Rusty Russell 2a03af4486 Misc minor cleanups.
From doing a code walkthrough with Christian Decker; unnecessary const in
bitcoin/tx.c, an erroneous FIXME, a missing comment, and an unused struct.

Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2016-07-01 12:00:17 +09:30

581 lines
15 KiB
C

#include "bitcoin/block.h"
#include "tx.h"
#include <assert.h>
#include <ccan/cast/cast.h>
#include <ccan/crypto/sha256/sha256.h>
#include <ccan/endian/endian.h>
#include <ccan/mem/mem.h>
#include <ccan/read_write_all/read_write_all.h>
#include <ccan/str/hex/hex.h>
#include <stdio.h>
#define SEGREGATED_WITNESS_FLAG 0x1
static void add_varint(varint_t v,
void (*add)(const void *, size_t, void *), void *addp)
{
u8 buf[VARINT_MAX_LEN];
add(buf, varint_put(buf, v), addp);
}
static void add_le32(u32 v,
void (*add)(const void *, size_t, void *), void *addp)
{
le32 l = cpu_to_le32(v);
add(&l, sizeof(l), addp);
}
static void add_le64(u64 v,
void (*add)(const void *, size_t, void *), void *addp)
{
le64 l = cpu_to_le64(v);
add(&l, sizeof(l), addp);
}
static void add_varint_blob(const void *blob, varint_t len,
void (*add)(const void *, size_t, void *),
void *addp)
{
add_varint(len, add, addp);
add(blob, len, addp);
}
static void add_tx_input(const struct bitcoin_tx_input *input,
void (*add)(const void *, size_t, void *), void *addp)
{
add(&input->txid, sizeof(input->txid), addp);
add_le32(input->index, add, addp);
add_varint_blob(input->script, input->script_length, add, addp);
add_le32(input->sequence_number, add, addp);
}
static void add_tx_output(const struct bitcoin_tx_output *output,
void (*add)(const void *, size_t, void *), void *addp)
{
add_le64(output->amount, add, addp);
add_varint_blob(output->script, output->script_length, add, addp);
}
/* BIP 141:
* It is followed by stack items, with each item starts with a var_int
* to indicate the length. */
static void add_witness(const u8 *witness,
void (*add)(const void *, size_t, void *), void *addp)
{
add_varint_blob(witness, tal_count(witness), add, addp);
}
/* BIP144:
* If the witness is empty, the old serialization format should be used. */
static bool uses_witness(const struct bitcoin_tx *tx)
{
size_t i;
for (i = 0; i < tx->input_count; i++) {
if (tx->input[i].witness)
return true;
}
return false;
}
/* BIP 141: The witness is a serialization of all witness data of the
* transaction. Each txin is associated with a witness field. A
* witness field starts with a var_int to indicate the number of stack
* items for the txin. */
static void add_witnesses(const struct bitcoin_tx *tx,
void (*add)(const void *, size_t, void *), void *addp)
{
size_t i;
for (i = 0; i < tx->input_count; i++) {
size_t j, elements;
/* Not every input needs a witness. */
if (!tx->input[i].witness) {
add_varint(0, add, addp);
continue;
}
elements = tal_count(tx->input[i].witness);
add_varint(elements, add, addp);
for (j = 0;
j < tal_count(tx->input[i].witness);
j++) {
add_witness(tx->input[i].witness[j],
add, addp);
}
}
}
static void add_tx(const struct bitcoin_tx *tx,
void (*add)(const void *, size_t, void *), void *addp,
bool extended)
{
varint_t i;
u8 flag = 0;
add_le32(tx->version, add, addp);
if (extended) {
u8 marker;
/* BIP 144 */
/* marker char Must be zero */
/* flag char Must be nonzero */
marker = 0;
add(&marker, 1, addp);
/* BIP 141: The flag MUST be a 1-byte non-zero
* value. Currently, 0x01 MUST be used.
*
* BUT: Current segwit4 branch breaks fundrawtransaction;
* it sees 0 inputs and thinks it's extended format.
* Make it really an extended format, but without
* witness. */
if (uses_witness(tx))
flag = SEGREGATED_WITNESS_FLAG;
add(&flag, 1, addp);
}
add_varint(tx->input_count, add, addp);
for (i = 0; i < tx->input_count; i++)
add_tx_input(&tx->input[i], add, addp);
add_varint(tx->output_count, add, addp);
for (i = 0; i < tx->output_count; i++)
add_tx_output(&tx->output[i], add, addp);
if (flag & SEGREGATED_WITNESS_FLAG)
add_witnesses(tx, add, addp);
add_le32(tx->lock_time, add, addp);
}
static void add_sha(const void *data, size_t len, void *shactx_)
{
struct sha256_ctx *ctx = shactx_;
sha256_update(ctx, memcheck(data, len), len);
}
static void hash_prevouts(struct sha256_double *h, const struct bitcoin_tx *tx)
{
struct sha256_ctx ctx;
size_t i;
/* BIP143: If the ANYONECANPAY flag is not set, hashPrevouts is the
* double SHA256 of the serialization of all input
* outpoints */
sha256_init(&ctx);
for (i = 0; i < tx->input_count; i++) {
add_sha(&tx->input[i].txid, sizeof(tx->input[i].txid), &ctx);
add_le32(tx->input[i].index, add_sha, &ctx);
}
sha256_double_done(&ctx, h);
}
static void hash_sequence(struct sha256_double *h, const struct bitcoin_tx *tx)
{
struct sha256_ctx ctx;
size_t i;
/* BIP143: If none of the ANYONECANPAY, SINGLE, NONE sighash type
* is set, hashSequence is the double SHA256 of the serialization
* of nSequence of all inputs */
sha256_init(&ctx);
for (i = 0; i < tx->input_count; i++)
add_le32(tx->input[i].sequence_number, add_sha, &ctx);
sha256_double_done(&ctx, h);
}
/* If the sighash type is neither SINGLE nor NONE, hashOutputs is the
* double SHA256 of the serialization of all output value (8-byte
* little endian) with scriptPubKey (varInt for the length +
* script); */
static void hash_outputs(struct sha256_double *h, const struct bitcoin_tx *tx)
{
struct sha256_ctx ctx;
size_t i;
sha256_init(&ctx);
for (i = 0; i < tx->output_count; i++) {
add_le64(tx->output[i].amount, add_sha, &ctx);
add_varint_blob(tx->output[i].script,
tx->output[i].script_length,
add_sha, &ctx);
}
sha256_double_done(&ctx, h);
}
static void hash_for_segwit(struct sha256_ctx *ctx,
const struct bitcoin_tx *tx,
unsigned int input_num,
const u8 *witness_script)
{
struct sha256_double h;
/* BIP143:
*
* Double SHA256 of the serialization of:
* 1. nVersion of the transaction (4-byte little endian)
*/
add_le32(tx->version, add_sha, ctx);
/* 2. hashPrevouts (32-byte hash) */
hash_prevouts(&h, tx);
add_sha(&h, sizeof(h), ctx);
/* 3. hashSequence (32-byte hash) */
hash_sequence(&h, tx);
add_sha(&h, sizeof(h), ctx);
/* 4. outpoint (32-byte hash + 4-byte little endian) */
add_sha(&tx->input[input_num].txid, sizeof(tx->input[input_num].txid),
ctx);
add_le32(tx->input[input_num].index, add_sha, ctx);
/* 5. scriptCode of the input (varInt for the length + script) */
add_varint_blob(witness_script, tal_count(witness_script), add_sha, ctx);
/* 6. value of the output spent by this input (8-byte little end) */
add_le64(*tx->input[input_num].amount, add_sha, ctx);
/* 7. nSequence of the input (4-byte little endian) */
add_le32(tx->input[input_num].sequence_number, add_sha, ctx);
/* 8. hashOutputs (32-byte hash) */
hash_outputs(&h, tx);
add_sha(&h, sizeof(h), ctx);
/* 9. nLocktime of the transaction (4-byte little endian) */
add_le32(tx->lock_time, add_sha, ctx);
}
void sha256_tx_for_sig(struct sha256_double *h, const struct bitcoin_tx *tx,
unsigned int input_num, enum sighash_type stype,
const u8 *witness_script)
{
size_t i;
struct sha256_ctx ctx = SHA256_INIT;
/* We only support this. */
assert(stype == SIGHASH_ALL);
/* Caller should zero-out other scripts for signing! */
assert(input_num < tx->input_count);
for (i = 0; i < tx->input_count; i++)
if (i != input_num)
assert(tx->input[i].script_length == 0);
if (witness_script) {
/* BIP143 hashing if OP_CHECKSIG is inside witness. */
hash_for_segwit(&ctx, tx, input_num, witness_script);
} else {
/* Otherwise signature hashing never includes witness. */
add_tx(tx, add_sha, &ctx, false);
}
sha256_le32(&ctx, stype);
sha256_double_done(&ctx, h);
}
static void add_linearize(const void *data, size_t len, void *pptr_)
{
u8 **pptr = pptr_;
size_t oldsize = tal_count(*pptr);
tal_resize(pptr, oldsize + len);
memcpy(*pptr + oldsize, memcheck(data, len), len);
}
u8 *linearize_tx(const tal_t *ctx, const struct bitcoin_tx *tx)
{
u8 *arr = tal_arr(ctx, u8, 0);
add_tx(tx, add_linearize, &arr, uses_witness(tx));
return arr;
}
static void add_measure(const void *data, size_t len, void *lenp)
{
*(size_t *)lenp += len;
}
size_t measure_tx_cost(const struct bitcoin_tx *tx)
{
size_t non_witness_len = 0, witness_len = 0;
add_tx(tx, add_measure, &non_witness_len, false);
if (uses_witness(tx))
add_witnesses(tx, add_measure, &witness_len);
/* Witness bytes only add 1/4 of normal bytes, for cost. */
return non_witness_len * 4 + witness_len;
}
void bitcoin_txid(const struct bitcoin_tx *tx, struct sha256_double *txid)
{
struct sha256_ctx ctx = SHA256_INIT;
/* For TXID, we never use extended form. */
add_tx(tx, add_sha, &ctx, false);
sha256_double_done(&ctx, txid);
}
struct bitcoin_tx *bitcoin_tx(const tal_t *ctx, varint_t input_count,
varint_t output_count)
{
struct bitcoin_tx *tx = tal(ctx, struct bitcoin_tx);
size_t i;
tx->output_count = output_count;
tx->output = tal_arrz(tx, struct bitcoin_tx_output, output_count);
tx->input_count = input_count;
tx->input = tal_arrz(tx, struct bitcoin_tx_input, input_count);
for (i = 0; i < tx->input_count; i++) {
/* We assume NULL is a zero bitmap */
assert(tx->input[i].script == NULL);
tx->input[i].sequence_number = 0xFFFFFFFF;
tx->input[i].amount = NULL;
tx->input[i].witness = NULL;
}
tx->lock_time = 0;
#if HAS_BIP68
tx->version = 2;
#else
tx->version = 1;
#endif
return tx;
}
/* Sets *cursor to NULL and returns NULL when a pull fails. */
const u8 *pull(const u8 **cursor, size_t *max, void *copy, size_t n)
{
const u8 *p = *cursor;
if (*max < n) {
*cursor = NULL;
*max = 0;
/* Just make sure we don't leak uninitialized mem! */
if (copy)
memset(copy, 0, n);
return NULL;
}
*cursor += n;
*max -= n;
if (copy)
memcpy(copy, p, n);
return memcheck(p, n);
}
u64 pull_varint(const u8 **cursor, size_t *max)
{
u64 ret;
size_t len;
len = varint_get(*cursor, *max, &ret);
if (len == 0) {
*cursor = NULL;
*max = 0;
return 0;
}
pull(cursor, max, NULL, len);
return ret;
}
static u32 pull_le32(const u8 **cursor, size_t *max)
{
le32 ret;
if (!pull(cursor, max, &ret, sizeof(ret)))
return 0;
return le32_to_cpu(ret);
}
static u64 pull_le64(const u8 **cursor, size_t *max)
{
le64 ret;
if (!pull(cursor, max, &ret, sizeof(ret)))
return 0;
return le64_to_cpu(ret);
}
static bool pull_sha256_double(const u8 **cursor, size_t *max,
struct sha256_double *h)
{
return pull(cursor, max, h, sizeof(*h));
}
static u64 pull_value(const u8 **cursor, size_t *max)
{
u64 amount;
amount = pull_le64(cursor, max);
return amount;
}
/* Pulls a varint which specifies a data length: ensures basic sanity to
* avoid trivial OOM */
static u64 pull_length(const u8 **cursor, size_t *max)
{
u64 v = pull_varint(cursor, max);
if (v > *max) {
*cursor = NULL;
*max = 0;
return 0;
}
return v;
}
static void pull_input(const tal_t *ctx, const u8 **cursor, size_t *max,
struct bitcoin_tx_input *input)
{
pull_sha256_double(cursor, max, &input->txid);
input->index = pull_le32(cursor, max);
input->script_length = pull_length(cursor, max);
input->script = tal_arr(ctx, u8, input->script_length);
pull(cursor, max, input->script, input->script_length);
input->sequence_number = pull_le32(cursor, max);
}
static void pull_output(const tal_t *ctx, const u8 **cursor, size_t *max,
struct bitcoin_tx_output *output)
{
output->amount = pull_value(cursor, max);
output->script_length = pull_length(cursor, max);
output->script = tal_arr(ctx, u8, output->script_length);
pull(cursor, max, output->script, output->script_length);
}
static u8 *pull_witness_item(const tal_t *ctx, const u8 **cursor, size_t *max)
{
uint64_t len = pull_length(cursor, max);
u8 *item;
item = tal_arr(ctx, u8, len);
pull(cursor, max, item, len);
return item;
}
static void pull_witness(struct bitcoin_tx_input *inputs, size_t i,
const u8 **cursor, size_t *max)
{
uint64_t j, num = pull_length(cursor, max);
/* 0 means not using witness. */
if (num == 0) {
inputs[i].witness = NULL;
return;
}
inputs[i].witness = tal_arr(inputs, u8 *, num);
for (j = 0; j < num; j++) {
inputs[i].witness[j] = pull_witness_item(inputs[i].witness,
cursor, max);
}
}
struct bitcoin_tx *pull_bitcoin_tx(const tal_t *ctx,
const u8 **cursor, size_t *max)
{
struct bitcoin_tx *tx = tal(ctx, struct bitcoin_tx);
size_t i;
u8 flag = 0;
tx->version = pull_le32(cursor, max);
tx->input_count = pull_length(cursor, max);
/* BIP 144 marker is 0 (impossible to have tx with 0 inputs) */
if (tx->input_count == 0) {
pull(cursor, max, &flag, 1);
if (flag != SEGREGATED_WITNESS_FLAG)
return tal_free(tx);
tx->input_count = pull_length(cursor, max);
}
tx->input = tal_arr(tx, struct bitcoin_tx_input, tx->input_count);
for (i = 0; i < tx->input_count; i++)
pull_input(tx, cursor, max, tx->input + i);
tx->output_count = pull_length(cursor, max);
tx->output = tal_arr(tx, struct bitcoin_tx_output, tx->output_count);
for (i = 0; i < tx->output_count; i++)
pull_output(tx, cursor, max, tx->output + i);
if (flag & SEGREGATED_WITNESS_FLAG) {
for (i = 0; i < tx->input_count; i++)
pull_witness(tx->input, i, cursor, max);
} else {
for (i = 0; i < tx->input_count; i++)
tx->input[i].witness = NULL;
}
tx->lock_time = pull_le32(cursor, max);
/* If we ran short, fail. */
if (!*cursor)
tx = tal_free(tx);
return tx;
}
struct bitcoin_tx *bitcoin_tx_from_hex(const tal_t *ctx, const char *hex,
size_t hexlen)
{
const char *end;
u8 *linear_tx;
const u8 *p;
struct bitcoin_tx *tx;
size_t len;
end = memchr(hex, '\n', hexlen);
if (!end)
end = hex + hexlen;
len = hex_data_size(end - hex);
p = linear_tx = tal_arr(ctx, u8, len);
if (!hex_decode(hex, end - hex, linear_tx, len))
goto fail;
tx = pull_bitcoin_tx(ctx, &p, &len);
if (!tx)
goto fail;
if (len)
goto fail_free_tx;
tal_free(linear_tx);
return tx;
fail_free_tx:
tal_free(tx);
fail:
tal_free(linear_tx);
return NULL;
}
/* <sigh>. Bitcoind represents hashes as little-endian for RPC. This didn't
* stick for blockids (everyone else uses big-endian, eg. block explorers),
* but it did stick for txids. */
static void reverse_bytes(u8 *arr, size_t len)
{
unsigned int i;
for (i = 0; i < len / 2; i++) {
unsigned char tmp = arr[i];
arr[i] = arr[len - 1 - i];
arr[len - 1 - i] = tmp;
}
}
bool bitcoin_txid_from_hex(const char *hexstr, size_t hexstr_len,
struct sha256_double *txid)
{
if (!hex_decode(hexstr, hexstr_len, txid, sizeof(*txid)))
return false;
reverse_bytes(txid->sha.u.u8, sizeof(txid->sha.u.u8));
return true;
}
bool bitcoin_txid_to_hex(const struct sha256_double *txid,
char *hexstr, size_t hexstr_len)
{
struct sha256_double rev = *txid;
reverse_bytes(rev.sha.u.u8, sizeof(rev.sha.u.u8));
return hex_encode(&rev, sizeof(rev), hexstr, hexstr_len);
}