mirror of
https://github.com/ElementsProject/lightning.git
synced 2025-02-22 06:41:44 +01:00
Without inheriting zombie status, gossipd would allow regular channel updates into the store until the pruning cycle hits (and the channel is properly flagged) which is 3.5 days. Applying zombie status when reading channel updates from the store prevents this. Changelog-None
445 lines
13 KiB
C
445 lines
13 KiB
C
#ifndef LIGHTNING_GOSSIPD_ROUTING_H
|
|
#define LIGHTNING_GOSSIPD_ROUTING_H
|
|
#include "config.h"
|
|
#include <bitcoin/pubkey.h>
|
|
#include <ccan/crypto/siphash24/siphash24.h>
|
|
#include <ccan/htable/htable_type.h>
|
|
#include <ccan/intmap/intmap.h>
|
|
#include <ccan/time/time.h>
|
|
#include <common/amount.h>
|
|
#include <common/gossip_constants.h>
|
|
#include <common/node_id.h>
|
|
#include <common/route.h>
|
|
#include <gossipd/broadcast.h>
|
|
#include <gossipd/gossip_store.h>
|
|
#include <wire/onion_wire.h>
|
|
#include <wire/wire.h>
|
|
|
|
struct daemon;
|
|
struct peer;
|
|
struct routing_state;
|
|
|
|
struct half_chan {
|
|
/* Timestamp and index into store file - safe to broadcast */
|
|
struct broadcastable bcast;
|
|
|
|
/* Most recent gossip for the routing graph - may be rate-limited and
|
|
* non-broadcastable. If there is no spam, rgraph == bcast. */
|
|
struct broadcastable rgraph;
|
|
|
|
/* Token bucket */
|
|
u8 tokens;
|
|
|
|
/* Disabled channel waiting for a channel_update from both sides. */
|
|
bool zombie;
|
|
};
|
|
|
|
struct chan {
|
|
struct short_channel_id scid;
|
|
|
|
/*
|
|
* half[0]->src == nodes[0] half[0]->dst == nodes[1]
|
|
* half[1]->src == nodes[1] half[1]->dst == nodes[0]
|
|
*/
|
|
struct half_chan half[2];
|
|
/* node[0].id < node[1].id */
|
|
struct node *nodes[2];
|
|
|
|
/* Timestamp and index into store file */
|
|
struct broadcastable bcast;
|
|
|
|
struct amount_sat sat;
|
|
};
|
|
|
|
/* Shadow structure for local channels: owned by the chan above, but kept
|
|
* separately to keep `struct chan` minimal since there may be millions
|
|
* of non-local channels. */
|
|
struct local_chan {
|
|
struct chan *chan;
|
|
int direction;
|
|
|
|
/* We soft-disable local channels when a peer disconnects */
|
|
bool local_disabled;
|
|
|
|
/* Timer if we're deferring an update. */
|
|
struct oneshot *channel_update_timer;
|
|
};
|
|
|
|
/* Use this instead of tal_free(chan)! */
|
|
void free_chan(struct routing_state *rstate, struct chan *chan);
|
|
|
|
/* A local channel can exist which isn't announced: we abuse timestamp
|
|
* to indicate this. */
|
|
static inline bool is_chan_public(const struct chan *chan)
|
|
{
|
|
return chan->bcast.timestamp != 0;
|
|
}
|
|
|
|
static inline bool is_halfchan_defined(const struct half_chan *hc)
|
|
{
|
|
return hc->bcast.index != 0;
|
|
}
|
|
|
|
/* Container for per-node channel pointers. Better cache performance
|
|
* than uintmap, and we don't need ordering. */
|
|
static inline const struct short_channel_id *chan_map_scid(const struct chan *c)
|
|
{
|
|
return &c->scid;
|
|
}
|
|
|
|
static inline size_t hash_scid(const struct short_channel_id *scid)
|
|
{
|
|
/* scids cost money to generate, so simple hash works here */
|
|
return (scid->u64 >> 32) ^ (scid->u64 >> 16) ^ scid->u64;
|
|
}
|
|
|
|
static inline bool chan_eq_scid(const struct chan *c,
|
|
const struct short_channel_id *scid)
|
|
{
|
|
return short_channel_id_eq(scid, &c->scid);
|
|
}
|
|
|
|
HTABLE_DEFINE_TYPE(struct chan, chan_map_scid, hash_scid, chan_eq_scid, chan_map);
|
|
|
|
struct node {
|
|
struct node_id id;
|
|
|
|
/* Timestamp and index into store file */
|
|
struct broadcastable bcast;
|
|
|
|
/* Possibly spam flagged. Nonbroadcastable, but used for routing graph.
|
|
* If there is no current spam, rgraph == bcast. */
|
|
struct broadcastable rgraph;
|
|
|
|
/* Token bucket */
|
|
u8 tokens;
|
|
|
|
/* Channels connecting us to other nodes */
|
|
/* For a small number of channels (by far the most common) we
|
|
* use a simple array, with empty buckets NULL. For larger, we use a
|
|
* proper hash table, with the extra allocations that implies.
|
|
*
|
|
* As of November 2022, 5 or 6 gives the optimal size.
|
|
*/
|
|
struct chan *chan_arr[6];
|
|
/* If we have more than that, we use a hash. */
|
|
struct chan_map *chan_map;
|
|
};
|
|
|
|
const struct node_id *node_map_keyof_node(const struct node *n);
|
|
size_t node_map_hash_key(const struct node_id *pc);
|
|
bool node_map_node_eq(const struct node *n, const struct node_id *pc);
|
|
HTABLE_DEFINE_TYPE(struct node, node_map_keyof_node, node_map_hash_key, node_map_node_eq, node_map);
|
|
|
|
/* We've unpacked and checked its signatures, now we wait for master to tell
|
|
* us the txout to check */
|
|
struct pending_cannouncement {
|
|
/* Unpacked fields here */
|
|
|
|
/* also the key in routing_state->pending_cannouncements */
|
|
struct short_channel_id short_channel_id;
|
|
struct node_id node_id_1;
|
|
struct node_id node_id_2;
|
|
struct pubkey bitcoin_key_1;
|
|
struct pubkey bitcoin_key_2;
|
|
|
|
/* Automagically turns to NULL of peer freed */
|
|
struct peer *peer_softref;
|
|
|
|
/* The raw bits */
|
|
const u8 *announce;
|
|
|
|
/* Deferred updates, if we received them while waiting for
|
|
* this (one for each direction) */
|
|
const u8 *updates[2];
|
|
/* Peers responsible: turns to NULL if they're freed */
|
|
struct peer *update_peer_softref[2];
|
|
|
|
/* Only ever replace with newer updates */
|
|
u32 update_timestamps[2];
|
|
};
|
|
|
|
static inline const struct short_channel_id *panding_cannouncement_map_scid(
|
|
const struct pending_cannouncement *pending_ann)
|
|
{
|
|
return &pending_ann->short_channel_id;
|
|
}
|
|
|
|
static inline size_t hash_pending_cannouncement_scid(
|
|
const struct short_channel_id *scid)
|
|
{
|
|
/* like hash_scid() for struct chan above */
|
|
return (scid->u64 >> 32) ^ (scid->u64 >> 16) ^ scid->u64;
|
|
}
|
|
|
|
static inline bool pending_cannouncement_eq_scid(
|
|
const struct pending_cannouncement *pending_ann,
|
|
const struct short_channel_id *scid)
|
|
{
|
|
return short_channel_id_eq(scid, &pending_ann->short_channel_id);
|
|
}
|
|
|
|
HTABLE_DEFINE_TYPE(struct pending_cannouncement, panding_cannouncement_map_scid,
|
|
hash_pending_cannouncement_scid, pending_cannouncement_eq_scid,
|
|
pending_cannouncement_map);
|
|
|
|
struct pending_node_map;
|
|
struct unupdated_channel;
|
|
|
|
/* If you know n is one end of the channel, get index of src == n */
|
|
static inline int half_chan_idx(const struct node *n, const struct chan *chan)
|
|
{
|
|
int idx = (chan->nodes[1] == n);
|
|
|
|
assert(chan->nodes[0] == n || chan->nodes[1] == n);
|
|
return idx;
|
|
}
|
|
|
|
struct routing_state {
|
|
/* TImers base from struct gossipd. */
|
|
struct timers *timers;
|
|
|
|
/* All known nodes. */
|
|
struct node_map *nodes;
|
|
|
|
/* node_announcements which are waiting on pending_cannouncement */
|
|
struct pending_node_map *pending_node_map;
|
|
|
|
/* channel_announcement which are pending short_channel_id lookup */
|
|
struct pending_cannouncement_map *pending_cannouncements;
|
|
|
|
/* Gossip store */
|
|
struct gossip_store *gs;
|
|
|
|
/* Our own ID so we can identify local channels */
|
|
struct node_id local_id;
|
|
|
|
/* A map of channels indexed by short_channel_ids */
|
|
UINTMAP(struct chan *) chanmap;
|
|
|
|
/* A map of channel_announcements indexed by short_channel_ids:
|
|
* we haven't got a channel_update for these yet. */
|
|
UINTMAP(struct unupdated_channel *) unupdated_chanmap;
|
|
|
|
/* Has one of our own channels been announced? */
|
|
bool local_channel_announced;
|
|
|
|
/* Cache for txout queries that failed. Allows us to skip failed
|
|
* checks if we get another announcement for the same scid. */
|
|
size_t num_txout_failures;
|
|
UINTMAP(bool) txout_failures, txout_failures_old;
|
|
struct oneshot *txout_failure_timer;
|
|
|
|
/* Highest timestamp of gossip we accepted (before now) */
|
|
u32 last_timestamp;
|
|
|
|
/* Channels which are closed, but we're waiting 12 blocks */
|
|
struct dying_channel *dying_channels;
|
|
|
|
#if DEVELOPER
|
|
/* Override local time for gossip messages */
|
|
struct timeabs *gossip_time;
|
|
|
|
/* Speed up gossip. */
|
|
bool dev_fast_gossip;
|
|
|
|
/* Speed up pruning. */
|
|
bool dev_fast_gossip_prune;
|
|
#endif
|
|
};
|
|
|
|
/* Which direction are we? False if neither. */
|
|
static inline bool local_direction(struct routing_state *rstate,
|
|
const struct chan *chan,
|
|
int *direction)
|
|
{
|
|
for (int dir = 0; dir <= 1; (dir)++) {
|
|
if (node_id_eq(&chan->nodes[dir]->id, &rstate->local_id)) {
|
|
if (direction)
|
|
*direction = dir;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static inline struct chan *
|
|
get_channel(const struct routing_state *rstate,
|
|
const struct short_channel_id *scid)
|
|
{
|
|
return uintmap_get(&rstate->chanmap, scid->u64);
|
|
}
|
|
|
|
struct routing_state *new_routing_state(const tal_t *ctx,
|
|
const struct node_id *local_id,
|
|
struct list_head *peers,
|
|
struct timers *timers,
|
|
const u32 *dev_gossip_time TAKES,
|
|
bool dev_fast_gossip,
|
|
bool dev_fast_gossip_prune);
|
|
|
|
/**
|
|
* Add a new bidirectional channel from id1 to id2 with the given
|
|
* short_channel_id and capacity to the local network view. The channel may not
|
|
* already exist, and might create the node entries for the two endpoints, if
|
|
* they do not exist yet.
|
|
*/
|
|
struct chan *new_chan(struct routing_state *rstate,
|
|
const struct short_channel_id *scid,
|
|
const struct node_id *id1,
|
|
const struct node_id *id2,
|
|
struct amount_sat sat);
|
|
|
|
/* Handlers for incoming messages */
|
|
|
|
/**
|
|
* handle_channel_announcement -- Check channel announcement is valid
|
|
*
|
|
* Returns error message if we should fail channel. Make *scid non-NULL
|
|
* (for checking) if we extracted a short_channel_id, otherwise ignore.
|
|
*/
|
|
u8 *handle_channel_announcement(struct routing_state *rstate,
|
|
const u8 *announce TAKES,
|
|
u32 current_blockheight,
|
|
const struct short_channel_id **scid,
|
|
struct peer *peer);
|
|
|
|
/**
|
|
* handle_pending_cannouncement -- handle channel_announce once we've
|
|
* completed short_channel_id lookup. Returns true if handling created
|
|
* a new channel.
|
|
*/
|
|
bool handle_pending_cannouncement(struct daemon *daemon,
|
|
struct routing_state *rstate,
|
|
const struct short_channel_id *scid,
|
|
const struct amount_sat sat,
|
|
const u8 *txscript);
|
|
|
|
/* Iterate through channels in a node */
|
|
struct chan *first_chan(const struct node *node, struct chan_map_iter *i);
|
|
struct chan *next_chan(const struct node *node, struct chan_map_iter *i);
|
|
|
|
/* Returns NULL if all OK, otherwise an error for the peer which sent.
|
|
* If the error is that the channel is unknown, fills in *unknown_scid
|
|
* (if not NULL). */
|
|
u8 *handle_channel_update(struct routing_state *rstate, const u8 *update TAKES,
|
|
struct peer *peer,
|
|
struct short_channel_id *unknown_scid,
|
|
bool force);
|
|
|
|
/* Returns NULL if all OK, otherwise an error for the peer which sent.
|
|
* If was_unknown is not NULL, sets it to true if that was the reason for
|
|
* the error: the node was unknown to us. */
|
|
u8 *handle_node_announcement(struct routing_state *rstate, const u8 *node,
|
|
struct peer *peer, bool *was_unknown);
|
|
|
|
/* Get a node: use this instead of node_map_get() */
|
|
struct node *get_node(struct routing_state *rstate,
|
|
const struct node_id *id);
|
|
|
|
void route_prune(struct routing_state *rstate);
|
|
|
|
/**
|
|
* Add a channel_announcement to the network view without checking it
|
|
*
|
|
* Directly add the channel to the local network, without checking it first. Use
|
|
* this only for messages from trusted sources. Untrusted sources should use the
|
|
* @see{handle_channel_announcement} entrypoint to check before adding.
|
|
*
|
|
* index is usually 0, in which case it's set by insert_broadcast adding it
|
|
* to the store.
|
|
*
|
|
* peer is an optional peer responsible for this.
|
|
*/
|
|
bool routing_add_channel_announcement(struct routing_state *rstate,
|
|
const u8 *msg TAKES,
|
|
struct amount_sat sat,
|
|
u32 index,
|
|
struct peer *peer);
|
|
|
|
/**
|
|
* Add a channel_update without checking for errors
|
|
*
|
|
* Used to actually insert the information in the channel update into the local
|
|
* network view. Only use this for messages that are known to be good. For
|
|
* untrusted source, requiring verification please use
|
|
* @see{handle_channel_update}
|
|
*/
|
|
bool routing_add_channel_update(struct routing_state *rstate,
|
|
const u8 *update TAKES,
|
|
u32 index,
|
|
struct peer *peer,
|
|
bool ignore_timestamp,
|
|
bool force_spam_flag,
|
|
bool force_zombie_flag);
|
|
/**
|
|
* Add a node_announcement to the network view without checking it
|
|
*
|
|
* Directly add the node being announced to the network view, without verifying
|
|
* it. This must be from a trusted source, e.g., gossip_store. For untrusted
|
|
* sources (peers) please use @see{handle_node_announcement}.
|
|
*/
|
|
bool routing_add_node_announcement(struct routing_state *rstate,
|
|
const u8 *msg TAKES,
|
|
u32 index,
|
|
struct peer *peer,
|
|
bool *was_unknown,
|
|
bool force_spam_flag);
|
|
|
|
|
|
/**
|
|
* Add a local channel.
|
|
*
|
|
* Entrypoint to add a local channel that was not learned through gossip. This
|
|
* is the case for private channels or channels that have not yet reached
|
|
* `announce_depth`.
|
|
*/
|
|
bool routing_add_private_channel(struct routing_state *rstate,
|
|
const struct node_id *id,
|
|
struct amount_sat sat,
|
|
const u8 *chan_ann, u64 index);
|
|
|
|
/**
|
|
* Get the local time.
|
|
*
|
|
* This gets overridden in dev mode so we can use canned (stale) gossip.
|
|
*/
|
|
struct timeabs gossip_time_now(const struct routing_state *rstate);
|
|
|
|
/**
|
|
* Add to rstate->dying_channels
|
|
*
|
|
* Exposed here for when we load the gossip_store.
|
|
*/
|
|
void remember_chan_dying(struct routing_state *rstate,
|
|
const struct short_channel_id *scid,
|
|
u32 deadline_blockheight,
|
|
u64 index);
|
|
|
|
/**
|
|
* When a channel's funding has been spent.
|
|
*/
|
|
void routing_channel_spent(struct routing_state *rstate,
|
|
u32 current_blockheight,
|
|
struct chan *chan);
|
|
|
|
/**
|
|
* Clean up any dying channels.
|
|
*
|
|
* This finally deletes channel past their deadline.
|
|
*/
|
|
void routing_expire_channels(struct routing_state *rstate, u32 blockheight);
|
|
|
|
/* Would we ratelimit a channel_update with this timestamp? */
|
|
bool would_ratelimit_cupdate(struct routing_state *rstate,
|
|
const struct half_chan *hc,
|
|
u32 timestamp);
|
|
|
|
/* Does this node have public, non-zombie channels? */
|
|
bool node_has_broadcastable_channels(const struct node *node);
|
|
|
|
/* Returns an error string if there are unfinalized entries after load */
|
|
const char *unfinalized_entries(const tal_t *ctx, struct routing_state *rstate);
|
|
|
|
void remove_all_gossip(struct routing_state *rstate);
|
|
#endif /* LIGHTNING_GOSSIPD_ROUTING_H */
|