core-lightning/test/test_onion.c
Rusty Russell a38d0c985e Makefile: more fascist warnings.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2016-01-22 06:41:37 +10:30

687 lines
19 KiB
C

#define _GNU_SOURCE 1
#include "onion_key.h"
#include "secp256k1.h"
#include "secp256k1_ecdh.h"
#include "version.h"
#include <openssl/hmac.h>
#include <openssl/evp.h>
#include <openssl/aes.h>
#include <string.h>
#include <unistd.h>
#include <stdlib.h>
#include <err.h>
#include <stdbool.h>
#include <assert.h>
#include <ccan/build_assert/build_assert.h>
#include <ccan/tal/tal.h>
#include <ccan/mem/mem.h>
#include <ccan/crypto/sha256/sha256.h>
#include <ccan/endian/endian.h>
#include <ccan/read_write_all/read_write_all.h>
#include <ccan/opt/opt.h>
#include <ccan/str/hex/hex.h>
/*
* The client knows the server's public key S (which has corresponding
private key s) in advance.
* The client generates an ephemeral private key r, and its corresponding
public key R.
* The client computes K = ECDH(r, S), and sends R to the server at
connection establishing time.
* The server receives R, and computes K = ECHD(R, s).
* Both client and server compute Kenc = SHA256(K || 0) and Kmac = SHA256(K
|| 1), and now send HMAC-SHA256(key=Kmac, msg=AES(key=Kenc, msg=m)) instead
of m, for each message.
*/
struct enckey {
struct sha256 k;
};
struct hmackey {
struct sha256 k;
};
struct iv {
unsigned char iv[AES_BLOCK_SIZE];
};
static void sha_with_seed(const unsigned char secret[32],
unsigned char seed,
struct sha256 *res)
{
struct sha256_ctx ctx;
sha256_init(&ctx);
sha256_update(&ctx, memcheck(secret, 32), 32);
sha256_u8(&ctx, seed);
sha256_done(&ctx, res);
}
static struct enckey enckey_from_secret(const unsigned char secret[32])
{
struct enckey enckey;
sha_with_seed(secret, 0, &enckey.k);
return enckey;
}
static struct hmackey hmackey_from_secret(const unsigned char secret[32])
{
struct hmackey hmackey;
sha_with_seed(secret, 1, &hmackey.k);
memcheck(&hmackey, 1);
return hmackey;
}
static void ivs_from_secret(const unsigned char secret[32],
struct iv *iv, struct iv *pad_iv)
{
struct sha256 sha;
sha_with_seed(secret, 2, &sha);
BUILD_ASSERT(sizeof(*iv) + sizeof(*pad_iv) == sizeof(sha));
memcpy(iv->iv, sha.u.u8, sizeof(iv->iv));
memcpy(pad_iv->iv, sha.u.u8 + sizeof(iv->iv), sizeof(pad_iv->iv));
}
/* Not really! */
static void random_bytes(void *dst, size_t n)
{
size_t i;
unsigned char *d = dst;
for (i = 0; i < n; i++)
d[i] = random() % 256;
}
/* Compressed key would start with 0x3? Subtract from group. Thanks
* Greg Maxwell. */
static void flip_key(struct seckey *seckey)
{
int i;
bool carry = 0;
const int64_t group[] = {
0xFFFFFFFFFFFFFFFFULL,
0xFFFFFFFFFFFFFFFEULL,
0xBAAEDCE6AF48A03BULL,
0xBFD25E8CD0364141ULL
};
for (i = 3; i >= 0; i--) {
uint64_t v = be64_to_cpu(seckey->u.be64[i]);
if (carry) {
/* Beware wrap if v == 0xFFFF.... */
carry = (group[i] <= v);
v++;
} else
carry = (group[i] < v);
v = group[i] - v;
seckey->u.be64[i] = cpu_to_be64(v);
}
}
#if 0
int main(int argc, char *argv[])
{
struct seckey k;
k.u.be64[0] = cpu_to_be64(0xFFFFFFFFFFFFFFFFULL);
k.u.be64[1] = cpu_to_be64(0xFFFFFFFFFFFFFFFEULL);
k.u.be64[2] = cpu_to_be64(0xBAAEDCE6AF48A03BULL);
k.u.be64[3] = cpu_to_be64(0xBFD25E8CD0364141ULL);
flip_key(&k);
assert(k.u.be64[0] == 0);
assert(k.u.be64[1] == 0);
assert(k.u.be64[2] == 0);
assert(k.u.be64[3] == 0);
flip_key(&k);
assert(k.u.be64[0] == cpu_to_be64(0xFFFFFFFFFFFFFFFFULL));
assert(k.u.be64[1] == cpu_to_be64(0xFFFFFFFFFFFFFFFEULL));
assert(k.u.be64[2] == cpu_to_be64(0xBAAEDCE6AF48A03BULL));
assert(k.u.be64[3] == cpu_to_be64(0xBFD25E8CD0364141ULL));
k.u.be64[0] = cpu_to_be64(0xFFFFFFFFFFFFFFFFULL);
k.u.be64[1] = cpu_to_be64(0xFFFFFFFFFFFFFFFEULL);
k.u.be64[2] = cpu_to_be64(0xBAAEDCE6AF48A03BULL);
k.u.be64[3] = cpu_to_be64(0xBFD25E8CD0364142ULL);
flip_key(&k);
assert(k.u.be64[0] == 0xFFFFFFFFFFFFFFFFULL);
assert(k.u.be64[1] == 0xFFFFFFFFFFFFFFFFULL);
assert(k.u.be64[2] == 0xFFFFFFFFFFFFFFFFULL);
assert(k.u.be64[3] == 0xFFFFFFFFFFFFFFFFULL);
flip_key(&k);
assert(k.u.be64[0] == cpu_to_be64(0xFFFFFFFFFFFFFFFFULL));
assert(k.u.be64[1] == cpu_to_be64(0xFFFFFFFFFFFFFFFEULL));
assert(k.u.be64[2] == cpu_to_be64(0xBAAEDCE6AF48A03BULL));
assert(k.u.be64[3] == cpu_to_be64(0xBFD25E8CD0364142ULL));
return 0;
}
#endif
static void random_key(secp256k1_context *ctx,
struct seckey *seckey, secp256k1_pubkey *pkey)
{
do {
random_bytes(seckey->u.u8, sizeof(seckey->u));
} while (!secp256k1_ec_pubkey_create(ctx, pkey, seckey->u.u8));
}
/* We don't want to spend a byte encoding sign, so make sure it's 0x2 */
static void gen_keys(secp256k1_context *ctx,
struct seckey *seckey, struct onion_pubkey *pubkey)
{
unsigned char tmp[33];
secp256k1_pubkey pkey;
size_t len;
random_key(ctx, seckey, &pkey);
secp256k1_ec_pubkey_serialize(ctx, tmp, &len, &pkey,
SECP256K1_EC_COMPRESSED);
assert(len == sizeof(tmp));
if (tmp[0] == 0x3)
flip_key(seckey);
memcpy(pubkey, tmp+1, sizeof(*pubkey));
}
/*
* Onion routing:
*
* Each step decrypts the payload, and removes its message. It then
* pads at the end to keep constant size, by encrypting 0 bytes (ZPAD)
*
* You can see the result of the unwrapping here:
*
* ENC1(PKT1 ENC2(PKT2 ENC3(PKT3 ENC4(PKT4 ENC5(PKT5 RPAD)))))
* After 1: ENC2(PKT2 ENC3(PKT3 ENC4(PKT4 ENC5(PKT5 RPAD))))
* ENC1(ZPAD)
* After 2: ENC3(PKT3 ENC4(PKT4 ENC5(PKT5 RPAD)))
* DEC2(ENC1(ZPAD))
* ENC2(ZPAD)
* After 3: ENC4(PKT4 ENC5(PKT5 RPAD)))
* DEC3(DEC2(ENC1(ZPAD)) ENC2(ZPAD))
* ENC3(ZPAD)
* After 4: ENC5(PKT5 RPAD)
* DEC4(DEC3(DEC2(ENC1(ZPAD)) ENC2(ZPAD)) ENC3(ZPAD))
* ENC4(ZPAD)
*
* ENC1(PKT1 ENC2(PKT2))
* => ENC2(PKT2) ENC1(ZPAD)
* => PKT2 DEC2(ENC1(ZPAD))
*/
#define MESSAGE_SIZE 128
#define MAX_HOPS 20
struct hop {
unsigned char msg[MESSAGE_SIZE];
struct onion_pubkey pubkey;
struct sha256 hmac;
};
struct onion {
struct hop hop[MAX_HOPS];
};
/* We peel from the back. */
static struct hop *myhop(const struct onion *onion)
{
return (struct hop *)&onion->hop[MAX_HOPS-1];
}
static bool aes_encrypt(void *dst, const void *src, size_t len,
const struct enckey *enckey, const struct iv *iv)
{
EVP_CIPHER_CTX evpctx;
int outlen;
/* Counter mode allows parallelism in future. */
if (EVP_EncryptInit(&evpctx, EVP_aes_128_ctr(),
memcheck(enckey->k.u.u8, sizeof(enckey->k)),
memcheck(iv->iv, sizeof(iv->iv))) != 1)
return false;
/* No padding, we're a multiple of 128 bits. */
if (EVP_CIPHER_CTX_set_padding(&evpctx, 0) != 1)
return false;
EVP_EncryptUpdate(&evpctx, dst, &outlen, memcheck(src, len), len);
assert(outlen == len);
/* Shouldn't happen (no padding) */
if (EVP_EncryptFinal(&evpctx, dst, &outlen) != 1)
return false;
assert(outlen == 0);
return true;
}
static bool aes_decrypt(void *dst, const void *src, size_t len,
const struct enckey *enckey, const struct iv *iv)
{
EVP_CIPHER_CTX evpctx;
int outlen;
/* Counter mode allows parallelism in future. */
if (EVP_DecryptInit(&evpctx, EVP_aes_128_ctr(),
memcheck(enckey->k.u.u8, sizeof(enckey->k)),
memcheck(iv->iv, sizeof(iv->iv))) != 1)
return false;
/* No padding, we're a multiple of 128 bits. */
if (EVP_CIPHER_CTX_set_padding(&evpctx, 0) != 1)
return false;
EVP_DecryptUpdate(&evpctx, dst, &outlen, memcheck(src, len), len);
assert(outlen == len);
/* Shouldn't happen (no padding) */
if (EVP_DecryptFinal(&evpctx, dst, &outlen) != 1)
return false;
assert(outlen == 0);
return true;
}
#if 0
static void dump_contents(const void *data, size_t n)
{
size_t i;
const unsigned char *p = memcheck(data, n);
for (i = 0; i < n; i++) {
printf("%02x", p[i]);
if (i % 16 == 15)
printf("\n");
}
}
#endif
static bool aes_encrypt_offset(size_t offset,
void *dst, const void *src, size_t len,
const struct enckey *enckey,
const struct iv *iv)
{
/*
* FIXME: This would be easier if we could set the counter; instead
* we simulate it by encrypting junk before the actual data.
*/
char tmp[offset + len];
/* Keep valgrind happy. */
memset(tmp, 0, offset);
memcpy(tmp + offset, src, len);
/* FIXME: Assumes we are allowed to encrypt in place! */
if (!aes_encrypt(tmp, tmp, offset+len, enckey, iv))
return false;
memcpy(dst, tmp + offset, len);
return true;
}
/* Padding is created by encrypting zeroes. */
static void add_padding(struct hop *padding,
const struct enckey *enckey,
const struct iv *pad_iv)
{
static struct hop zerohop;
aes_encrypt(padding, &zerohop, sizeof(zerohop), enckey, pad_iv);
}
static void make_hmac(const struct hop *hops, size_t num_hops,
const struct hop *padding,
const struct hmackey *hmackey,
struct sha256 *hmac)
{
HMAC_CTX ctx;
size_t len, padlen;
/* Calculate HMAC of padding then onion up to and including pubkey. */
HMAC_CTX_init(&ctx);
HMAC_Init_ex(&ctx, memcheck(hmackey->k.u.u8, sizeof(hmackey->k)),
sizeof(hmackey->k), EVP_sha256(), NULL);
padlen = (MAX_HOPS - num_hops) * sizeof(struct hop);
HMAC_Update(&ctx, memcheck((unsigned char *)padding, padlen), padlen);
len = num_hops*sizeof(struct hop) - sizeof(hops->hmac);
HMAC_Update(&ctx, memcheck((unsigned char *)hops, len), len);
HMAC_Final(&ctx, hmac->u.u8, NULL);
}
#if 0
static void _dump_hex(unsigned char *x, size_t s) {
printf(" ");
while (s > 0) {
printf("%02x", *x);
x++; s--;
}
}
#define dump_hex(x) _dump_hex((void*)&x, sizeof(x))
static void dump_pkey(secp256k1_context *ctx, secp256k1_pubkey pkey) {
unsigned char tmp[65];
size_t len;
secp256k1_ec_pubkey_serialize(ctx, tmp, &len, &pkey, 0);
dump_hex(tmp);
}
#endif
static bool check_hmac(struct onion *onion, const struct hmackey *hmackey)
{
struct sha256 hmac;
make_hmac(onion->hop, MAX_HOPS, NULL, hmackey, &hmac);
return CRYPTO_memcmp(&hmac, &myhop(onion)->hmac, sizeof(hmac)) == 0;
}
static bool create_onion(const secp256k1_pubkey pubkey[],
char *const msg[],
size_t num,
struct onion *onion)
{
int i;
struct seckey seckeys[MAX_HOPS];
struct onion_pubkey pubkeys[MAX_HOPS];
struct enckey enckeys[MAX_HOPS];
struct hmackey hmackeys[MAX_HOPS];
struct iv ivs[MAX_HOPS];
struct iv pad_ivs[MAX_HOPS];
HMAC_CTX padding_hmac[MAX_HOPS];
struct hop padding[MAX_HOPS];
size_t junk_hops;
secp256k1_context *ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
bool ok = false;
if (num > MAX_HOPS)
goto fail;
/* FIXME: I think it would be safe to reuse a single disposable key
* here? */
/* First generate all the keys. */
for (i = 0; i < num; i++) {
unsigned char secret[32];
gen_keys(ctx, &seckeys[i], &pubkeys[i]);
/* Make shared secret. */
if (!secp256k1_ecdh(ctx, secret, &pubkey[i], seckeys[i].u.u8))
goto fail;
hmackeys[i] = hmackey_from_secret(memcheck(secret, 32));
enckeys[i] = enckey_from_secret(secret);
ivs_from_secret(secret, &ivs[i], &pad_ivs[i]);
}
/*
* Building the onion is a little tricky.
*
* First, there is the padding. That's generated by previous nodes,
* and "decrypted" by the others. So we have to generate that
* forwards.
*/
for (i = 0; i < num; i++) {
if (i > 0) {
/* Previous node decrypts padding before passing on. */
aes_decrypt(padding, padding, sizeof(struct hop)*(i-1),
&enckeys[i-1], &ivs[i-1]);
memmove(padding + 1, padding,
sizeof(struct hop)*(i-1));
}
/* And generates more padding for next node. */
add_padding(&padding[0], &enckeys[i-1], &pad_ivs[i-1]);
HMAC_CTX_init(&padding_hmac[i]);
HMAC_Init_ex(&padding_hmac[i],
hmackeys[i].k.u.u8, sizeof(hmackeys[i].k),
EVP_sha256(), NULL);
HMAC_Update(&padding_hmac[i],
memcheck((unsigned char *)padding,
i * sizeof(struct hop)),
i * sizeof(struct hop));
}
/*
* Now the normal onion is generated backwards.
*/
/* Unused hops filled with random, so even recipient can't tell
* how many were used. */
junk_hops = MAX_HOPS - num;
random_bytes(onion->hop, junk_hops * sizeof(struct hop));
for (i = num - 1; i >= 0; i--) {
size_t other_hops, len;
struct hop *myhop;
other_hops = num - i - 1 + junk_hops;
/* Our entry is at tail of onion. */
myhop = onion->hop + other_hops;
/* Now populate our hop. */
myhop->pubkey = pubkeys[i];
/* Set message. */
assert(strlen(msg[i]) < MESSAGE_SIZE);
memset(myhop->msg, 0, MESSAGE_SIZE);
strcpy((char *)myhop->msg, msg[i]);
/* Encrypt whole thing, including our message, but we
* aware it will be offset by the prepended padding. */
if (!aes_encrypt_offset(i * sizeof(struct hop),
onion, onion,
other_hops * sizeof(struct hop)
+ sizeof(myhop->msg),
&enckeys[i], &ivs[i]))
goto fail;
/* HMAC covers entire thing except hmac itself. */
len = (other_hops + 1)*sizeof(struct hop) - sizeof(myhop->hmac);
HMAC_Update(&padding_hmac[i],
memcheck((unsigned char *)onion, len), len);
HMAC_Final(&padding_hmac[i], myhop->hmac.u.u8, NULL);
}
ok = true;
fail:
secp256k1_context_destroy(ctx);
return ok;
}
static bool pubkey_parse(const secp256k1_context *ctx,
secp256k1_pubkey* pubkey,
struct onion_pubkey *pkey)
{
unsigned char tmp[33];
tmp[0] = 0x2;
memcpy(tmp+1, pkey, sizeof(*pkey));
return secp256k1_ec_pubkey_parse(ctx, pubkey, tmp, sizeof(tmp));
}
/*
* Decrypt onion, return true if onion->hop[0] is valid.
*
* Returns enckey and pad_iv for use in unwrap.
*/
static bool decrypt_onion(const struct seckey *myseckey, struct onion *onion,
struct enckey *enckey, struct iv *pad_iv)
{
secp256k1_context *ctx;
unsigned char secret[32];
struct hmackey hmackey;
struct iv iv;
secp256k1_pubkey pubkey;
ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
if (!pubkey_parse(ctx, &pubkey, &myhop(onion)->pubkey))
goto fail;
/* Extract shared secret. */
if (!secp256k1_ecdh(ctx, secret, &pubkey, myseckey->u.u8))
goto fail;
hmackey = hmackey_from_secret(secret);
*enckey = enckey_from_secret(secret);
ivs_from_secret(secret, &iv, pad_iv);
/* Check HMAC. */
#if 0
printf("Checking HMAC using key%02x%02x%02x%02x%02x%02x%02x%02x (offset %u len %zu) for %02x%02x%02x%02x%02x%02x%02x%02x...%02x%02x%02x\n",
hmackey.k[0], hmackey.k[1],
hmackey.k[2], hmackey.k[3],
hmackey.k[4], hmackey.k[5],
hmackey.k[6], hmackey.k[7],
SHA256_DIGEST_LENGTH,
sizeof(*onion) - SHA256_DIGEST_LENGTH,
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[0],
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[1],
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[2],
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[3],
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[4],
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[5],
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[6],
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[7],
((unsigned char *)(onion + 1))[-3],
((unsigned char *)(onion + 1))[-2],
((unsigned char *)(onion + 1))[-1]);
dump_contents((unsigned char *)onion + SHA256_DIGEST_LENGTH,
sizeof(*onion) - SHA256_DIGEST_LENGTH);
#endif
if (!check_hmac(onion, &hmackey))
goto fail;
/* Decrypt everything up to pubkey. */
/* FIXME: Assumes we can decrypt in place! */
if (!aes_decrypt(onion, onion,
sizeof(struct hop) * (MAX_HOPS-1)
+ sizeof(myhop(onion)->msg),
enckey, &iv))
goto fail;
secp256k1_context_destroy(ctx);
return true;
fail:
secp256k1_context_destroy(ctx);
return false;
}
/* Get next layer of onion, for forwarding. */
static bool peel_onion(struct onion *onion,
const struct enckey *enckey, const struct iv *pad_iv)
{
/* Move next one to back. */
memmove(&onion->hop[1], &onion->hop[0],
sizeof(*onion) - sizeof(onion->hop[0]));
/* Add random-looking (but predictable) padding. */
memset(&onion->hop[0], 0, sizeof(onion->hop[0]));
return aes_encrypt(&onion->hop[0], &onion->hop[0],
sizeof(onion->hop[0]), enckey, pad_iv);
}
static bool parse_onion_pubkey(secp256k1_context *ctx,
const char *arg, secp256k1_pubkey *pubkey)
{
unsigned char tmp[33] = { };
if (!hex_decode(arg, strlen(arg), tmp, sizeof(tmp)))
return false;
return secp256k1_ec_pubkey_parse(ctx, pubkey, tmp, sizeof(tmp));
}
static char *make_message(secp256k1_context *ctx,
const secp256k1_pubkey *pubkey)
{
char *m;
unsigned char tmp[33];
size_t len;
char hexstr[hex_str_size(20)];
secp256k1_ec_pubkey_serialize(ctx, tmp, &len, pubkey,
SECP256K1_EC_COMPRESSED);
hex_encode(tmp+1, 20, hexstr, sizeof(hexstr));
asprintf(&m, "Message for %s...", hexstr);
return m;
}
int main(int argc, char *argv[])
{
secp256k1_context *ctx;
struct onion onion;
bool generate = false, decode = false;
assert(EVP_CIPHER_iv_length(EVP_aes_128_ctr()) == sizeof(struct iv));
opt_register_noarg("--help|-h", opt_usage_and_exit,
"--generate <pubkey>... OR\n"
"--decode <privkey>\n"
"Either create an onion message, or decode one step",
"Print this message.");
opt_register_noarg("--generate",
opt_set_bool, &generate,
"Generate onion through the given hex pubkeys");
opt_register_noarg("--decode",
opt_set_bool, &decode,
"Decode onion given the private key");
opt_register_version();
opt_parse(&argc, argv, opt_log_stderr_exit);
ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
if (generate) {
secp256k1_pubkey pubkeys[MAX_HOPS];
char *msgs[MAX_HOPS];
size_t i;
if (argc == 1)
opt_usage_exit_fail("Expected at least one pubkey");
if (argc-1 > MAX_HOPS)
opt_usage_exit_fail("Expected at most %u pubkeys",
MAX_HOPS);
for (i = 1; i < argc; i++) {
if (!parse_onion_pubkey(ctx, argv[i], &pubkeys[i-1]))
errx(1, "Bad pubkey '%s'", argv[i]);
msgs[i-1] = make_message(ctx, &pubkeys[i-1]);
}
if (!create_onion(pubkeys, msgs, argc - 1, &onion))
errx(1, "Creating onion packet failed");
if (!write_all(STDOUT_FILENO, &onion, sizeof(onion)))
err(1, "Writing onion packet");
return 0;
} else if (decode) {
struct seckey seckey;
secp256k1_pubkey pubkey;
struct enckey enckey;
struct iv pad_iv;
if (argc != 2)
opt_usage_exit_fail("Expect a privkey with --decode");
if (!hex_decode(argv[1], strlen(argv[1]), &seckey, sizeof(seckey)))
errx(1, "Invalid private key hex '%s'", argv[1]);
if (!secp256k1_ec_pubkey_create(ctx, &pubkey, seckey.u.u8))
errx(1, "Invalid private key '%s'", argv[1]);
if (!read_all(STDIN_FILENO, &onion, sizeof(onion)))
errx(1, "Reading in onion");
if (!decrypt_onion(&seckey, &onion, &enckey, &pad_iv))
errx(1, "Failed decrypting onion for '%s'", argv[1]);
if (strncmp((char *)myhop(&onion)->msg, make_message(ctx, &pubkey),
sizeof(myhop(&onion)->msg)))
errx(1, "Bad message '%s'", (char *)myhop(&onion)->msg);
if (!peel_onion(&onion, &enckey, &pad_iv))
errx(1, "Peeling onion for '%s'", argv[1]);
if (!write_all(STDOUT_FILENO, &onion, sizeof(onion)))
err(1, "Writing onion packet");
return 0;
} else
opt_usage_exit_fail("Need --decode or --generate");
secp256k1_context_destroy(ctx);
return 0;
}