core-lightning/test/test_state_coverage.c
Rusty Russell 15c5fca876 state: take struct peer instead of struct state_data.
Just a name change for the test code, but this is what we'll be using
for the daemon.

Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2016-01-22 06:41:45 +10:30

2590 lines
68 KiB
C

/* Test for state machine. */
#include <stdbool.h>
#include <ccan/cast/cast.h>
#include <ccan/array_size/array_size.h>
#include <ccan/tal/tal.h>
#include <ccan/tal/str/str.h>
#include <ccan/err/err.h>
#include <ccan/structeq/structeq.h>
#include <ccan/htable/htable_type.h>
#include <ccan/hash/hash.h>
#include <ccan/opt/opt.h>
#include <ccan/asort/asort.h>
#include <ccan/list/list.h>
#include "version.h"
static bool record_input_mapping(int b);
#define MAPPING_INPUTS(b) \
do { if (record_input_mapping(b)) return false; } while(0)
#include "state.h"
#include "gen_state_names.h"
static bool quick = false;
static bool dot_simplify = false;
static bool dot_enable = false;
static bool dot_include_abnormal = false;
static bool dot_include_errors = false;
static bool include_nops = false;
static enum state_input *mapping_inputs;
enum failure {
FAIL_NONE,
FAIL_DECLINE_HTLC,
FAIL_STEAL,
FAIL_ACCEPT_OPEN,
FAIL_ACCEPT_ANCHOR,
FAIL_ACCEPT_OPEN_COMMIT_SIG,
FAIL_ACCEPT_HTLC_UPDATE,
FAIL_ACCEPT_HTLC_ROUTEFAIL,
FAIL_ACCEPT_HTLC_TIMEDOUT,
FAIL_ACCEPT_HTLC_FULFILL,
FAIL_ACCEPT_UPDATE_ACCEPT,
FAIL_ACCEPT_UPDATE_COMPLETE,
FAIL_ACCEPT_UPDATE_SIGNATURE,
FAIL_ACCEPT_CLOSE,
FAIL_ACCEPT_CLOSE_COMPLETE,
FAIL_ACCEPT_CLOSE_ACK,
FAIL_ACCEPT_SIMULTANEOUS_CLOSE
};
struct htlc {
bool to_them;
unsigned int id;
};
struct htlc_progress {
struct htlc htlc; /* id == -1 if none in progress. */
bool adding; /* otherwise, removing. */
};
struct htlc_spend_watch {
unsigned int id;
enum state_input done;
};
/* Beyond this we consider cases equal for traverse loop detection. */
#define CAP_HTLCS 1
/* How many HTLCs to negotiate. */
#define MAX_HTLCS 2
/* But we can have many different malleated commit txs. */
#define HTLC_ARRSIZE 20
/*
* Worst case:
* Low priority: PKT_UPDATE_ADD_HTLC
* Receive update, which we decline: PKT_UPDATE_DECLINE_HTLC
* Send new update: PKT_UPDATE_ADD_HTLC
* Start close: PKT_CLOSE
* Some error: PKT_ERROR
*/
#define MAX_OUTQ 5
/* No padding, for fast compare and hashing. */
struct core_state {
/* What bitcoin/timeout notifications are we subscribed to? */
uint64_t event_notifies;
enum state state;
enum state deferred_state;
enum state_input current_command;
enum state_input deferred_pkt;
enum state_input outputs[MAX_OUTQ];
uint8_t num_outputs;
bool pkt_inputs;
bool cmd_inputs;
/* Here down need to be generated from other fields */
bool has_current_htlc;
uint8_t capped_htlcs_to_them;
uint8_t capped_htlcs_to_us;
uint8_t capped_htlc_spends_to_them;
uint8_t capped_htlc_spends_to_us;
uint8_t capped_live_htlcs_to_them;
uint8_t capped_live_htlcs_to_us;
bool closing_cmd;
bool valid;
};
struct peer {
struct core_state core;
/* To store HTLC numbers. */
unsigned int pkt_data[MAX_OUTQ];
/* id == -1 if none currently. */
struct htlc_progress current_htlc;
unsigned int num_htlcs_to_them, num_htlcs_to_us;
struct htlc htlcs_to_them[MAX_HTLCS], htlcs_to_us[MAX_HTLCS];
unsigned int num_live_htlcs_to_them, num_live_htlcs_to_us;
struct htlc live_htlcs_to_them[HTLC_ARRSIZE], live_htlcs_to_us[HTLC_ARRSIZE];
unsigned int num_htlc_spends_to_them, num_htlc_spends_to_us;
struct htlc htlc_spends_to_us[HTLC_ARRSIZE],
htlc_spends_to_them[HTLC_ARRSIZE];
unsigned int num_rvals_known;
unsigned int rvals_known[HTLC_ARRSIZE];
/* Where we came from. */
const struct trail *trail;
/* Current input and idata (for fail()) */
enum state_input current_input;
const union input *current_idata;
const char *error;
/* ID. */
const char *name;
/* The other peer's data. */
struct peer *other;
};
/* To recontruct errors. */
struct trail {
const struct trail *prev;
const char *name;
enum state_input input;
const struct peer *before, *after;
int htlc_id;
unsigned int num_peer_outputs;
unsigned int depth;
const char *pkt_sent;
};
struct situation {
union {
struct core_state s;
uint32_t u32[sizeof(struct core_state)/sizeof(uint32_t)];
} a, b;
};
static const struct situation *situation_keyof(const struct situation *situation)
{
return situation;
}
/* After 2, we stop looping. */
static unsigned int cap(unsigned int val)
{
return val > CAP_HTLCS ? CAP_HTLCS : val;
}
static size_t situation_hash(const struct situation *situation)
{
BUILD_ASSERT(sizeof(situation->a.u32) == sizeof(situation->a.s));
return hash(situation->a.u32, ARRAY_SIZE(situation->a.u32), 0);
}
static bool situation_eq(const struct situation *a, const struct situation *b)
{
/* No padding */
BUILD_ASSERT(sizeof(a->a.s)
== (sizeof(a->a.s.event_notifies)
+ sizeof(a->a.s.state)
+ sizeof(a->a.s.deferred_state)
+ sizeof(a->a.s.current_command)
+ sizeof(a->a.s.deferred_pkt)
+ sizeof(a->a.s.outputs)
+ sizeof(a->a.s.num_outputs)
+ sizeof(a->a.s.pkt_inputs)
+ sizeof(a->a.s.cmd_inputs)
+ sizeof(a->a.s.has_current_htlc)
+ sizeof(a->a.s.capped_htlcs_to_us)
+ sizeof(a->a.s.capped_htlcs_to_them)
+ sizeof(a->a.s.capped_htlc_spends_to_us)
+ sizeof(a->a.s.capped_htlc_spends_to_them)
+ sizeof(a->a.s.capped_live_htlcs_to_us)
+ sizeof(a->a.s.capped_live_htlcs_to_them)
+ sizeof(a->a.s.closing_cmd)
+ sizeof(a->a.s.valid)));
return structeq(&a->a.s, &b->a.s) && structeq(&a->b.s, &b->b.s);
}
struct dot_edge {
const char *oldstate, *newstate;
enum state_input i;
const char *pkt;
};
static const struct dot_edge *dot_edge_keyof(const struct dot_edge *dot_edge)
{
return dot_edge;
}
static size_t dot_edge_hash(const struct dot_edge *d)
{
uint32_t pkthash;
if (d->pkt)
pkthash = hash(d->pkt, strlen(d->pkt), d->i);
else
pkthash = d->i;
return hash_pointer(d->oldstate, hash_pointer(d->newstate, pkthash));
}
static bool dot_edge_eq(const struct dot_edge *a, const struct dot_edge *b)
{
return a->oldstate == b->oldstate
&& a->newstate == b->newstate
&& a->i == b->i
&& ((a->pkt == NULL && b->pkt == NULL)
|| streq(a->pkt, b->pkt));
}
HTABLE_DEFINE_TYPE(struct dot_edge,
dot_edge_keyof, dot_edge_hash, dot_edge_eq,
edge_hash);
HTABLE_DEFINE_TYPE(struct situation,
situation_keyof, situation_hash, situation_eq,
sithash);
struct hist {
/* All the different state combinations. */
struct sithash sithash;
/* The different inputs. */
enum state_input **inputs_per_state;
/* The different outputs. */
enum state_input *outputs;
/* Edges for the dot graph, if any. */
struct edge_hash edges;
/* For dumping states. */
struct state_dump {
enum state_input input;
enum state next;
enum state_input pkt;
} **state_dump;
};
struct fail_details {
/* The universe state at the time. */
struct peer us, other;
enum state_input input;
union input idata;
/* Previous history. */
const struct trail *prev_trail;
};
struct failpoint {
/* Hash key (with which_fail) */
struct situation sit;
/* Which failure */
enum failure which_fail;
/* If we haven't tried failing yet, this is set */
struct fail_details *details;
};
static const struct failpoint *
failpoint_keyof(const struct failpoint *f)
{
return f;
}
static size_t failpoint_hash(const struct failpoint *f)
{
return situation_hash(&f->sit) + f->which_fail;
}
static bool failpoint_eq(const struct failpoint *a,
const struct failpoint *b)
{
return a->which_fail == b->which_fail
&& situation_eq(&a->sit, &b->sit);
}
HTABLE_DEFINE_TYPE(struct failpoint,
failpoint_keyof, failpoint_hash, failpoint_eq,
failhash);
static struct failhash failhash;
static void update_core(struct core_state *core, const struct peer *peer)
{
size_t i;
for (i = core->num_outputs; i < ARRAY_SIZE(core->outputs); i++)
assert(core->outputs[i] == 0);
core->has_current_htlc = peer->current_htlc.htlc.id != -1;
core->capped_htlcs_to_us = cap(peer->num_htlcs_to_us);
core->capped_htlcs_to_them = cap(peer->num_htlcs_to_them);
core->capped_live_htlcs_to_us = cap(peer->num_live_htlcs_to_us);
core->capped_live_htlcs_to_them = cap(peer->num_live_htlcs_to_them);
core->capped_htlc_spends_to_us = cap(peer->num_htlc_spends_to_us);
core->capped_htlc_spends_to_them = cap(peer->num_htlc_spends_to_them);
core->valid = true;
}
static void situation_init(struct situation *sit,
const struct peer *peer)
{
if (streq(peer->name, "A")) {
sit->a.s = peer->core;
update_core(&sit->a.s, peer);
/* If we're still talking to peer, their state matters. */
if (peer->core.pkt_inputs || peer->other->core.pkt_inputs) {
sit->b.s = peer->other->core;
update_core(&sit->b.s, peer->other);
} else
memset(&sit->b.s, 0, sizeof(sit->b.s));
} else {
sit->b.s = peer->core;
update_core(&sit->b.s, peer);
/* If we're still talking to peer, their state matters. */
if (peer->core.pkt_inputs || peer->other->core.pkt_inputs) {
sit->a.s = peer->other->core;
update_core(&sit->a.s, peer->other);
} else
memset(&sit->a.s, 0, sizeof(sit->a.s));
}
}
/* Returns false if we've been here before. */
static bool sithash_update(struct sithash *sithash,
const struct peer *peer)
{
struct situation sit;
situation_init(&sit, peer);
if (sithash_get(sithash, &sit))
return false;
sithash_add(sithash, tal_dup(NULL, struct situation, &sit));
return true;
}
static void copy_peers(struct peer *dst, struct peer *other,
const struct peer *src)
{
*dst = *src;
*other = *src->other;
dst->other = other;
other->other = dst;
}
static const struct trail *clone_trail(const tal_t *ctx,
const struct trail *trail)
{
struct trail *t;
if (!trail)
return NULL;
t = tal_dup(ctx, struct trail, trail);
t->before = tal_dup(t, struct peer, trail->before);
t->after = trail->after ? tal_dup(t, struct peer, trail->after)
: NULL;
t->pkt_sent = trail->pkt_sent ? tal_strdup(t, trail->pkt_sent) : NULL;
t->prev = clone_trail(t, trail->prev);
return t;
}
static const union input dup_idata(const tal_t *ctx,
enum state_input input,
const union input *idata)
{
union input i;
if (input_is_pkt(input))
i.pkt = (Pkt *)tal_strdup(ctx, (const char *)idata->pkt);
else if (input == CMD_SEND_HTLC_UPDATE
|| input == CMD_SEND_HTLC_FULFILL
|| input == CMD_SEND_HTLC_ROUTEFAIL
|| input == CMD_SEND_HTLC_TIMEDOUT) {
i.htlc_prog = tal_dup(ctx, struct htlc_progress,
idata->htlc_prog);
} else {
if (idata->htlc)
i.htlc = tal_dup(ctx, struct htlc, idata->htlc);
else
i.htlc = NULL;
}
return i;
}
static bool fail(const struct peer *peer, enum failure which_fail)
{
struct failpoint *f = tal(NULL, struct failpoint), *old;
situation_init(&f->sit, peer);
f->which_fail = which_fail;
/* If we've been here before... */
old = failhash_get(&failhash, f);
if (old) {
tal_free(f);
/* If we haven't tried failing, try that now. */
if (old->details) {
old->details = tal_free(old->details);
return true;
}
return false;
}
/* First time here, save details, don't fail yet. */
f->details = tal(f, struct fail_details);
copy_peers(&f->details->us, &f->details->other, peer);
f->details->us.trail = clone_trail(f->details, peer->trail);
f->details->input = peer->current_input;
f->details->idata = dup_idata(f->details,
f->details->input, peer->current_idata);
failhash_add(&failhash, f);
return false;
}
static const char *state_name(enum state s)
{
size_t i;
for (i = 0; enum_state_names[i].name; i++)
if (enum_state_names[i].v == s)
return enum_state_names[i].name;
return "unknown";
}
static const char *input_name(enum state_input in)
{
size_t i;
for (i = 0; enum_state_input_names[i].name; i++)
if (enum_state_input_names[i].v == in)
return enum_state_input_names[i].name;
return "unknown";
}
static enum state_input input_by_name(const char *name)
{
size_t i;
for (i = 0; enum_state_input_names[i].name; i++) {
if (!strstarts(name, enum_state_input_names[i].name))
continue;
if (name[strlen(enum_state_input_names[i].name)] == '\0'
|| name[strlen(enum_state_input_names[i].name)] == ':')
return enum_state_input_names[i].v;
}
abort();
}
static Pkt *new_pkt(const tal_t *ctx, enum state_input i)
{
return (Pkt *)input_name(i);
}
static unsigned int htlc_id_from_pkt(const Pkt *pkt)
{
const char *s = strstr((const char *)pkt, ": HTLC #");
return s ? atoi(s + strlen(": HTLC #")) : -1U;
}
static Pkt *htlc_pkt(const tal_t *ctx, const char *prefix, unsigned int id)
{
return (Pkt *)tal_fmt(ctx, "%s: HTLC #%u", prefix, id);
}
static unsigned int htlc_id_from_tx(const struct bitcoin_tx *tx)
{
const char *s = strstr((const char *)tx, "HTLC #");
return atoi(s + strlen("HTLC #"));
}
static struct bitcoin_tx *htlc_tx(const tal_t *ctx,
const char *prefix, unsigned int id)
{
return (struct bitcoin_tx *)tal_fmt(ctx, "%s HTLC #%u", prefix, id);
}
static struct htlc *find_any_htlc(const struct htlc *htlcs, size_t num,
unsigned id)
{
unsigned int i;
for (i = 0; i < num; i++)
if (htlcs[i].id == id)
return (struct htlc *)htlcs + i;
return NULL;
}
static struct htlc *find_htlc(const struct peer *peer, unsigned id)
{
const struct htlc *h;
h = find_any_htlc(peer->htlcs_to_us, peer->num_htlcs_to_us, id);
if (!h)
h = find_any_htlc(peer->htlcs_to_them,
peer->num_htlcs_to_them, id);
return (struct htlc *)h;
}
static struct htlc *find_live_htlc(const struct peer *peer,
unsigned id)
{
const struct htlc *h;
h = find_any_htlc(peer->live_htlcs_to_us, peer->num_live_htlcs_to_us,
id);
if (!h)
h = find_any_htlc(peer->live_htlcs_to_them,
peer->num_live_htlcs_to_them, id);
return (struct htlc *)h;
}
static struct htlc *find_htlc_spend(const struct peer *peer,
unsigned id)
{
const struct htlc *h;
h = find_any_htlc(peer->htlc_spends_to_us,
peer->num_htlc_spends_to_us,
id);
if (!h)
h = find_any_htlc(peer->htlc_spends_to_them,
peer->num_htlc_spends_to_them, id);
return (struct htlc *)h;
}
Pkt *pkt_open(const tal_t *ctx, const struct peer *peer,
OpenChannel__AnchorOffer anchor)
{
return new_pkt(ctx, PKT_OPEN);
}
Pkt *pkt_anchor(const tal_t *ctx, const struct peer *peer)
{
return new_pkt(ctx, PKT_OPEN_ANCHOR);
}
Pkt *pkt_open_commit_sig(const tal_t *ctx, const struct peer *peer)
{
return new_pkt(ctx, PKT_OPEN_COMMIT_SIG);
}
Pkt *pkt_open_complete(const tal_t *ctx, const struct peer *peer)
{
return new_pkt(ctx, PKT_OPEN_COMPLETE);
}
Pkt *pkt_htlc_update(const tal_t *ctx, const struct peer *peer,
const struct htlc_progress *htlc_prog)
{
return htlc_pkt(ctx, "PKT_UPDATE_ADD_HTLC", htlc_prog->htlc.id);
}
Pkt *pkt_htlc_fulfill(const tal_t *ctx, const struct peer *peer,
const struct htlc_progress *htlc_prog)
{
return htlc_pkt(ctx, "PKT_UPDATE_FULFILL_HTLC", htlc_prog->htlc.id);
}
Pkt *pkt_htlc_timedout(const tal_t *ctx, const struct peer *peer,
const struct htlc_progress *htlc_prog)
{
return htlc_pkt(ctx, "PKT_UPDATE_TIMEDOUT_HTLC", htlc_prog->htlc.id);
}
Pkt *pkt_htlc_routefail(const tal_t *ctx, const struct peer *peer,
const struct htlc_progress *htlc_prog)
{
return htlc_pkt(ctx, "PKT_UPDATE_ROUTEFAIL_HTLC", htlc_prog->htlc.id);
}
Pkt *pkt_update_accept(const tal_t *ctx, const struct peer *peer)
{
return new_pkt(ctx, PKT_UPDATE_ACCEPT);
}
Pkt *pkt_update_signature(const tal_t *ctx, const struct peer *peer)
{
return new_pkt(ctx, PKT_UPDATE_SIGNATURE);
}
Pkt *pkt_update_complete(const tal_t *ctx, const struct peer *peer)
{
return new_pkt(ctx, PKT_UPDATE_COMPLETE);
}
Pkt *pkt_err(const tal_t *ctx, const char *msg)
{
return (Pkt *)tal_fmt(ctx, "PKT_ERROR: %s", msg);
}
Pkt *pkt_close(const tal_t *ctx, const struct peer *peer)
{
return new_pkt(ctx, PKT_CLOSE);
}
Pkt *pkt_close_complete(const tal_t *ctx, const struct peer *peer)
{
return new_pkt(ctx, PKT_CLOSE_COMPLETE);
}
Pkt *pkt_close_ack(const tal_t *ctx, const struct peer *peer)
{
return new_pkt(ctx, PKT_CLOSE_ACK);
}
Pkt *unexpected_pkt(const tal_t *ctx, enum state_input input)
{
return pkt_err(ctx, "Unexpected pkt");
}
Pkt *accept_pkt_open(const tal_t *ctx,
const struct peer *peer,
const Pkt *pkt, struct state_effect **effect)
{
if (fail(peer, FAIL_ACCEPT_OPEN))
return pkt_err(ctx, "Error inject");
return NULL;
}
Pkt *accept_pkt_anchor(const tal_t *ctx,
const struct peer *peer,
const Pkt *pkt, struct state_effect **effect)
{
if (fail(peer, FAIL_ACCEPT_ANCHOR))
return pkt_err(ctx, "Error inject");
return NULL;
}
Pkt *accept_pkt_open_commit_sig(const tal_t *ctx,
const struct peer *peer,
const Pkt *pkt, struct state_effect **effect)
{
if (fail(peer, FAIL_ACCEPT_OPEN_COMMIT_SIG))
return pkt_err(ctx, "Error inject");
return NULL;
}
Pkt *accept_pkt_htlc_update(const tal_t *ctx,
const struct peer *peer, const Pkt *pkt,
Pkt **decline,
struct htlc_progress **htlcprog,
struct state_effect **effect)
{
if (fail(peer, FAIL_ACCEPT_HTLC_UPDATE))
return pkt_err(ctx, "Error inject");
if (fail(peer, FAIL_DECLINE_HTLC))
*decline = new_pkt(ctx, PKT_UPDATE_DECLINE_HTLC);
else {
*decline = NULL;
*htlcprog = tal(ctx, struct htlc_progress);
/* If they propose it, it's to us. */
(*htlcprog)->htlc.to_them = false;
(*htlcprog)->htlc.id = htlc_id_from_pkt(pkt);
(*htlcprog)->adding = true;
}
return NULL;
}
Pkt *accept_pkt_htlc_routefail(const tal_t *ctx,
const struct peer *peer, const Pkt *pkt,
struct htlc_progress **htlcprog,
struct state_effect **effect)
{
unsigned int id = htlc_id_from_pkt(pkt);
const struct htlc *h = find_htlc(peer, id);
if (fail(peer, FAIL_ACCEPT_HTLC_ROUTEFAIL))
return pkt_err(ctx, "Error inject");
/* The shouldn't fail unless it's to them */
assert(h->to_them);
*htlcprog = tal(ctx, struct htlc_progress);
(*htlcprog)->htlc = *h;
(*htlcprog)->adding = false;
return NULL;
}
Pkt *accept_pkt_htlc_timedout(const tal_t *ctx,
const struct peer *peer, const Pkt *pkt,
struct htlc_progress **htlcprog,
struct state_effect **effect)
{
unsigned int id = htlc_id_from_pkt(pkt);
const struct htlc *h = find_htlc(peer, id);
if (fail(peer, FAIL_ACCEPT_HTLC_TIMEDOUT))
return pkt_err(ctx, "Error inject");
/* The shouldn't timeout unless it's to us */
assert(!h->to_them);
*htlcprog = tal(ctx, struct htlc_progress);
(*htlcprog)->htlc = *h;
(*htlcprog)->adding = false;
return NULL;
}
Pkt *accept_pkt_htlc_fulfill(const tal_t *ctx,
const struct peer *peer, const Pkt *pkt,
struct htlc_progress **htlcprog,
struct state_effect **effect)
{
unsigned int id = htlc_id_from_pkt(pkt);
const struct htlc *h = find_htlc(peer, id);
if (fail(peer, FAIL_ACCEPT_HTLC_FULFILL))
return pkt_err(ctx, "Error inject");
/* The shouldn't complete unless it's to them */
assert(h->to_them);
*htlcprog = tal(ctx, struct htlc_progress);
(*htlcprog)->htlc = *h;
(*htlcprog)->adding = false;
return NULL;
}
Pkt *accept_pkt_update_accept(const tal_t *ctx,
const struct peer *peer, const Pkt *pkt,
struct signature **sig,
struct state_effect **effect)
{
if (fail(peer, FAIL_ACCEPT_UPDATE_ACCEPT))
return pkt_err(ctx, "Error inject");
*sig = (struct signature *)tal_strdup(ctx, "from PKT_UPDATE_ACCEPT");
return NULL;
}
Pkt *accept_pkt_update_complete(const tal_t *ctx,
const struct peer *peer, const Pkt *pkt,
struct state_effect **effect)
{
if (fail(peer, FAIL_ACCEPT_UPDATE_COMPLETE))
return pkt_err(ctx, "Error inject");
return NULL;
}
Pkt *accept_pkt_update_signature(const tal_t *ctx,
const struct peer *peer, const Pkt *pkt,
struct signature **sig,
struct state_effect **effect)
{
if (fail(peer, FAIL_ACCEPT_UPDATE_SIGNATURE))
return pkt_err(ctx, "Error inject");
*sig = (struct signature *)tal_strdup(ctx, "from PKT_UPDATE_SIGNATURE");
return NULL;
}
Pkt *accept_pkt_close(const tal_t *ctx,
const struct peer *peer, const Pkt *pkt,
struct state_effect **effect)
{
if (fail(peer, FAIL_ACCEPT_CLOSE))
return pkt_err(ctx, "Error inject");
return NULL;
}
Pkt *accept_pkt_close_complete(const tal_t *ctx,
const struct peer *peer, const Pkt *pkt,
struct state_effect **effect)
{
if (fail(peer, FAIL_ACCEPT_CLOSE_COMPLETE))
return pkt_err(ctx, "Error inject");
return NULL;
}
Pkt *accept_pkt_simultaneous_close(const tal_t *ctx,
const struct peer *peer,
const Pkt *pkt,
struct state_effect **effect)
{
if (fail(peer, FAIL_ACCEPT_SIMULTANEOUS_CLOSE))
return pkt_err(ctx, "Error inject");
return NULL;
}
Pkt *accept_pkt_close_ack(const tal_t *ctx,
const struct peer *peer, const Pkt *pkt,
struct state_effect **effect)
{
if (fail(peer, FAIL_ACCEPT_CLOSE_ACK))
return pkt_err(ctx, "Error inject");
return NULL;
}
static struct bitcoin_tx *bitcoin_tx(const char *str)
{
return (struct bitcoin_tx *)str;
}
static bool bitcoin_tx_is(const struct bitcoin_tx *btx, const char *str)
{
return streq((const char *)btx, str);
}
struct bitcoin_tx *bitcoin_anchor(const tal_t *ctx,
const struct peer *peer)
{
return bitcoin_tx("anchor");
}
static bool have_event(uint64_t events, enum state_input input)
{
return events & (1ULL << input);
}
static bool add_event_(uint64_t *events, enum state_input input)
{
/* This is how they say "no event please" */
if (input == INPUT_NONE)
return true;
assert(input < 64);
if (have_event(*events, input))
return false;
*events |= (1ULL << input);
return true;
}
static bool remove_event_(uint64_t *events, enum state_input input)
{
/* This is how they say "no event please" */
if (input == INPUT_NONE)
return true;
assert(input < 64);
if (!have_event(*events, input))
return false;
*events &= ~(1ULL << input);
return true;
}
static void remove_event(uint64_t *events, enum state_input input)
{
#ifdef NDEBUG
#error "Don't run tests with NDEBUG"
#endif
assert(remove_event_(events, input));
}
static void add_event(uint64_t *events, enum state_input input)
{
#ifdef NDEBUG
#error "Don't run tests with NDEBUG"
#endif
assert(add_event_(events, input));
}
struct watch {
uint64_t events;
};
struct watch *bitcoin_watch_anchor(const tal_t *ctx,
const struct peer *peer,
enum state_input depthok,
enum state_input timeout,
enum state_input unspent,
enum state_input theyspent,
enum state_input otherspent)
{
struct watch *watch = talz(ctx, struct watch);
add_event(&watch->events, depthok);
add_event(&watch->events, timeout);
add_event(&watch->events, unspent);
add_event(&watch->events, theyspent);
add_event(&watch->events, otherspent);
/* We assume these values in activate_event. */
assert(timeout == BITCOIN_ANCHOR_TIMEOUT
|| timeout == INPUT_NONE);
assert(depthok == BITCOIN_ANCHOR_DEPTHOK);
return watch;
}
struct watch *bitcoin_unwatch_anchor_depth(const tal_t *ctx,
const struct peer *peer,
enum state_input depthok,
enum state_input timeout)
{
struct watch *watch = talz(ctx, struct watch);
add_event(&watch->events, depthok);
add_event(&watch->events, timeout);
return watch;
}
/* Wait for our commit to be spendable. */
struct watch *bitcoin_watch_delayed(const tal_t *ctx,
const struct bitcoin_tx *tx,
enum state_input canspend)
{
struct watch *watch = talz(ctx, struct watch);
assert(bitcoin_tx_is(tx, "our commit"));
add_event(&watch->events, canspend);
return watch;
}
/* Wait for commit to be very deeply buried (so we no longer need to
* even watch) */
struct watch *bitcoin_watch(const tal_t *ctx,
const struct bitcoin_tx *tx,
enum state_input done)
{
struct watch *watch = talz(ctx, struct watch);
if (done == BITCOIN_STEAL_DONE)
assert(bitcoin_tx_is(tx, "steal"));
else if (done == BITCOIN_SPEND_THEIRS_DONE)
assert(bitcoin_tx_is(tx, "spend their commit"));
else if (done == BITCOIN_SPEND_OURS_DONE)
assert(bitcoin_tx_is(tx, "spend our commit"));
else
errx(1, "Unknown watch effect %s", input_name(done));
add_event(&watch->events, done);
return watch;
}
/* Other side should drop close tx; watch for it. */
struct watch *bitcoin_watch_close(const tal_t *ctx,
const struct peer *peer,
enum state_input done)
{
struct watch *watch = talz(ctx, struct watch);
add_event(&watch->events, done);
return watch;
}
struct bitcoin_tx *bitcoin_close(const tal_t *ctx,
const struct peer *peer)
{
return bitcoin_tx("close");
}
struct bitcoin_tx *bitcoin_spend_ours(const tal_t *ctx,
const struct peer *peer)
{
return bitcoin_tx("spend our commit");
}
struct bitcoin_tx *bitcoin_spend_theirs(const tal_t *ctx,
const struct peer *peer,
const struct bitcoin_event *btc)
{
return bitcoin_tx("spend their commit");
}
struct bitcoin_tx *bitcoin_steal(const tal_t *ctx,
const struct peer *peer,
struct bitcoin_event *btc)
{
if (fail(peer, FAIL_STEAL))
return NULL;
return bitcoin_tx("steal");
}
struct bitcoin_tx *bitcoin_commit(const tal_t *ctx,
const struct peer *peer)
{
return bitcoin_tx("our commit");
}
/* Create a HTLC refund collection */
struct bitcoin_tx *bitcoin_htlc_timeout(const tal_t *ctx,
const struct peer *peer,
const struct htlc *htlc)
{
return htlc_tx(ctx, "htlc timeout", htlc->id);
}
/* Create a HTLC collection */
struct bitcoin_tx *bitcoin_htlc_spend(const tal_t *ctx,
const struct peer *peer,
const struct htlc *htlc)
{
return htlc_tx(ctx, "htlc fulfill", htlc->id);
}
bool committed_to_htlcs(const struct peer *peer)
{
return peer->num_htlcs_to_them != 0 || peer->num_htlcs_to_us != 0;
}
struct htlc_watch
{
enum state_input tous_timeout;
enum state_input tothem_spent;
enum state_input tothem_timeout;
unsigned int num_htlcs_to_us, num_htlcs_to_them;
struct htlc htlcs_to_us[MAX_HTLCS], htlcs_to_them[MAX_HTLCS];
};
struct htlc_unwatch
{
unsigned int id;
enum state_input all_done;
};
struct htlc_watch *htlc_outputs_our_commit(const tal_t *ctx,
const struct peer *peer,
const struct bitcoin_tx *tx,
enum state_input tous_timeout,
enum state_input tothem_spent,
enum state_input tothem_timeout)
{
struct htlc_watch *w = tal(ctx, struct htlc_watch);
/* We assume these. */
assert(tous_timeout == BITCOIN_HTLC_TOUS_TIMEOUT);
assert(tothem_spent == BITCOIN_HTLC_TOTHEM_SPENT);
assert(tothem_timeout == BITCOIN_HTLC_TOTHEM_TIMEOUT);
w->tous_timeout = tous_timeout;
w->tothem_spent = tothem_spent;
w->tothem_timeout = tothem_timeout;
w->num_htlcs_to_us = peer->num_htlcs_to_us;
w->num_htlcs_to_them = peer->num_htlcs_to_them;
BUILD_ASSERT(sizeof(peer->htlcs_to_us) == sizeof(w->htlcs_to_us));
BUILD_ASSERT(sizeof(peer->htlcs_to_them) == sizeof(w->htlcs_to_them));
memcpy(w->htlcs_to_us, peer->htlcs_to_us, sizeof(peer->htlcs_to_us));
memcpy(w->htlcs_to_them, peer->htlcs_to_them,
sizeof(peer->htlcs_to_them));
if (!w->num_htlcs_to_us && !w->num_htlcs_to_them)
return tal_free(w);
return w;
}
struct htlc_watch *htlc_outputs_their_commit(const tal_t *ctx,
const struct peer *peer,
const struct bitcoin_event *tx,
enum state_input tous_timeout,
enum state_input tothem_spent,
enum state_input tothem_timeout)
{
struct htlc_watch *w = tal(ctx, struct htlc_watch);
unsigned int i;
/* We assume these. */
assert(tous_timeout == BITCOIN_HTLC_TOUS_TIMEOUT);
assert(tothem_spent == BITCOIN_HTLC_TOTHEM_SPENT);
assert(tothem_timeout == BITCOIN_HTLC_TOTHEM_TIMEOUT);
w->tous_timeout = tous_timeout;
w->tothem_spent = tothem_spent;
w->tothem_timeout = tothem_timeout;
/* It's what our peer thinks is current... */
w->num_htlcs_to_us = peer->other->num_htlcs_to_them;
w->num_htlcs_to_them = peer->other->num_htlcs_to_us;
BUILD_ASSERT(sizeof(peer->other->htlcs_to_them) == sizeof(w->htlcs_to_us));
BUILD_ASSERT(sizeof(peer->other->htlcs_to_us) == sizeof(w->htlcs_to_them));
memcpy(w->htlcs_to_us, peer->other->htlcs_to_them, sizeof(w->htlcs_to_us));
memcpy(w->htlcs_to_them, peer->other->htlcs_to_us,
sizeof(w->htlcs_to_them));
if (!w->num_htlcs_to_us && !w->num_htlcs_to_them)
return tal_free(w);
/* Reverse perspective, mark rvalue unknown */
for (i = 0; i < w->num_htlcs_to_us; i++) {
assert(w->htlcs_to_us[i].to_them);
w->htlcs_to_us[i].to_them = false;
}
for (i = 0; i < w->num_htlcs_to_them; i++) {
assert(!w->htlcs_to_them[i].to_them);
w->htlcs_to_them[i].to_them = true;
}
return w;
}
struct htlc_unwatch *htlc_unwatch(const tal_t *ctx,
const struct htlc *htlc,
enum state_input all_done)
{
struct htlc_unwatch *w = tal(ctx, struct htlc_unwatch);
w->id = htlc->id;
assert(w->id != -1U);
w->all_done = all_done;
return w;
}
struct htlc_unwatch *htlc_unwatch_all(const tal_t *ctx,
const struct peer *peer)
{
struct htlc_unwatch *w = tal(ctx, struct htlc_unwatch);
w->id = -1U;
return w;
}
struct htlc_spend_watch *htlc_spend_watch(const tal_t *ctx,
const struct bitcoin_tx *tx,
const struct command *cmd,
enum state_input done)
{
struct htlc_spend_watch *w = tal(ctx, struct htlc_spend_watch);
w->id = htlc_id_from_tx(tx);
w->done = done;
return w;
}
struct htlc_spend_watch *htlc_spend_unwatch(const tal_t *ctx,
const struct htlc *htlc,
enum state_input all_done)
{
struct htlc_spend_watch *w = tal(ctx, struct htlc_spend_watch);
w->id = htlc->id;
w->done = all_done;
return w;
}
struct htlc_rval {
unsigned int id;
};
struct htlc_rval *r_value_from_cmd(const tal_t *ctx,
const struct peer *peer,
const struct htlc *htlc)
{
struct htlc_rval *r = tal(ctx, struct htlc_rval);
r->id = htlc->id;
return r;
}
struct htlc_rval *bitcoin_r_value(const tal_t *ctx, const struct htlc *htlc)
{
struct htlc_rval *r = tal(ctx, struct htlc_rval);
r->id = htlc->id;
return r;
}
struct htlc_rval *r_value_from_pkt(const tal_t *ctx, const Pkt *pkt)
{
struct htlc_rval *r = tal(ctx, struct htlc_rval);
r->id = htlc_id_from_pkt(pkt);
return r;
}
#include "state.c"
#include <ccan/tal/tal.h>
#include <stdio.h>
static void peer_init(struct peer *peer,
struct peer *other,
enum state_input initstate,
const char *name)
{
peer->core.state = initstate;
peer->core.num_outputs = 1;
peer->current_htlc.htlc.id = -1;
peer->num_htlcs_to_us = 0;
peer->num_htlcs_to_them = 0;
peer->num_live_htlcs_to_us = 0;
peer->num_live_htlcs_to_them = 0;
peer->num_htlc_spends_to_us = 0;
peer->num_htlc_spends_to_them = 0;
peer->num_rvals_known = 0;
peer->error = NULL;
memset(peer->core.outputs, 0, sizeof(peer->core.outputs));
peer->core.deferred_pkt = INPUT_NONE;
peer->core.deferred_state = STATE_MAX;
peer->core.outputs[0] = INPUT_NONE;
peer->pkt_data[0] = -1;
peer->core.current_command = INPUT_NONE;
peer->core.event_notifies = 0;
peer->core.pkt_inputs = true;
peer->core.cmd_inputs = true;
peer->core.closing_cmd = false;
peer->name = name;
peer->other = other;
peer->trail = NULL;
}
/* Recursion! */
static void run_peer(const struct peer *peer,
bool normalpath, bool errorpath,
const struct trail *prev_trail,
struct hist *hist);
static void init_trail(struct trail *t,
enum state_input input,
const union input *idata,
const struct peer *before,
const struct trail *prev)
{
t->name = before->name;
t->prev = prev;
t->depth = prev ? prev->depth + 1 : 0;
t->input = input;
t->before = before;
t->after = NULL;
t->num_peer_outputs = -1;
t->pkt_sent = NULL;
if (input == CMD_SEND_HTLC_FULFILL
|| input == INPUT_RVALUE
|| input == BITCOIN_HTLC_TOTHEM_TIMEOUT
|| input == BITCOIN_HTLC_TOTHEM_SPENT
|| input == BITCOIN_HTLC_TOUS_TIMEOUT
|| input == BITCOIN_HTLC_FULFILL_SPEND_DONE
|| input == BITCOIN_HTLC_RETURN_SPEND_DONE)
t->htlc_id = idata->htlc->id;
else if (input == PKT_UPDATE_ADD_HTLC)
t->htlc_id = htlc_id_from_pkt(idata->pkt);
else
t->htlc_id = -1;
}
static void update_trail(struct trail *t,
const struct peer *after,
const Pkt *output)
{
t->after = after;
t->num_peer_outputs = after->other->core.num_outputs;
t->pkt_sent = (const char *)output;
}
static void report_trail_rev(const struct trail *t)
{
size_t i;
if (t->prev)
report_trail_rev(t->prev);
fprintf(stderr, "%s: %s(%i) %s -> %s",
t->name,
input_name(t->input), t->htlc_id,
state_name(t->before->core.state),
t->after ? state_name(t->after->core.state) : "<unknown>");
if (t->after) {
for (i = 0; i < t->after->core.num_outputs; i++)
fprintf(stderr, " >%s",
input_name(t->after->core.outputs[i]));
}
fprintf(stderr, " +%u in\n",
t->num_peer_outputs);
if (!t->after)
goto pkt_sent;
if (t->after->core.state >= STATE_CLOSED) {
if (t->after->num_live_htlcs_to_us
|| t->after->num_live_htlcs_to_them) {
fprintf(stderr, " Live HTLCs:");
for (i = 0; i < t->after->num_live_htlcs_to_us; i++)
fprintf(stderr, " <%u",
t->after->live_htlcs_to_us[i].id);
for (i = 0; i < t->after->num_live_htlcs_to_them; i++)
fprintf(stderr, " >%u",
t->after->live_htlcs_to_them[i].id);
fprintf(stderr, "\n");
}
if (t->after->num_htlc_spends_to_us
|| t->after->num_htlc_spends_to_them) {
fprintf(stderr, " HTLC spends:");
for (i = 0; i < t->after->num_htlc_spends_to_us; i++)
fprintf(stderr, " <%u",
t->after->htlc_spends_to_us[i].id);
for (i = 0; i < t->after->num_htlc_spends_to_them; i++)
fprintf(stderr, " <%u",
t->after->htlc_spends_to_them[i].id);
fprintf(stderr, "\n");
}
} else {
if (t->after->num_htlcs_to_us
|| t->after->num_htlcs_to_them) {
fprintf(stderr, " HTLCs:");
for (i = 0; i < t->after->num_htlcs_to_us; i++)
fprintf(stderr, " <%u",
t->after->htlcs_to_us[i].id);
for (i = 0; i < t->after->num_htlcs_to_them; i++)
fprintf(stderr, " >%u",
t->after->htlcs_to_them[i].id);
fprintf(stderr, "\n");
}
}
pkt_sent:
if (t->pkt_sent)
fprintf(stderr, " => %s\n", t->pkt_sent);
}
static void report_trail(const struct trail *t, const char *problem)
{
fprintf(stderr, "Error: %s\n", problem);
report_trail_rev(t);
exit(1);
}
static bool is_current_command(const struct peer *peer,
enum state_input cmd)
{
if (cmd == CMD_SEND_UPDATE_ANY) {
return is_current_command(peer, CMD_SEND_HTLC_UPDATE)
|| is_current_command(peer, CMD_SEND_HTLC_FULFILL)
|| is_current_command(peer, CMD_SEND_HTLC_TIMEDOUT)
|| is_current_command(peer, CMD_SEND_HTLC_ROUTEFAIL);
}
return peer->core.current_command == cmd;
}
static void add_htlc(struct htlc *to_us, unsigned int *num_to_us,
struct htlc *to_them, unsigned int *num_to_them,
size_t arrsize,
const struct htlc *h)
{
struct htlc *arr;
unsigned int *n;
if (h->to_them) {
arr = to_them;
n = num_to_them;
} else {
arr = to_us;
n = num_to_us;
}
assert(*n < arrsize);
arr[(*n)++] = *h;
}
static void remove_htlc(struct htlc *to_us, unsigned int *num_to_us,
struct htlc *to_them, unsigned int *num_to_them,
size_t arrsize,
const struct htlc *h)
{
size_t off;
struct htlc *arr;
unsigned int *n;
if (h->to_them) {
arr = to_them;
n = num_to_them;
} else {
arr = to_us;
n = num_to_us;
}
assert(*n <= arrsize);
assert(h >= arr && h < arr + *n);
off = h - arr;
memmove(arr + off, arr + off + 1, (char *)(arr + *n) - (char *)(h + 1));
(*n)--;
}
static bool outstanding_htlc_watches(const struct peer *peer)
{
return peer->num_live_htlcs_to_us
|| peer->num_live_htlcs_to_them
|| peer->num_htlc_spends_to_us
|| peer->num_htlc_spends_to_them;
}
static bool rval_known(const struct peer *peer, unsigned int id)
{
unsigned int i;
for (i = 0; i < peer->num_rvals_known; i++)
if (peer->rvals_known[i] == id)
return true;
return false;
}
/* Some assertions once they've already been applied. */
static char *check_effects(struct peer *peer,
const struct state_effect *effect)
{
while (effect) {
if (effect->etype == STATE_EFFECT_in_error) {
/* We should stop talking to them after error recvd. */
if (peer->core.pkt_inputs)
return "packets still open after error pkt";
} else if (effect->etype == STATE_EFFECT_stop_commands) {
if (peer->core.current_command != INPUT_NONE)
return tal_fmt(NULL,
"stop_commands with pending command %s",
input_name(peer->core.current_command));
if (peer->core.closing_cmd)
return "stop_commands with pending CMD_CLOSE";
}
effect = effect->next;
}
return NULL;
}
/* We apply them backwards, which helps our assertions. It's not actually
* required. */
static const char *apply_effects(struct peer *peer,
const struct state_effect *effect,
uint64_t *effects,
Pkt **output)
{
const struct htlc *h;
if (!effect)
return NULL;
if (effect->next) {
const char *problem = apply_effects(peer, effect->next,
effects, output);
if (problem)
return problem;
}
if (*effects & (1ULL << effect->etype))
return tal_fmt(NULL, "Effect %u twice", effect->etype);
*effects |= (1ULL << effect->etype);
switch (effect->etype) {
case STATE_EFFECT_new_state:
peer->core.state = effect->u.new_state;
break;
case STATE_EFFECT_in_error:
break;
case STATE_EFFECT_broadcast_tx:
break;
case STATE_EFFECT_send_pkt: {
const char *pkt = (const char *)effect->u.send_pkt;
*output = effect->u.send_pkt;
/* Check for errors. */
if (strstarts(pkt, "ERROR_PKT:")) {
/* Some are expected. */
if (!streq(pkt, "ERROR_PKT:Commit tx noticed")
&& !streq(pkt, "ERROR_PKT:Otherspend noticed")
&& !streq(pkt, "ERROR_PKT:Anchor timed out")
&& !streq(pkt, "ERROR_PKT:Close timed out")
&& !streq(pkt, "ERROR_PKT:Close forced due to HTLCs")) {
return pkt;
}
}
if (peer->core.num_outputs >= ARRAY_SIZE(peer->core.outputs))
return "Too many outputs";
peer->core.outputs[peer->core.num_outputs]
= input_by_name(pkt);
peer->pkt_data[peer->core.num_outputs++]
= htlc_id_from_pkt(effect->u.send_pkt);
break;
}
case STATE_EFFECT_watch:
/* We can have multiple steals or spendtheirs
in flight, so make exceptions for
BITCOIN_STEAL_DONE/BITCOIN_SPEND_THEIRS_DONE */
if (peer->core.event_notifies & (1ULL << BITCOIN_STEAL_DONE)
& effect->u.watch->events)
remove_event(&effect->u.watch->events, BITCOIN_STEAL_DONE);
if (peer->core.event_notifies
& (1ULL << BITCOIN_SPEND_THEIRS_DONE)
& effect->u.watch->events)
remove_event(&effect->u.watch->events,
BITCOIN_SPEND_THEIRS_DONE);
if (peer->core.event_notifies & effect->u.watch->events)
return "event set twice";
peer->core.event_notifies |= effect->u.watch->events;
break;
case STATE_EFFECT_unwatch:
if ((peer->core.event_notifies & effect->u.unwatch->events)
!= effect->u.unwatch->events)
return "unset event unwatched";
peer->core.event_notifies &= ~effect->u.unwatch->events;
break;
case STATE_EFFECT_cmd_defer:
/* If it was current command, it is no longer. */
if (is_current_command(peer, effect->u.cmd_defer))
peer->core.current_command = INPUT_NONE;
else if (input_is_pkt(effect->u.cmd_defer)) {
/* Unlike commands, which we always resubmit,
* we have to remember deferred packets. */
/* We assume only one deferrment! */
assert(peer->core.deferred_pkt == INPUT_NONE
|| peer->core.deferred_pkt == effect->u.cmd_defer);
peer->core.deferred_pkt = effect->u.cmd_defer;
peer->core.deferred_state = peer->core.state;
}
break;
case STATE_EFFECT_cmd_requeue:
assert(is_current_command(peer, effect->u.cmd_requeue));
peer->core.current_command = INPUT_NONE;
break;
case STATE_EFFECT_cmd_success:
assert(is_current_command(peer, effect->u.cmd_success));
peer->core.current_command = INPUT_NONE;
break;
case STATE_EFFECT_cmd_fail:
if (peer->core.current_command == INPUT_NONE)
return "Failed command with none current";
peer->core.current_command = INPUT_NONE;
break;
case STATE_EFFECT_cmd_close_done:
if (!peer->core.closing_cmd)
return tal_fmt(NULL, "%s but not closing",
effect->u.cmd_close_done
? "Success" : "Failure");
peer->core.closing_cmd = false;
break;
case STATE_EFFECT_stop_packets:
if (!peer->core.pkt_inputs)
return "stop_packets twice";
peer->core.pkt_inputs = false;
/* Can no longer receive packet timeouts, either. */
remove_event_(&peer->core.event_notifies,
INPUT_CLOSE_COMPLETE_TIMEOUT);
break;
case STATE_EFFECT_stop_commands:
if (!peer->core.cmd_inputs)
return "stop_commands twice";
peer->core.cmd_inputs = false;
break;
case STATE_EFFECT_close_timeout:
add_event(&peer->core.event_notifies,
effect->u.close_timeout);
/* We assume this. */
assert(effect->u.close_timeout
== INPUT_CLOSE_COMPLETE_TIMEOUT);
break;
case STATE_EFFECT_htlc_in_progress:
if (peer->current_htlc.htlc.id != -1)
return "HTLC already in progress";
peer->current_htlc = *effect->u.htlc_in_progress;
break;
case STATE_EFFECT_update_theirsig:
break;
case STATE_EFFECT_htlc_abandon:
if (peer->current_htlc.htlc.id == -1)
return "HTLC not in progress, can't abandon";
peer->current_htlc.htlc.id = -1;
break;
case STATE_EFFECT_htlc_fulfill:
if (peer->current_htlc.htlc.id == -1)
return "HTLC not in progress, can't complete";
if (peer->current_htlc.adding) {
add_htlc(peer->htlcs_to_us,
&peer->num_htlcs_to_us,
peer->htlcs_to_them,
&peer->num_htlcs_to_them,
ARRAY_SIZE(peer->htlcs_to_us),
&peer->current_htlc.htlc);
} else {
const struct htlc *h;
h = find_htlc(peer,
peer->current_htlc.htlc.id);
if (!h)
return "Removing nonexistent HTLC?";
if (h->to_them !=
peer->current_htlc.htlc.to_them)
return "Removing disagreed about to_them";
remove_htlc(peer->htlcs_to_us, &peer->num_htlcs_to_us,
peer->htlcs_to_them,
&peer->num_htlcs_to_them,
ARRAY_SIZE(peer->htlcs_to_us),
h);
}
peer->current_htlc.htlc.id = -1;
break;
case STATE_EFFECT_r_value:
/* We set r_value when they spend an HTLC, so
* we can set this multiple times (multiple commit
* txs) */
if (!rval_known(peer, effect->u.r_value->id)) {
if (peer->num_rvals_known
== ARRAY_SIZE(peer->rvals_known))
return "Too many rvals";
peer->rvals_known[peer->num_rvals_known++]
= effect->u.r_value->id;
}
break;
case STATE_EFFECT_watch_htlcs:
assert(peer->num_live_htlcs_to_us
+ effect->u.watch_htlcs->num_htlcs_to_us
<= ARRAY_SIZE(peer->live_htlcs_to_us));
assert(peer->num_live_htlcs_to_them
+ effect->u.watch_htlcs->num_htlcs_to_them
<= ARRAY_SIZE(peer->live_htlcs_to_them));
memcpy(peer->live_htlcs_to_us + peer->num_live_htlcs_to_us,
effect->u.watch_htlcs->htlcs_to_us,
effect->u.watch_htlcs->num_htlcs_to_us
* sizeof(effect->u.watch_htlcs->htlcs_to_us[0]));
memcpy(peer->live_htlcs_to_them + peer->num_live_htlcs_to_them,
effect->u.watch_htlcs->htlcs_to_them,
effect->u.watch_htlcs->num_htlcs_to_them
* sizeof(effect->u.watch_htlcs->htlcs_to_them[0]));
peer->num_live_htlcs_to_us
+= effect->u.watch_htlcs->num_htlcs_to_us;
peer->num_live_htlcs_to_them
+= effect->u.watch_htlcs->num_htlcs_to_them;
/* Can happen if we were finished, then new commit tx */
remove_event_(&peer->core.event_notifies, INPUT_NO_MORE_HTLCS);
break;
case STATE_EFFECT_unwatch_htlc:
/* Unwatch all? */
if (effect->u.unwatch_htlc->id == -1) {
/* This can happen if we get in front of
* INPUT_NO_MORE_HTLCS */
if (!outstanding_htlc_watches(peer)
&& !have_event(peer->core.event_notifies,
INPUT_NO_MORE_HTLCS))
return "unwatching all with no htlcs?";
peer->num_htlc_spends_to_us = 0;
peer->num_htlc_spends_to_them = 0;
peer->num_live_htlcs_to_us = 0;
peer->num_live_htlcs_to_them = 0;
} else {
const struct htlc *h;
h = find_live_htlc(peer, effect->u.unwatch_htlc->id);
/* That can fail, when we see them spend (and
* thus stop watching) after we've timed out,
* then our return tx wins and gets buried. */
if (h) {
remove_htlc(peer->live_htlcs_to_us,
&peer->num_live_htlcs_to_us,
peer->live_htlcs_to_them,
&peer->num_live_htlcs_to_them,
ARRAY_SIZE(peer->live_htlcs_to_us),
h);
/* If that was last, fire INPUT_NO_MORE_HTLCS */
if (!outstanding_htlc_watches(peer)) {
assert(effect->u.unwatch_htlc->all_done
== INPUT_NO_MORE_HTLCS);
add_event(&peer->core.event_notifies,
effect->u.unwatch_htlc->all_done);
}
}
}
break;
case STATE_EFFECT_watch_htlc_spend:
h = find_live_htlc(peer, effect->u.watch_htlc_spend->id);
add_htlc(peer->htlc_spends_to_us, &peer->num_htlc_spends_to_us,
peer->htlc_spends_to_them,
&peer->num_htlc_spends_to_them,
ARRAY_SIZE(peer->htlc_spends_to_us),
h);
/* We assume this */
if (h->to_them)
assert(effect->u.watch_htlc_spend->done
== BITCOIN_HTLC_RETURN_SPEND_DONE);
else
assert(effect->u.watch_htlc_spend->done
== BITCOIN_HTLC_FULFILL_SPEND_DONE);
break;
case STATE_EFFECT_unwatch_htlc_spend:
h = find_htlc_spend(peer, effect->u.unwatch_htlc_spend->id);
remove_htlc(peer->htlc_spends_to_us,
&peer->num_htlc_spends_to_us,
peer->htlc_spends_to_them,
&peer->num_htlc_spends_to_them,
ARRAY_SIZE(peer->htlc_spends_to_us),
h);
if (!outstanding_htlc_watches(peer)) {
assert(effect->u.unwatch_htlc_spend->done
== INPUT_NO_MORE_HTLCS);
add_event(&peer->core.event_notifies,
effect->u.unwatch_htlc_spend->done);
}
break;
default:
return tal_fmt(NULL, "Unknown effect %u", effect->etype);
}
return NULL;
}
static const char *apply_all_effects(struct peer *peer,
const struct state_effect *effect,
Pkt **output)
{
const char *problem;
uint64_t effects = 0;
*output = NULL;
problem = apply_effects(peer, effect, &effects, output);
if (!problem)
problem = check_effects(peer, effect);
return problem;
}
static void eliminate_input(enum state_input **inputs, enum state_input in)
{
size_t i, n = tal_count(*inputs);
for (i = 0; i < n; i++) {
if ((*inputs)[i] != in)
continue;
if (i != n-1)
(*inputs)[i] = (*inputs)[n-1];
tal_resize(inputs, n - 1);
break;
}
}
static bool find_output(const enum state_input *outputs, enum state_input out)
{
size_t n, i;
n = tal_count(outputs);
for (i = 0; i < n; i++)
if (outputs[i] == out)
return true;
return false;
}
static void record_output(enum state_input **outputs, enum state_input out)
{
size_t n;
if (find_output(*outputs, out))
return;
n = tal_count(*outputs);
tal_resize(outputs, n+1);
(*outputs)[n] = out;
}
static void record_state(struct state_dump **sd,
enum state_input input,
enum state newstate,
const char *pktstr)
{
size_t i, n = tal_count(*sd);
enum state_input pkt;
if (!pktstr)
pkt = INPUT_NONE;
else
pkt = input_by_name(pktstr);
for (i = 0; i < n; i++) {
if ((*sd)[i].input != input)
continue;
if ((*sd)[i].next != newstate)
continue;
if ((*sd)[i].pkt != pkt)
continue;
/* Duplicate. */
return;
}
tal_resize(sd, n+1);
(*sd)[n].input = input;
(*sd)[n].next = newstate;
(*sd)[n].pkt = pkt;
}
static bool error_path(enum state_input i, enum state src, enum state dst)
{
return state_is_error(dst) || i == PKT_ERROR;
}
static bool normal_path(enum state_input i, enum state src, enum state dst)
{
if (error_path(i, src, dst))
return false;
/* Weird inputs. */
if (i == BITCOIN_ANCHOR_TIMEOUT
|| i == BITCOIN_ANCHOR_UNSPENT
|| i == BITCOIN_ANCHOR_THEIRSPEND
|| i == BITCOIN_ANCHOR_OTHERSPEND
|| i == BITCOIN_STEAL_DONE
|| i == PKT_UPDATE_DECLINE_HTLC
|| i == PKT_UPDATE_ROUTEFAIL_HTLC
|| i == PKT_UPDATE_TIMEDOUT_HTLC
|| i == INPUT_CLOSE_COMPLETE_TIMEOUT)
return false;
return true;
}
/* These clutter the graph, so only handle from normal state. */
static bool too_cluttered(enum state_input i, enum state src)
{
if (i == CMD_CLOSE || i == PKT_CLOSE || i == PKT_UPDATE_ADD_HTLC || i == PKT_UPDATE_FULFILL_HTLC)
return src != STATE_NORMAL_LOWPRIO
&& src != STATE_NORMAL_HIGHPRIO;
return false;
}
static void add_dot(struct edge_hash *hash,
const char *oldstate,
const char *newstate,
enum state_input i,
const Pkt *pkt)
{
struct dot_edge *d = tal(NULL, struct dot_edge);
d->oldstate = oldstate;
d->newstate = newstate;
d->i = i;
if (pkt)
d->pkt = tal_strdup(d, (const char *)pkt);
else
d->pkt = NULL;
if (edge_hash_get(hash, d))
tal_free(d);
else
edge_hash_add(hash, d);
}
static const char *simplify_state(enum state s)
{
/* Turn all high prio into low prio, and merge some open states */
switch (s) {
case STATE_OPEN_WAITING_OURANCHOR:
case STATE_OPEN_WAITING_THEIRANCHOR:
return "STATE_OPEN_WAITING";
case STATE_OPEN_WAIT_FOR_COMPLETE_OURANCHOR:
case STATE_OPEN_WAIT_FOR_COMPLETE_THEIRANCHOR:
return "STATE_OPEN_WAIT_FOR_COMPLETE";
case STATE_NORMAL_LOWPRIO:
case STATE_NORMAL_HIGHPRIO:
return "STATE_NORMAL";
case STATE_WAIT_FOR_HTLC_ACCEPT_LOWPRIO:
case STATE_WAIT_FOR_HTLC_ACCEPT_HIGHPRIO:
return "STATE_WAIT_FOR_HTLC_ACCEPT";
case STATE_WAIT_FOR_UPDATE_COMPLETE_LOWPRIO:
case STATE_WAIT_FOR_UPDATE_COMPLETE_HIGHPRIO:
return "STATE_WAIT_FOR_UPDATE_COMPLETE";
case STATE_WAIT_FOR_UPDATE_SIG_LOWPRIO:
case STATE_WAIT_FOR_UPDATE_SIG_HIGHPRIO:
return "STATE_WAIT_FOR_UPDATE_SIG";
default:
return state_name(s);
}
}
static bool waiting_statepair(enum state a, enum state b)
{
if (a > b)
return waiting_statepair(b, a);
/* We don't need inputs if we're waiting for anchors. */
if (a == STATE_OPEN_WAITING_OURANCHOR)
return true;
if (b == STATE_OPEN_WAITING_THEIRANCHOR)
return true;
/* We don't need inputs at start of main loop. */
if (a == STATE_NORMAL_LOWPRIO
&& b == STATE_NORMAL_HIGHPRIO)
return true;
return false;
}
static bool has_packets(const struct peer *peer)
{
return peer->core.deferred_pkt != INPUT_NONE
|| peer->core.num_outputs != 0;
}
static struct state_effect *get_effect(const struct state_effect *effect,
enum state_effect_type type)
{
while (effect) {
if (effect->etype == type)
break;
effect = effect->next;
}
return cast_const(struct state_effect *, effect);
}
static enum state get_state_effect(const struct state_effect *effect,
enum state current)
{
effect = get_effect(effect, STATE_EFFECT_new_state);
if (effect)
return effect->u.new_state;
return current;
}
static Pkt *get_send_pkt(const struct state_effect *effect)
{
effect = get_effect(effect, STATE_EFFECT_send_pkt);
if (effect)
return effect->u.send_pkt;
return NULL;
}
static void try_input(const struct peer *peer,
enum state_input i,
const union input *idata,
bool normalpath, bool errorpath,
const struct trail *prev_trail,
struct hist *hist)
{
struct peer copy, other;
struct trail t;
enum state newstate;
struct state_effect *effect;
const char *problem;
Pkt *output;
const tal_t *ctx = tal(NULL, char);
copy_peers(&copy, &other, peer);
copy.current_input = i;
copy.current_idata = idata;
init_trail(&t, i, idata, peer, prev_trail);
copy.trail = &t;
eliminate_input(&hist->inputs_per_state[copy.core.state], i);
effect = state(ctx, copy.core.state, &copy, i, idata);
newstate = get_state_effect(effect, peer->core.state);
normalpath &= normal_path(i, peer->core.state, newstate);
errorpath |= error_path(i, peer->core.state, newstate);
if (dot_enable
&& (dot_include_abnormal || normalpath)
&& (dot_include_errors || !errorpath)
&& (dot_include_abnormal || !too_cluttered(i, peer->core.state))) {
const char *oldstr, *newstr;
/* Simplify folds high and low prio, skip "STATE_" */
if (dot_simplify) {
oldstr = simplify_state(peer->core.state) + 6;
newstr = simplify_state(newstate) + 6;
} else {
oldstr = state_name(peer->core.state) + 6;
newstr = state_name(newstate) + 6;
}
if (newstr != oldstr || include_nops)
add_dot(&hist->edges, oldstr, newstr, i,
get_send_pkt(effect));
}
problem = apply_all_effects(&copy, effect, &output);
update_trail(&t, &copy, output);
if (problem)
report_trail(&t, problem);
if (newstate == STATE_ERR_INTERNAL)
report_trail(&t, "Internal error");
if (strstarts(state_name(newstate), "STATE_UNUSED"))
report_trail(&t, "Unused state");
/* Record any output. */
if (output) {
record_output(&hist->outputs,
input_by_name((const char *)output));
}
if (hist->state_dump) {
record_state(&hist->state_dump[peer->core.state], i, newstate,
(const char *)output);
}
/* Have we been in this overall situation before? */
if (!sithash_update(&hist->sithash, &copy)) {
/*
* We expect to loop if:
* 1) We deferred, OR
* 2) We get repeated BITCOIN_ANCHOR_OTHERSPEND/THEIRSPEND, OR
* 3) We pass through NORMAL state.
*
* And if we're being quick, always stop.
*/
if (quick
|| get_effect(effect, STATE_EFFECT_cmd_defer)
|| newstate == STATE_NORMAL_LOWPRIO
|| newstate == STATE_NORMAL_HIGHPRIO
|| i == BITCOIN_ANCHOR_OTHERSPEND
|| i == BITCOIN_ANCHOR_THEIRSPEND
|| quick) {
tal_free(ctx);
return;
}
if (t.depth > STATE_MAX * 10)
report_trail(&t, "Loop");
}
/* Don't continue if we reached a different error state. */
if (state_is_error(newstate)) {
tal_free(ctx);
return;
}
/*
* If we're listening, someone should be talking (usually).
*/
if (copy.core.pkt_inputs && !has_packets(&copy) && !has_packets(&other)
&& !waiting_statepair(copy.core.state, other.core.state)) {
report_trail(&t, "Deadlock");
}
/* Finished? */
if (newstate == STATE_CLOSED) {
if (copy.core.pkt_inputs)
report_trail(&t, "CLOSED but taking packets?");
if (copy.core.cmd_inputs)
report_trail(&t, "CLOSED but taking commands?");
if (copy.core.current_command != INPUT_NONE)
report_trail(&t, input_name(copy.core.current_command));
if (copy.current_htlc.htlc.id != -1)
report_trail(&t, "CLOSED with htlc in progress?");
if (outstanding_htlc_watches(&copy))
report_trail(&t, "CLOSED but watching HTLCs?");
tal_free(ctx);
return;
}
/* Try inputs from here down. */
run_peer(&copy, normalpath, errorpath, &t, hist);
/* Don't bother running other peer we can't communicate. */
if (copy.core.pkt_inputs || other.core.pkt_inputs)
run_peer(&other, normalpath, errorpath, &t, hist);
tal_free(ctx);
}
static void sanity_check(const struct peer *peer)
{
if (peer->core.state == STATE_NORMAL_LOWPRIO
|| peer->core.state == STATE_NORMAL_HIGHPRIO) {
/* Home state: expect commands to be finished. */
if (peer->core.current_command != INPUT_NONE)
errx(1, "Unexpected command %u in state %u",
peer->core.current_command, peer->core.state);
}
}
static void activate_event(struct peer *peer, enum state_input i)
{
/* Events are not independent. */
switch (i) {
case BITCOIN_ANCHOR_DEPTHOK:
/* Can't sent TIMEOUT (may not be set) */
remove_event_(&peer->core.event_notifies, BITCOIN_ANCHOR_TIMEOUT);
break;
case BITCOIN_ANCHOR_TIMEOUT:
/* Can't sent DEPTHOK */
remove_event(&peer->core.event_notifies, BITCOIN_ANCHOR_DEPTHOK);
break;
/* And of the "done" cases means we won't give the others. */
case BITCOIN_SPEND_THEIRS_DONE:
case BITCOIN_SPEND_OURS_DONE:
case BITCOIN_STEAL_DONE:
case BITCOIN_CLOSE_DONE:
remove_event_(&peer->core.event_notifies,
BITCOIN_SPEND_OURS_DONE);
remove_event_(&peer->core.event_notifies,
BITCOIN_SPEND_THEIRS_DONE);
remove_event_(&peer->core.event_notifies, BITCOIN_STEAL_DONE);
remove_event_(&peer->core.event_notifies, BITCOIN_CLOSE_DONE);
remove_event_(&peer->core.event_notifies,
BITCOIN_ANCHOR_OURCOMMIT_DELAYPASSED);
remove_event_(&peer->core.event_notifies,
BITCOIN_ANCHOR_THEIRSPEND);
remove_event_(&peer->core.event_notifies,
BITCOIN_ANCHOR_OTHERSPEND);
remove_event_(&peer->core.event_notifies,
BITCOIN_ANCHOR_UNSPENT);
break;
default:
;
}
}
static bool can_refire(enum state_input i)
{
/* They could have lots of old HTLCS */
if (i == BITCOIN_ANCHOR_OTHERSPEND)
return true;
/* Signature malleability means any number of these */
if (i == BITCOIN_ANCHOR_THEIRSPEND)
return true;
/* They could have lots of htlcs. */
if (i == BITCOIN_HTLC_TOTHEM_SPENT || i == BITCOIN_HTLC_TOTHEM_TIMEOUT
|| i == BITCOIN_HTLC_TOUS_TIMEOUT)
return true;
/* We manually remove these if they're not watching any more spends */
if (i == BITCOIN_HTLC_RETURN_SPEND_DONE
|| i == BITCOIN_HTLC_FULFILL_SPEND_DONE)
return true;
return false;
}
static unsigned int next_htlc_id(void)
{
static unsigned int num;
return ++num;
}
static void run_peer(const struct peer *peer,
bool normalpath, bool errorpath,
const struct trail *prev_trail,
struct hist *hist)
{
struct peer copy, other;
size_t i;
uint64_t old_notifies;
union input *idata = talz(NULL, union input);
sanity_check(peer);
/* We want to frob some things... */
copy_peers(&copy, &other, peer);
/* Try the event notifiers */
old_notifies = copy.core.event_notifies;
for (i = 0; i < 64; i++) {
if (!have_event(copy.core.event_notifies, i))
continue;
/* Don't re-fire most events */
if (!can_refire(i))
remove_event(&copy.core.event_notifies, i);
activate_event(&copy, i);
try_input(&copy, i, idata, normalpath, errorpath,
prev_trail, hist);
copy.core.event_notifies = old_notifies;
}
/* We can send a close command even if already sending a
* (different) command. */
if (peer->core.state != STATE_INIT_WITHANCHOR
&& peer->core.state != STATE_INIT_NOANCHOR
&& peer->core.cmd_inputs
&& !peer->core.closing_cmd) {
copy.core.closing_cmd = true;
try_input(&copy, CMD_CLOSE, idata,
normalpath, errorpath, prev_trail, hist);
copy.core.closing_cmd = false;
}
/* Try sending commands (unless in init state, closed or
* already doing one). */
if (peer->core.state != STATE_INIT_WITHANCHOR
&& peer->core.state != STATE_INIT_NOANCHOR
&& peer->core.cmd_inputs
&& peer->core.current_command == INPUT_NONE
&& !peer->core.closing_cmd) {
unsigned int i;
/* Add a new HTLC if not at max. */
if (copy.num_htlcs_to_them < MAX_HTLCS) {
copy.core.current_command = CMD_SEND_HTLC_UPDATE;
idata->htlc_prog = tal(idata, struct htlc_progress);
idata->htlc_prog->adding = true;
idata->htlc_prog->htlc.to_them = true;
idata->htlc_prog->htlc.id = next_htlc_id();
try_input(&copy, copy.core.current_command, idata,
normalpath, errorpath,
prev_trail, hist);
idata->htlc_prog = tal_free(idata->htlc_prog);
}
/* We can complete or routefail an HTLC they offered */
for (i = 0; i < peer->num_htlcs_to_us; i++) {
idata->htlc_prog = tal(idata, struct htlc_progress);
idata->htlc_prog->htlc = peer->htlcs_to_us[i];
idata->htlc_prog->adding = false;
/* Only send this once. */
if (!rval_known(peer, idata->htlc_prog->htlc.id)) {
copy.core.current_command
= CMD_SEND_HTLC_FULFILL;
try_input(&copy, copy.core.current_command,
idata, normalpath, errorpath,
prev_trail, hist);
}
copy.core.current_command = CMD_SEND_HTLC_ROUTEFAIL;
try_input(&copy, copy.core.current_command,
idata, normalpath, errorpath,
prev_trail, hist);
}
/* We can timeout an HTLC we offered. */
for (i = 0; i < peer->num_htlcs_to_them; i++) {
idata->htlc_prog = tal(idata, struct htlc_progress);
idata->htlc_prog->htlc = peer->htlcs_to_them[i];
idata->htlc_prog->adding = false;
copy.core.current_command = CMD_SEND_HTLC_TIMEDOUT;
try_input(&copy, copy.core.current_command,
idata, normalpath, errorpath,
prev_trail, hist);
}
/* Restore current_command */
copy.core.current_command = INPUT_NONE;
}
/* If they're watching HTLCs, we can send events. */
for (i = 0; i < peer->num_live_htlcs_to_us; i++) {
idata->htlc = (struct htlc *)&copy.live_htlcs_to_us[i];
/* Only send this once. */
if (!rval_known(peer, idata->htlc->id)) {
try_input(&copy, INPUT_RVALUE,
idata, normalpath, errorpath,
prev_trail, hist);
}
try_input(&copy, BITCOIN_HTLC_TOUS_TIMEOUT,
idata, normalpath, errorpath,
prev_trail, hist);
}
for (i = 0; i < peer->num_live_htlcs_to_them; i++) {
idata->htlc = (struct htlc *)&copy.live_htlcs_to_them[i];
try_input(&copy, BITCOIN_HTLC_TOTHEM_SPENT,
idata, normalpath, errorpath,
prev_trail, hist);
try_input(&copy, BITCOIN_HTLC_TOTHEM_TIMEOUT,
idata, normalpath, errorpath,
prev_trail, hist);
}
/* If they're watching HTLC spends, we can send events. */
for (i = 0; i < peer->num_htlc_spends_to_us; i++) {
idata->htlc = (struct htlc *)&copy.htlc_spends_to_us[i];
try_input(&copy, BITCOIN_HTLC_FULFILL_SPEND_DONE,
idata, normalpath, errorpath,
prev_trail, hist);
}
for (i = 0; i < peer->num_htlc_spends_to_them; i++) {
idata->htlc = (struct htlc *)&copy.htlc_spends_to_them[i];
try_input(&copy, BITCOIN_HTLC_RETURN_SPEND_DONE,
idata, normalpath, errorpath,
prev_trail, hist);
}
/* Allowed to send inputs? */
if (copy.core.pkt_inputs) {
enum state_input i;
if (copy.core.deferred_pkt != INPUT_NONE) {
/* Can only resubmit once state changed. */
if (copy.core.state != copy.core.deferred_state) {
i = copy.core.deferred_pkt;
copy.core.deferred_pkt = INPUT_NONE;
try_input(&copy, i, idata,
normalpath, errorpath,
prev_trail, hist);
}
/* Can't send anything until that's done. */
return;
}
if (other.core.num_outputs) {
i = other.core.outputs[0];
if (other.pkt_data[0] == -1U)
idata->pkt = (Pkt *)talz(idata, char);
else
idata->pkt = htlc_pkt(idata, input_name(i),
other.pkt_data[0]);
/* Do the first, recursion does the rest. */
memmove(other.core.outputs, other.core.outputs + 1,
sizeof(other.core.outputs)
- sizeof(other.core.outputs[0]));
memmove(other.pkt_data, other.pkt_data + 1,
sizeof(other.pkt_data)-sizeof(other.pkt_data[0]));
other.core.num_outputs--;
/* Reset so that hashing doesn't get confused. */
other.core.outputs[other.core.num_outputs] = 0;
try_input(&copy, i, idata, normalpath, errorpath,
prev_trail, hist);
}
}
tal_free(idata);
}
static bool record_input_mapping(int b)
{
size_t n;
if (!mapping_inputs)
return false;
/* Accumulating tested inputs? */
n = tal_count(mapping_inputs);
tal_resize(&mapping_inputs, n+1);
mapping_inputs[n] = b;
return true;
}
static enum state_input **map_inputs(void)
{
enum state_input **inps = tal_arr(NULL, enum state_input *, STATE_MAX);
unsigned int i;
const tal_t *ctx = tal(NULL, char);
for (i = 0; i < STATE_MAX; i++) {
/* This is a global */
mapping_inputs = tal_arr(inps, enum state_input, 0);
/* This adds to mapping_inputs every input_is() call */
if (!state_is_error(i))
state(ctx, i, NULL, INPUT_NONE, NULL);
inps[i] = mapping_inputs;
}
/* Reset global */
mapping_inputs = NULL;
tal_free(ctx);
return inps;
}
static bool visited_state(const struct sithash *sithash,
enum state state, bool b)
{
struct situation *h;
struct sithash_iter i;
unsigned int num = 0;
for (h = sithash_first(sithash, &i); h; h = sithash_next(sithash, &i)) {
num++;
if (b) {
if (h->a.s.valid && h->b.s.state == state)
return true;
} else {
if (h->a.s.valid && h->a.s.state == state)
return true;
}
}
return false;
}
static int state_dump_cmp(const struct state_dump *a,
const struct state_dump *b,
void *unused)
{
if (a->input != b->input)
return a->input - b->input;
if (a->next != b->next)
return a->next - b->next;
return 0;
}
int main(int argc, char *argv[])
{
struct peer a, b;
unsigned int i;
struct hist hist;
bool dump_states = false;
bool more_failpoints;
err_set_progname(argv[0]);
opt_register_noarg("--help|-h", opt_usage_and_exit,
""
"Test lightning state machine",
"Print this message.");
opt_register_noarg("--dot",
opt_set_bool, &dot_enable,
"Output dot format for normal paths");
opt_register_noarg("--dot-all",
opt_set_bool, &dot_include_abnormal,
"Output dot format for all non-error paths");
opt_register_noarg("--dot-include-errors",
opt_set_bool, &dot_include_errors,
"Output dot format for error paths");
opt_register_noarg("--include-nops",
opt_set_bool, &include_nops,
"Output even for inputs which don't change state");
opt_register_noarg("--dot-simplify",
opt_set_bool, &dot_simplify,
"Merge high and low priority states");
opt_register_noarg("--dump-states",
opt_set_bool, &dump_states,
"Summarize all state transitions");
opt_register_version();
opt_parse(&argc, argv, opt_log_stderr_exit);
if (dot_include_abnormal)
dot_enable = true;
if (dot_simplify && !dot_enable)
opt_usage_exit_fail("--dot-simplify needs --dot/--dot-all");
if (dot_include_errors && !dot_enable)
opt_usage_exit_fail("--dot-include-errors needs --dot/--dot-all");
if (include_nops && !dot_enable && !dump_states)
opt_usage_exit_fail("--include-nops needs --dot/--dot-all/--dump-states");
/* Map the inputs tested in each state. */
hist.inputs_per_state = map_inputs();
sithash_init(&hist.sithash);
hist.outputs = tal_arr(NULL, enum state_input, 0);
edge_hash_init(&hist.edges);
if (dump_states) {
hist.state_dump = tal_arr(NULL, struct state_dump *, STATE_MAX);
for (i = 0; i < STATE_MAX; i++)
hist.state_dump[i] = tal_arr(hist.state_dump,
struct state_dump, 0);
} else
hist.state_dump = NULL;
#if 0
quick = dot_enable || dump_states;
#else
quick = true;
#endif
/* Initialize universe. */
peer_init(&a, &b, STATE_INIT_WITHANCHOR, "A");
peer_init(&b, &a, STATE_INIT_NOANCHOR, "B");
if (!sithash_update(&hist.sithash, &a))
abort();
failhash_init(&failhash);
/* Now, try each input in each state. */
run_peer(&a, true, false, NULL, &hist);
/* Now probe all the failure points */
do {
struct failpoint *f;
struct failhash_iter i;
more_failpoints = false;
for (f = failhash_first(&failhash, &i);
f;
f = failhash_next(&failhash, &i)) {
if (f->details) {
const struct trail *t;
/* Trail will vanish when f->details freed */
t = tal_steal(f, f->details->us.trail);
try_input(&f->details->us,
f->details->input,
&f->details->idata,
false, true,
t,
&hist);
/* Note: it can go down an earlier path and
* fail differently, so f->details may
* still be set. */
if (!f->details)
tal_free(t);
more_failpoints = true;
}
}
} while (!more_failpoints);
for (i = 0; i < STATE_MAX; i++) {
bool a_expect = true, b_expect = true;
/* Ignore unused states. */
if (strstarts(state_name(i), "STATE_UNUSED"))
continue;
/* A supplied anchor, so doesn't enter NOANCHOR states. */
if (i == STATE_INIT_NOANCHOR
|| i == STATE_OPEN_WAIT_FOR_OPEN_NOANCHOR
|| i == STATE_OPEN_WAIT_FOR_ANCHOR
|| i == STATE_OPEN_WAITING_THEIRANCHOR
|| i == STATE_OPEN_WAIT_FOR_COMPLETE_THEIRANCHOR
|| i == STATE_ERR_ANCHOR_TIMEOUT)
a_expect = false;
if (i == STATE_INIT_WITHANCHOR
|| i == STATE_OPEN_WAIT_FOR_OPEN_WITHANCHOR
|| i == STATE_OPEN_WAIT_FOR_COMMIT_SIG
|| i == STATE_OPEN_WAIT_FOR_COMPLETE_OURANCHOR
|| i == STATE_OPEN_WAITING_OURANCHOR)
b_expect = false;
if (i == STATE_ERR_INTERNAL)
a_expect = b_expect = false;
if (visited_state(&hist.sithash, i, 0) != a_expect)
warnx("Peer A %s state %s",
a_expect ? "didn't visit" : "visited",
state_name(i));
if (visited_state(&hist.sithash, i, 1) != b_expect)
warnx("Peer B %s state %s",
b_expect ? "didn't visit" : "visited",
state_name(i));
if (!state_is_error(i) && tal_count(hist.inputs_per_state[i]))
warnx("Never sent %s input %s", state_name(i),
input_name(*hist.inputs_per_state[i]));
}
for (i = 0; i < INPUT_MAX; i++) {
/* Not all input values are valid. */
if (streq(input_name(i), "unknown"))
continue;
/* We only expect packets to be output. */
if (!input_is_pkt(i))
continue;
if (!find_output(hist.outputs, i))
warnx("Never sent output %s", input_name(i));
}
if (dot_enable) {
struct dot_edge *d;
struct edge_hash_iter i;
printf("digraph lightning {\n");
for (d = edge_hash_first(&hist.edges, &i);
d;
d = edge_hash_next(&hist.edges, &i)) {
printf("%s -> %s ", d->oldstate, d->newstate);
if (!d->pkt)
printf("[label=\"<%s\"];\n", input_name(d->i));
else {
printf("[label=\"<%s\\n>%s\"];\n",
input_name(d->i), d->pkt);
}
}
printf("}\n");
}
if (dump_states) {
for (i = 0; i < STATE_MAX; i++) {
size_t j;
size_t n = tal_count(hist.state_dump[i]);
if (!n)
continue;
printf("%s:\n", state_name(i) + 6);
asort(hist.state_dump[i], n, state_dump_cmp, NULL);
for (j = 0; j < n; j++) {
if (!include_nops
&& hist.state_dump[i][j].next == i)
continue;
printf("\t%s -> %s",
input_name(hist.state_dump[i][j].input),
state_name(hist.state_dump[i][j].next)+6);
if (hist.state_dump[i][j].pkt != INPUT_NONE)
printf(" (%s)",
input_name(hist.state_dump[i][j].pkt));
printf("\n");
}
}
}
return 0;
}