core-lightning/bitcoin/signature.c
Christian Decker f4568e5c1c routing: Added IRC announcement glue
Added channel announcement serialization and parsing, as well as the
entrypoints for the IRC peer discovery. Announcements are signed by the
sending endpoint and signatures are verified before adding the channels
to the local view of the topology. We do not yet verify the existence of
the anchor transaction.
2016-09-07 23:49:39 +02:00

269 lines
8.1 KiB
C

#include "privkey.h"
#include "pubkey.h"
#include "script.h"
#include "shadouble.h"
#include "signature.h"
#include "tx.h"
#include <assert.h>
#include <ccan/cast/cast.h>
#undef DEBUG
#ifdef DEBUG
# include <ccan/err/err.h>
# include <stdio.h>
#define SHA_FMT \
"%02x%02x%02x%02x%02x%02x%02x%02x" \
"%02x%02x%02x%02x%02x%02x%02x%02x" \
"%02x%02x%02x%02x%02x%02x%02x%02x" \
"%02x%02x%02x%02x%02x%02x%02x%02x"
#define SHA_VALS(e) \
e[0], e[1], e[2], e[3], e[4], e[5], e[6], e[7], \
e[8], e[9], e[10], e[11], e[12], e[13], e[14], e[15], \
e[16], e[17], e[18], e[19], e[20], e[21], e[22], e[23], \
e[24], e[25], e[25], e[26], e[28], e[29], e[30], e[31]
static void dump_tx(const char *msg,
const struct bitcoin_tx *tx, size_t inputnum,
const u8 *script, size_t script_len,
const struct pubkey *key,
const struct sha256_double *h)
{
size_t i, j;
warnx("%s tx version %u locktime %#x:",
msg, tx->version, tx->lock_time);
for (i = 0; i < tx->input_count; i++) {
warnx("input[%zu].txid = "SHA_FMT, i,
SHA_VALS(tx->input[i].txid.sha.u.u8));
warnx("input[%zu].index = %u", i, tx->input[i].index);
}
for (i = 0; i < tx->output_count; i++) {
warnx("output[%zu].amount = %llu",
i, (long long)tx->output[i].amount);
warnx("output[%zu].script = %llu",
i, (long long)tx->output[i].script_length);
for (j = 0; j < tx->output[i].script_length; j++)
fprintf(stderr, "%02x", tx->output[i].script[j]);
fprintf(stderr, "\n");
}
warnx("input[%zu].script = %zu", inputnum, script_len);
for (i = 0; i < script_len; i++)
fprintf(stderr, "%02x", script[i]);
if (key) {
fprintf(stderr, "\nPubkey: ");
for (i = 0; i < sizeof(key->pubkey); i++)
fprintf(stderr, "%02x", ((u8 *)&key->pubkey)[i]);
fprintf(stderr, "\n");
}
if (h) {
fprintf(stderr, "\nHash: ");
for (i = 0; i < sizeof(h->sha.u.u8); i++)
fprintf(stderr, "%02x", h->sha.u.u8[i]);
fprintf(stderr, "\n");
}
}
#else
static void dump_tx(const char *msg,
const struct bitcoin_tx *tx, size_t inputnum,
const u8 *script, size_t script_len,
const struct pubkey *key,
const struct sha256_double *h)
{
}
#endif
void sign_hash(secp256k1_context *secpctx,
const struct privkey *privkey,
const struct sha256_double *h,
struct signature *s)
{
bool ok;
ok = secp256k1_ecdsa_sign(secpctx,
&s->sig,
h->sha.u.u8,
privkey->secret, NULL, NULL);
assert(ok);
}
/* Only does SIGHASH_ALL */
static void sha256_tx_one_input(struct bitcoin_tx *tx,
size_t input_num,
const u8 *script, size_t script_len,
const u8 *witness_script,
struct sha256_double *hash)
{
size_t i;
assert(input_num < tx->input_count);
/* You must have all inputs zeroed to start. */
for (i = 0; i < tx->input_count; i++)
assert(tx->input[i].script_length == 0);
tx->input[input_num].script_length = script_len;
tx->input[input_num].script = cast_const(u8 *, script);
sha256_tx_for_sig(hash, tx, input_num, SIGHASH_ALL, witness_script);
/* Reset it for next time. */
tx->input[input_num].script_length = 0;
tx->input[input_num].script = NULL;
}
/* Only does SIGHASH_ALL */
void sign_tx_input(secp256k1_context *secpctx,
struct bitcoin_tx *tx,
unsigned int in,
const u8 *subscript, size_t subscript_len,
const u8 *witness_script,
const struct privkey *privkey, const struct pubkey *key,
struct signature *sig)
{
struct sha256_double hash;
sha256_tx_one_input(tx, in, subscript, subscript_len, witness_script,
&hash);
dump_tx("Signing", tx, in, subscript, subscript_len, key, &hash);
sign_hash(secpctx, privkey, &hash, sig);
}
bool check_signed_hash(secp256k1_context *secpctx,
const struct sha256_double *hash,
const struct signature *signature,
const struct pubkey *key)
{
int ret;
ret = secp256k1_ecdsa_verify(secpctx,
&signature->sig,
hash->sha.u.u8, &key->pubkey);
return ret == 1;
}
bool check_tx_sig(secp256k1_context *secpctx,
struct bitcoin_tx *tx, size_t input_num,
const u8 *redeemscript, size_t redeemscript_len,
const u8 *witness_script,
const struct pubkey *key,
const struct bitcoin_signature *sig)
{
struct sha256_double hash;
bool ret;
assert(input_num < tx->input_count);
sha256_tx_one_input(tx, input_num, redeemscript, redeemscript_len,
witness_script, &hash);
/* We only use SIGHASH_ALL for the moment. */
if (sig->stype != SIGHASH_ALL)
return false;
ret = check_signed_hash(secpctx, &hash, &sig->sig, key);
if (!ret)
dump_tx("Sig failed", tx, input_num,
redeemscript, redeemscript_len, key, &hash);
return ret;
}
/* Stolen direct from bitcoin/src/script/sign.cpp:
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2014 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
*/
static bool IsValidSignatureEncoding(const unsigned char sig[], size_t len)
{
// Format: 0x30 [total-length] 0x02 [R-length] [R] 0x02 [S-length] [S] [sighash]
// * total-length: 1-byte length descriptor of everything that follows,
// excluding the sighash byte.
// * R-length: 1-byte length descriptor of the R value that follows.
// * R: arbitrary-length big-endian encoded R value. It must use the shortest
// possible encoding for a positive integers (which means no null bytes at
// the start, except a single one when the next byte has its highest bit set).
// * S-length: 1-byte length descriptor of the S value that follows.
// * S: arbitrary-length big-endian encoded S value. The same rules apply.
// * sighash: 1-byte value indicating what data is hashed (not part of the DER
// signature)
// Minimum and maximum size constraints.
if (len < 9) return false;
if (len > 73) return false;
// A signature is of type 0x30 (compound).
if (sig[0] != 0x30) return false;
// Make sure the length covers the entire signature.
if (sig[1] != len - 3) return false;
// Extract the length of the R element.
unsigned int lenR = sig[3];
// Make sure the length of the S element is still inside the signature.
if (5 + lenR >= len) return false;
// Extract the length of the S element.
unsigned int lenS = sig[5 + lenR];
// Verify that the length of the signature matches the sum of the length
// of the elements.
if ((size_t)(lenR + lenS + 7) != len) return false;
// Check whether the R element is an integer.
if (sig[2] != 0x02) return false;
// Zero-length integers are not allowed for R.
if (lenR == 0) return false;
// Negative numbers are not allowed for R.
if (sig[4] & 0x80) return false;
// Null bytes at the start of R are not allowed, unless R would
// otherwise be interpreted as a negative number.
if (lenR > 1 && (sig[4] == 0x00) && !(sig[5] & 0x80)) return false;
// Check whether the S element is an integer.
if (sig[lenR + 4] != 0x02) return false;
// Zero-length integers are not allowed for S.
if (lenS == 0) return false;
// Negative numbers are not allowed for S.
if (sig[lenR + 6] & 0x80) return false;
// Null bytes at the start of S are not allowed, unless S would otherwise be
// interpreted as a negative number.
if (lenS > 1 && (sig[lenR + 6] == 0x00) && !(sig[lenR + 7] & 0x80)) return false;
return true;
}
size_t signature_to_der(secp256k1_context *secpctx,
u8 der[72], const struct signature *sig)
{
size_t len = 72;
secp256k1_ecdsa_signature_serialize_der(secpctx, der, &len, &sig->sig);
/* IsValidSignatureEncoding() expect extra byte for sighash */
assert(IsValidSignatureEncoding(der, len + 1));
return len;
}
bool signature_from_der(secp256k1_context *secpctx,
const u8 *der, size_t len, struct signature *sig)
{
return secp256k1_ecdsa_signature_parse_der(secpctx, &sig->sig, der, len);
}
/* Signature must have low S value. */
bool sig_valid(secp256k1_context *secpctx, const struct signature *sig)
{
secp256k1_ecdsa_signature tmp;
if (secp256k1_ecdsa_signature_normalize(secpctx, &tmp, &sig->sig) == 0)
return true;
return false;
}